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Abstract

A multiscale algorithm for the problem of optimal statistical interpolation of
the observed data has been developed. This problem includes the calculation of the
vector of the “analyzed” (best estimated) atmosphere flow field w® by the formula

w' = wl + PPHTY,
where the quantity y is defined by the equation
(HP'HT + R)y = w° — Huw/,

using the given model forecast first guess w’/ and the vector of observations w®. H
is an interpolation operator from the regular grid to the observation network, P/
is the forecast error covariance matrix, and R is the observation error covariance
matrix.

At this initial stage the case of univariate analysis of single level radiosonde
height data is considered. The matrix R is assumed to be diagonal, and the matrix
PS to be given by the formula PZ-J; = 0';,[12']‘0]]'[7 where p;; is a smooth decreasing
function of the distance between the ith and the jth points.

Two different multiscale constructions can be used for efficient solving the prob-
lem of optimal statistical interpolation: a technique for fast evaluation of the discrete
integral transform ), Pij;-vj, and a fast iterative process which effectively works with
a sequence of spatial scales. In this paper we describe a multiscale iterative pro-
cess based on a multiresolution simultaneous displacement technique and a localized

variational calculation of iteration parameters.

1 Introduction

The problem of optimal statistical interpolation of the observed data includes the calcu-
lation of the vector of the “analyzed” (best estimated) atmosphere flow field w® by the

formula
w® = w! + PfHTy,

!This report contains a preliminary version of the material which will be presented in [1].
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where the quantity y is determined from the equation
(HPTH" + R)y = w® — Huw/, (1)

using the given model forecast first guess w’ and the vector of observations w® ([2], [3],
[4]). Typically, w’ is defined on a regular spherical grid, while the set of observations w® is
defined on an irregular network of observation points. H is an interpolation operator from
the regular grid to the observation network, P/ is the forecast error covariance matrix,
and R is the observation error covariance matrix.
The observation error covariance matrix R is assumed to be diagonal, with

Ry = (a)%.
The forecast error covariance function P/(zy,z;) is defined for any pair of points z; and
x2 on the sphere by the formula

Pl(a.2) = o (a)u(a. 2)o! (2),

where the forecast error correlation function u(z,z) is described as a smooth decreasing
function of the distance between the points x and z ([4]). The matrices P/ and y are the
restrictions of functions P/ (z, z) and u(z, z) on the regular latitude-longitude grid.

The purpose of this paper is to develop a concept of a fast multiscale iterative process
for solving y from equation (1) when the observation network is strongly inhomogeneous
in space. At this initial stage the case of univariate analysis of single level radiosonde
height data is considered.

In this paper we consider only convergence properties of the iterative process. Ac-
cordingly, in the computer experiments all summations have been performed straightfor-
wardly. An effective procedure for the fast evaluation of the integral transform on the
sphere, based on the Brandt & Lubrecht approach ([6]), will be presented separately.

Without loss of generality equation (1) can be replaced by the system of equations

ST Ply; + Riy: = w? — (Huw?),, (2)
7

where

f_~f,  ~f
Py = 0 pijo;

for the :th and jth observation points z; and z;.

pij = p(wi, ),

and
5‘Zf = (HO'f)Z'.

(While the matrix P is defined for the points of the regular grid and interpolated to the
observation network using the operator H, the matrix P is defined by the same formula
directly on the observation network.)
Indeed, the difference
HPH"y — Py
may be treated as an additional source in the right hand side. This small term is non-
principal at all scales and can easily be taken into account in iterations.



Since we want to deal explicitly with the smoothness properties of the kernel p;;. we
replace (2) by

0

> paju; + (%)ﬂu = %(‘wf — (Hw?)y). (3)

where u; = &nyi. The system of equations (3) can be written in matrix notation as
Au=f, (4)

where the matrix A is symmetric and presumably positive definite.

