DISJOINT PAIRS FOR $G L(n, \mathbb{R})$ AND $G L(n, \mathbb{C})$

AVRAHAM AIZENBUD, OMER OFFEN AND EITAN SAYAG

Abstract. We show the disjointness property of Klyachko for $G L_{n}(\mathbb{R})$ and $G L_{n}(\mathbb{C})$.

1. Introduction

A finite family of subgroups, each endowed with a character, was introduced by Klyachko in Kly83. Over a finite field this family provides a model for $G L_{n}$ (see [IS91]). In this note we consider the archimedean case and prove pairwise disjointness of Klyachko pairs in a sense we now explain.

Definition 1.1. Let G be a real reductive group, H_{i} a closed subgroup and χ_{i} a continuous character of $H_{i}, i=1,2$. We say that $\left(G,\left(H_{1}, \chi_{1}\right)\right)$ and $\left(G,\left(H_{2}, \chi_{2}\right)\right)$ are disjoint pairs if for every irreducible Fréchet representation π of G we have

$$
\operatorname{dim} \operatorname{Hom}_{H_{1}}\left(\pi, \chi_{1}\right) \cdot \operatorname{dim} \operatorname{Hom}_{H_{2}}\left(\pi, \chi_{2}\right)=0 .
$$

In order to formulate our main result we introduce some notation. In Section 3 we use this notation without further mention. Let F equal either \mathbb{R} or \mathbb{C} and let ψ be a non-trivial character of F. Set $X_{n}=G L_{n}(F)$, let U_{n} be the subgroup of upper uni-triangular matrices in X_{n} and let ψ_{n} be the character of U_{n} defined by

$$
\psi_{n}(u)=\psi\left(u_{1,2}+\cdots+u_{n-1, n}\right), \quad u \in U_{n} .
$$

Let $w_{n}=\left(\delta_{i, n+1-j}\right) \in G_{n}$ and let

$$
J_{n}=\left(\begin{array}{cc}
0 & w_{n} \\
-w_{n} & 0
\end{array}\right) \in G_{2 n} .
$$

Consider the symplectic group $S p_{2 n}$ defined by

$$
S p_{2 n}=\left\{g \in G_{2 n}:^{t} g J_{n} g=J_{n}\right\} .
$$

Fix $n \in \mathbb{N}$. For $0 \leq r \leq n$ such that $n-r=2 k$ is even consider the Klyachko subgroup $H_{r, n}$ of G defined by

$$
H_{r, n}=\left\{\left(\begin{array}{cc}
u & X \\
0 & h
\end{array}\right): u \in U_{r}, X \in M_{r \times 2 k}(F), h \in S p_{2 k}\right\}
$$

and let $\psi_{r, n}$ be the character of H_{r} defined by

$$
\psi_{r, n}\left(\begin{array}{cc}
u & X \\
0 & h
\end{array}\right)=\psi_{r}(u)
$$

Date: August 17, 2011.

Theorem 1.1. The pairs $\left(G,\left(H_{r}, \psi_{r}\right)\right), 0 \leq r \leq n, r \equiv n \bmod 2$ are pairwise disjoint.
The analogous result was obtained in [IS91] over a finite field and in OS08] over a non-archimedean local field.

2. Generalities

We refer to AG08 for the notions of Schwartz functions and Schwartz distributions in the following setting. For a Nash manifold X we denote by $\mathcal{S}(X)$ the Fréchet space of \mathbb{C} valued Schwartz functions on X and by $\mathcal{S}^{*}(X)$ its topological dual, the space of Schwartz distributions.

Let G be a Lie group and \mathfrak{g} its Lie algebra. For every smooth topological representation (π, V) of G, i.e. a topological representation such that for any $v \in V$ the map

$$
g \mapsto \pi(g) v: G \rightarrow V
$$

is smooth, V is also naturally a \mathfrak{g}-module. For a character $\chi: G \rightarrow \mathbb{C}^{*}$ let

$$
V^{G, \chi}=\{v \in V: g \cdot v=\chi(g) v \text { for all } g \in G\}
$$

If χ is the trivial character we also denote $V^{G, \chi}$ by V^{G}. Denote by $V \otimes \chi$ the representation of G (or \mathfrak{g}-module structure) on V twisted by χ. Note that $V^{G, \chi}=\left(V \otimes \chi^{-1}\right)^{G}$.