2 (General strategy

It is important to understand why a usual iterative process like Jacobi, Gauss-Seidel or
the conjugate gradient method, when applied to the solution of (4) converges slowly. Let
us consider, for example, the simplest iterative process

u(n‘l'l) — u(n) + wr(n)7 (5)

where the residual

r() = f — Aul,

and parameter w & (p(A))~*, with p(A) being the spectral radius of the operator A.
The process (5) reduces effectively the error components corresponding to the large

eigenvalues \;, such that
w)\l ~ 17

while the error components corresponding to the small eigenvalues A, for which
wAs < 1,

are reduced slowly [5]. Since the summation }~; pi;u; in (3) is made with a smooth kernel,
eigenvectors of A corresponding to the large eigenvalues are (mostly) spatially smooth, and
eigenvectors of A corresponding to small eigenvalues are oscillatory in space. Therefore,
one cannot define one particular value of w which would give an essential reduction of all
spectral error components.

The effect described above is well-studied for the case when (4) is obtained as a grid
approximation of the continuous integral equation. A few multiscale techniques based on
multigrid ([6]. [7]) and wavelet ([8]) approaches were developed in 1990’s. Unfortunately,
these techniques cannot be applied to the considered problem straightforwardly because
of the strong inhomogeneity of the observation network.

The central idea of the approach developed below is to filter sequentially spectral
components of 7™ and to choose for each of them a value of the iteration parameter
which gives an essential reduction of the corresponding error component.

The major particular difficulty which has been overcome successfully in this work is
how to define variable pass spatial filters F;, depending on the scale parameter h. for a
field defined on a very inhomogeneous network. An appropriate filter will be described in
§3.

When some component F,r(™ of the residual 7(") has been filtered, one should next
calculate the correction vector. A possible simple way to do it is to use a scalar iteration



parameter wy, 1. e. to calculate the correction as wrFnr™ . Then the modified iterative

process (5) can be written as

W) = ) 4 ) ) (6)

where the iteration parameter depends on the scale & in some way.

An intrinsic disadvantage of schemes like (6) is that one global iteration parameter

wén) is determined for the entire domain. The optimal correction at a spatial point x;

should however depend only on the residual values at points located at most few A from

(n)

x;. Therefore, in §4, we construct a procedure for calculating an iteration parameter wh?»
for each point z; locally, using only the values of the residual components in some area
around it. This means that the iterative process which we construct, can be written as

ur D) = () 4 an)fhr(n), (7)

where

Q, = diag(w;:») ).

We discuss the structure of the multilevel iterative cycle in §5.

3 Spatial Filter

We now define a filter applicable to functions defined on a very irregular discrete network.
Obviously, we want our filter to work like a usual spectral high pass filter in the data
dense regions.

What do we want to get in data sparse regions? Suppose we have an observation point
s which is separated from other points by distance

ds = mindist(s, p).
PFES

We would like to take into account the residual component r; only on the scales h large
enough:

h ~ds and h > d;,
and neglect it on the small scales h:
h < ds.
We define the filter F;, which satisfies these requirements by the formula:

(Far)i=ri =% 37 eXP(—%W)v (8)

where h is the current scale, and the parameter ~; is defined by the formula
1 dist(z, 7). _
Y= Qo exp(—5——— h)-
J

Note that the filter can be calculated efficiently using the fast summation procedure.

4



4 Calculation of (),

The scalariteration parameter wén) in (6) can be determined from the variational condition

of minimizing the Euclidean norm of the scale & component of the new residual T;LH—H):

min || 7 (r") — o AFr |,
“h

where || - || is the Euclidean norm on the observation network:
[lul* = (u, ),

and

(u,v) = Zuzvz

the summation being made over the observation points. This condition leads to the

formula (r.q)
W, = —== 9
" (g.q) ®)
where
P = fhr(n),
q = FrAp.

As mentioned above, some disadvantage of this formula is its globality. In order to
localize it, we use a family of weighted Euclidean norms. Let us introduce

1 dist(z, 5
(uv 'U)l,i = Z Uj;v; exp(_§+))7
J

where the summation is made over the observation points, and
[lullf; = (. u)rs.
Now we can define the matrix Q, in (7). We choose Q;, as follows:

where
(n) _ (P, ¢
i (q(n)yq(n))Shz/

p(n) — Fhr(”),
¢ = Fr,Ap™.

Note again that the fast summation procedure can be used to calculate efficiently wm).