Let $V^{\mathfrak{g}}=\{v \in V: \mathfrak{g} v=0\}$ be the subspace annihilated by \mathfrak{g} and $V_{\mathfrak{g}}=V / \mathfrak{g} V$ the space of co-invariants. Set also $V^{\mathfrak{g}, \chi}=\left(V \otimes \chi^{-1}\right)^{\mathfrak{g}}$. Then evidently

$$
\begin{equation*}
V^{G, \chi} \subseteq V^{\mathfrak{g}, \chi} \tag{2.1}
\end{equation*}
$$

As an example let G be a Nash group with a Nash action on a Nash manifold X. It induces an action of G on $\mathcal{S}(X)$ and on $\mathcal{S}^{*}(X)$. In this case $\mathcal{S}^{*}(X)$ is a smooth topological representation of G.

For every $x \in X$ denote by $G x$ the G-orbit of x, by G_{x} the stabilizer of x in G and by \mathfrak{g}_{x} the Lie algebra of G_{x}. Let $T(X)$ be the tangent bundle of X. For a Nash submanifold Y of X let $N_{Y}^{X}=\left(\left.T(X)\right|_{Y}\right) / T(Y)$ be the normal bundle to Y in X and let $\mathrm{CN}_{Y}^{X}=\left(N_{Y}^{X}\right)^{*}$ be the conormal bundle. For a point $y \in Y$ we denote by $N_{Y, y}^{X}\left(\right.$ resp. $\left.\mathrm{CN}_{Y, y}^{X}\right)$ the fiber over y in N_{Y}^{X} (resp. CN_{Y}^{X}), i.e. the normal (resp. conormal) space to Y in X at the point y.

If X is itself a Nash group and H_{i} is a closed subgroup $i=1,2$ then we shall always consider the left action of $H_{1} \times H_{2}$ on X defined by $\left(\left(h_{1}, h_{2}\right), x\right) \mapsto h_{1} x h_{2}^{-1}$ for $h_{1} \in H_{1}$, $h_{2} \in H_{2}$ and $x \in X$.

The following is an immediate consequence of [SZ, Theorem 2.3 (b)]. The statement in [loc. cit.] is in terms of tempered generalized functions rather then Schwartz distributions. The translation is straightforward.
Theorem 2.1 (Sun-Zhu). Let G be a real reductive group, H_{i} a closed subgroup and $\chi_{i} a$ continuous character of $H_{i}, i=1,2$. If $\mathcal{S}^{*}(G)^{H_{1} \times H_{2}, \chi_{1}^{-1} \times \chi_{2}^{-1}}=0$ then for every irredcible Fréchet representation π of G we have

$$
\operatorname{dim} \operatorname{Hom}_{H_{1}}\left(\pi, \chi_{1}\right) \cdot \operatorname{dim} \operatorname{Hom}_{H_{2}}\left(\tilde{\pi}, \chi_{2}\right)=0
$$

where $\tilde{\pi}$ is the contragredient of π.

Next we provide a sufficient condition for vanishing of the space of equivariant distributions in an algebraic context.

Lemma 2.2. Let $G=\mathbb{G}_{a}(F)(=F)$ and let $\mathfrak{g}(=F)$ be the Lie algebra of G. Let $\chi: G \rightarrow \mathbb{C}^{*}$ be a non-trivial character and let π be a finite dimensional algebraic representation of G. Then $(\pi \otimes \chi)_{\mathfrak{g}}=0$.
Proof. Since π is algebraic and G unipotent, the only eigenvalue of $\pi \otimes \chi$ on G is χ. The derivative of χ at zero is not zero and therefore every non-zero element of \mathfrak{g} acts on $\pi \otimes \chi$ by an invertible linear transformation. Hence $\mathfrak{g}(\pi \otimes \chi)=\pi \otimes \chi$ and there are no non-zero coinvariants.