5 Structure of the multiscale iterative cycle

In order to define the order of the multiresolution iterations, we have to prescribe some
spatial scale to each iteration. The current spatial scale is determined by the formula

h=H . 21—level(n)-

where H is the largest scale, and level(n) is the level prescribed for the nth iteration. If
level(n) = 0, the filter is not used. The multiscale iterative algorithm can be written as

follows:

DO n = 1, NITER

Residual calculation

r() = f — Aul?)

IF  level(n) >0 THEN

Definition of the current scale
h=H-. 21—level(n)

Filtering
p™) = Fpr

g = F, Apt)

Calculation of the iteration parameters
L) _
hoi (¢t .a(m))an
Q;Ln) = diag(w,(fi))
’ Calculation of the new approximation
to the solution

w1 = ) 4 QM )

ELSE
Filtering is not used
pm) = p(n)
g = Apt™)
Calculation of the iteration parameter
o = (a)
h - (q(").g("))

Calculation of the new approximation
to the solution

w1 = ) 4 (M) p(n)
ENDIF

ENDDO



We have used for our initial tests the standard V(2,2) multilevel cycle with 3 iterations
at the 0th level (][9], [10]). This means that the function level(n) is periodic:

level(LC + k) = level(k) for any k > 0,

and

NIVL—k+1, if n=2-k—141 k=12.....NLVL, 1=0,1;
level(n) =< 0, if n=2-NLVL+1, 1=1.,23;

k. fn=2 NLVL+242k+1, k=1.2.....NLVL, 1=0,1;

where NLV L is the finest level number, and LC =4- NLVL +3 .

6 Numerical results

At this initial stage of the work we made all the numerical tests with radiosonde height
data only. The forecast correlation function is modeled by the formula

JU(JH,.TEQ) = (1_|_(dist(i—127x2))2)—. |

where dist(x1, 22) is the three-dimensional distance between points x; and 5, and L is
the correlation distance, L = 951 km.

The radiosonde station locations, values of ¢°, o/, and w® — Hw’ have been obtained
from the Data Assimilation Office of NASA/Goddard Space Flight Center. The data
file contains model parameters and radiosonde height observations from 715 stations.

Observation error variances o were taken to be equal to 14.6 m for all radiosonde stations.
f

Forecast error variances o] vary from point to point, ranging from 18 m to 35 m.
We made our experiments with NLV L. = 5. The scales which were used are shown in

Table 1. The results of our experiments are shown in Table 2.

Table 1. Scale structure

Level number 1 2 3 4 )
Scale h, km 10000 [ 5000 | 2500 | 1250 | 625

Table 2. Convergence of the iterative procedure

Multiscale | L; norm of the | Rate of the norm
cycle residual decreasing
Initial 2.551011

1 6.861071 0.027

2 3.761072 0.054

3 2.051073 0.054

4 8.871073 0.043




7 Discussion: Further Improvements

The algorithm described above represents the first step towards fast and efficient solver for
the atmospheric data assimilation problem. It has been shown that the multiresolution
algorithm can provide a fast solver. As long as the number of measurements is moderate
(less than few thousands, say), this algorithm by itself is already effective enough. How-
ever, for larger sets of measurements. a major part of the work per cycle can be saved by
a more advanced multiscale algorithm, featuring the following improvements.

o First, as already mentioned, a fast evaluation of the operator P/, i. e., of the multi-
summation in Eq. (3), can be based on the method of [6] (see also [7]). That method
can also be used for fast filtering.

e Secondly, at each scale h, in any region where the number of of measurements per
O(h x h) cell is large, the multitude of residuals can be replaced by their proper local
averages on a grid with mesh size O(h). Similarly in such regions, the correction
w1 — (") will also be calculated on such a grid, and will only later be interpolated
to the measurement points. Actually. the residual averagings and the correction
interpolation will not be done directly between the finest (measurements) level and
each scale-h level. but will be transferred sequentially through all the intermediate
levels.

e Thirdly, the residual filtering can be replaced by distributive relaxation (as in [6]).
The latter is simple in the grid regions mentioned above. In other regions the
filtering techniques may be easier to apply.

All these improvements will reduce the work of a cycle to a few operations per mea-
surements, hopefully retaining the same convergence rates.
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