Proposition 2.3. Let G be an F-linear algebraic group acting on a smooth algebraic variety X. Let $\chi: G \rightarrow \mathbb{C}^{*}$ be a unitary character and assume that for every $x \in X$ there exists a unipotent $u \in G_{x}$ such that $\chi(u) \neq 1$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proof. By (2.1) we have $\left.T\right|_{\mathfrak{g}(\mathcal{S}(X) \otimes \chi)} \equiv 0$ for every $T \in \mathcal{S}^{*}(X)^{G, \chi}$. It is therefore enough to show that $\mathcal{S}(X) \otimes \chi=\mathfrak{g}(\mathcal{S}(X) \otimes \chi)$. By [AG, Theorem 2.2.15] it is enough to show that $\left(\operatorname{Sym}^{k}\left(C N_{G x, x}^{X}\right) \otimes \chi^{\prime}\right)_{\mathfrak{g}_{x}}=0$ for all $k \in \mathbb{Z}_{\geq 0}$ where $\chi^{\prime}=\left.\chi\right|_{G_{x}} \cdot\left(\left.\left(\Delta_{G}\right)\right|_{G_{x}} / \Delta_{G_{x}}\right)$ and Δ_{H} denotes the modulus function of a locally compact group H.

Since χ is unitary and $\left.\left(\Delta_{G}\right)\right|_{G_{x}} / \Delta_{G_{x}}$ positive we have $\chi^{\prime}(u) \neq 1$. Since u is unipotent it lies in the image of some algebraic homomorphism $\varphi: F \rightarrow G_{x}$ (see e.g. [Fog69, Proposition 5.29]). Let \mathfrak{u} be the Lie algebra of $\varphi(F)$. It follows from Lemma 2.2 that $\left(\operatorname{Sym}^{k}\left(C N_{G x, x}^{X}\right) \otimes \chi^{\prime}\right)_{\mathfrak{u}}=0$ and since $\mathfrak{u} \subseteq \mathfrak{g}_{x}$ also that $\left(\operatorname{Sym}^{k}\left(C N_{x, G x}^{X}\right) \otimes \chi^{\prime}\right)_{\mathfrak{g}_{x}}=0$. The Theorem follows.

Let ψ be a unitary character of F and G an F-linear algebraic group. A character χ of G is ψ-algebraic if there exists an F-algebraic homomorphism $\phi: G \rightarrow \mathbb{G}_{a}(F)$ such that $\chi=\psi \circ \phi$.
Corollary 2.4. With the above notation assume that G acts on a smooth algebraic variety X. Let χ be a ψ-algebraic character of G such that $\left.\chi\right|_{G_{x}} \not \equiv 1$ for every $x \in X$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.
Proof. Let $\phi: G \rightarrow \mathbb{G}_{a}(F)$ be as above. For $x \in X$ the stabilizer G_{x} is an F-linear algebraic group and therefore each of its elements has a Jordan decomposition in G_{x} (see e.g. Hum75, §34.2]). If $\chi(s) \neq 1$ for some semi-simple $s \in G_{x}$ then let S be an F-torus in G_{x} containing s. Then $\left.\phi\right|_{S}$ is a non-trivial algebraic homomorphism from a non trivial F-torus to the additive group $\mathbb{G}_{a}(F)$, which is a contradiction. Thus $\chi(u) \neq 1$ for some unipotent element $u \in G_{x}$. The Corollary therefore follows from Theorem 2.3.

Theorem 2.5. Let X be an F-reductive group, H_{i} an algebraic subgroup and χ_{i} a ψ algebraic character of $H_{i}, i=1,2$. Set $G=H_{1} \times H_{2}$ and $\chi=\chi_{1} \times \chi_{2}$ and assume that $\left.\chi\right|_{G_{x}} \not \equiv 1$ for all $x \in X$.
(1) For every irreducible Fréchet representation π of X we have

$$
\operatorname{dim} \operatorname{Hom}_{H_{1}}\left(\pi, \chi_{1}\right) \cdot \operatorname{dim} \operatorname{Hom}_{H_{2}}\left(\tilde{\pi}, \chi_{2}\right)=0
$$

(2) If $X=G L_{n}(F)$ and ι is the Cartan involution on X defined by $g^{\iota}={ }^{t} g^{-1}$ then $\left(X,\left(H_{1}, \chi_{1}\right)\right)$ and $\left(X,\left(H_{2}^{\iota}, \chi_{2}^{\iota}\right)\right)$ are disjoint pairs.
Proof. The first part is immediate from Theorem 2.1 and Corollary 2.4. (Note that χ^{-1} is ψ^{-1}-algebraic and $\left.\chi^{-1}\right|_{G_{x}} \not \equiv 1, x \in X$.) For $X=G L_{n}(F)$ it follows from AGS08, Theorem 2.4.2]) that for every irreducible Fréchet representation π of X we have $\pi^{\iota} \simeq \tilde{\pi}$. Thus,

$$
\operatorname{Hom}_{H_{2}}\left(\tilde{\pi}, \chi_{2}\right) \simeq \operatorname{Hom}_{H_{2}}\left(\pi^{\iota}, \chi_{2}\right) \simeq \operatorname{Hom}_{H_{2}^{\iota}}\left(\pi, \chi_{2}^{\iota}\right)
$$

The second part therefore follows from the first.

3. Disjointness

Fix $n \in \mathbb{N}$ and $0 \leq r \neq r^{\prime} \leq n$ such that $r \equiv n \equiv r^{\prime} \bmod 2$. Set $X=G_{n}, H=H_{r, n}$ and $H^{\prime}=H_{r^{\prime}, n}$. Let ι be the Cartan involution on X defined by $g^{\iota}={ }^{t} g^{-1}, G=H^{\iota} \times H^{\prime}$ and $\theta=\psi_{r, n}^{\iota} \times \psi_{r^{\prime}, n}$ a character of G. Clearly θ is ψ-algebraic.
Theorem 3.1. With the above notation $\left.\theta\right|_{G_{x}} \not \equiv 1$ for all $x \in X$.
Proof. Let $G^{\prime}=H_{r^{\prime}} \times H_{r}^{\iota}$ and let $\theta^{\prime}=\psi_{r^{\prime}} \times \psi_{r}^{\iota}$. It follows from [OS08, Proposition 2] (see Remark 2 of [ibid.]) that

$$
\begin{equation*}
\left.\theta^{\prime}\right|_{G_{x}^{\prime}} \not \equiv 1, \quad x \in X . \tag{3.1}
\end{equation*}
$$

Note that the map $\xi: G \rightarrow G^{\prime}$ defined by $\xi\left(h_{1}, h_{2}\right)=\left(h_{2}^{\iota}, h_{1}^{\iota}\right)$ is an isomorphism and $\left.\theta^{\prime} \circ \xi\right|_{G}=\theta$. Since we further have

$$
{ }^{t}(g \cdot x)=\xi(g) \cdot\left({ }^{t} x\right), g \in G, x \in X
$$

it follows that $\xi\left(G_{x}\right)=G_{t_{x}}^{\prime}$ and therefore (3.1) implies that $\left.\theta\right|_{G_{x}} \not \equiv 1, \quad x \in X$ as required.

Proof of Theorem 1.1. The Theorem follows from Theorems 2.5,2) and 3.1.

References

[AG] Avraham Aizenbud and Dmitry Gourevitch. Smooth transfer of Kloosterman integrals (the archimedean case). Preprint.
[AG08] Avraham Aizenbud and Dmitry Gourevitch. Schwartz functions on Nash manifolds. Int. Math. Res. Not. IMRN, (5):Art. ID rnm 155, 37, 2008.
[AGS08] Avraham Aizenbud, Dmitry Gourevitch, and Eitan Sayag. $\left(\mathrm{GL}_{n+1}(F), \mathrm{GL}_{n}(F)\right)$ is a Gelfand pair for any local field F. Compos. Math., 144(6):1504-1524, 2008.
[Fog69] John Fogarty. Invariant theory. W. A. Benjamin, Inc., New York-Amsterdam, 1969.
[Hum75] James E. Humphreys. Linear algebraic groups. Springer-Verlag, New York, 1975. Graduate Texts in Mathematics, No. 21.
[IS91] N. F. J. Inglis and J. Saxl. An explicit model for the complex representations of the finite general linear groups. Arch. Math. (Basel), 57(5):424-431, 1991.
[Kly83] A. A. Klyachko. Models for complex representations of groups GL(n,q). Mat. Sb. (N.S.), 120(162)(3):371-386, 1983.
[OS08] Omer Offen and Eitan Sayag. Uniqueness and disjointness of Klyachko models. J. Funct. Anal., 254(11):2846-2865, 2008.
[SZ] Binyong Sun and Chen-Bo Zhu. A general form of Gelfand-Kazhdan criterion. To appear in Manuscripta Math.

