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Abstract. Let H be a Nash group acting equivariantly on a Nash manifold
X and a Nash bundle E of X. Let h be the Lie algebra of H. Let S(X, E) be
the space of Schwartz sections of E . In this paper, under some conditions, we
prove a duality theorem concerning the Lie algebra homology Hi(h,S(X, E)).
One equivalent formulation is that all the homological spaces Hi(h,S(X, E))
are separated, i.e Hausdorff. In particular, hS(X, E) is a closed subspace of
S(X, E).

As an application we prove a certain comparison theorem between homolo-
gies of smooth representations and their Harish-Chandra modules.

1. Introduction

In this paper we start to develop the theoretical background for comparison
theorems in homological representation theory attached to a real reductive group
G.

The algebraic side of representation theory for G is encoded in the theory
of Harish-Chandra modules V . These are modules for the Lie algebra g of G
with a compatible algebraic action of a fixed maximal compact subgroup K
of G. According to Casselman-Wallach (see [Wal92, Chapter 11] or [Cas89]
or, for a different approach, [BK]) Harish-Chandra modules V can be naturally
completed to smooth moderate growth modules V ∞ for the group G. Somewhat
loosely speaking one might think of V , resp. V ∞, as the regular, resp. smooth,
functions on some real algebraic variety.

Fix a subalgebra h < g. As V ⊂ V ∞ we obtain natural maps

Φp : Hp(h, V )→ Hp(h, V
∞) .

Conjecture A. (Comparison Conjecture) If h is a real spherical subalgebra,
then Φp is an isomorphism for all p.

Note that Hp(h, V ) is finite dimensional (see Section 5). If h is a maximal
unipotent subalgebra then Conjecture A is the still not fully established Cas-
selman comparison theorem (see [HT98] for G split).

According to the Casselman subrepresentation theorem every smooth com-
pletion V ∞ is the quotient of the section module of an equivariant vector bundle
E → X where X = G/P is the minimal flag variety. A first step towards the
Comparison Conjecture is to understand the topological nature of the modules
Hp(h, C

∞(X, E)). In particular one needs to know whether these topological
vector spaces are separated (Hausdorff). Under some restrictions on h and E ,
this will be answered in this article.

Let now H ′ be a Nash group (not necessarily reductive) and H be a normal
Nash sub-group of H ′. Let X be a Nash manifold and E be a Nash vector
bundle over X. Assume that H ′ acts equivariantly on X and E . Let S(X, E)
be the space of Schwartz sections with respect to E −→ X. Then S(X, E) is
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a nuclear Fréchet space and H ′ acts smoothly on S(X, E). Let h, h′ be the Lie
algebras of H,H ′.

Since the action of H ′ on S(X, E) is smooth, the space S(X, E) becomes a
h′-module (then also a h-module). Equipped with the quotient topology, each
homological space Hi(h,S(X, E)) becomes a topological vector space. The main
theorem of this paper is:

Theorem B. Suppose that the number of H ′-orbits in X is finite, and H and
all the stabilizers Hx (x ∈ X) are homologically trivial (e.g. contractible). Then
Hi(h,S(X, E)) is separated and duality holds:

Hi(h,S(X, E)) ∼= (Hi(h,S(X, E)′))′,

i.e., Hi(h,S(X, E)) is topologically isomorphic to the strong dual of H i(h,S(X, E)′).
In particular, the subspace hS(X, E) ⊂ S(X, E) is closed.

In Section 5 we deduce from this theorem a special case of Conjecture A (see
Theorem 5.0.3).

1.1. Acknowledgements. We would like to thank Eitan Sayag for fruitful
discussions.

2. Complexes of topological vector spaces

2.1. Preliminaries. Let us begin with a brief recall on some standard facts
about topological vector spaces. For more details we refer the reader to [CHM00,
Appendix A].

A topological vector space V is called separated or Hausdorff if {0} ⊂ V is
closed. Non-separated topological vector spaces typically arise as quotients V/U
where U ⊂ V is a non-closed subspace of the topological vector space V .

If V is a topological vector space, then we denote by V ′ its topological dual,
that is the space of continuous linear functionals V → C. We endow V ′ with
the strong dual topology (i.e. the topology of uniform convergence on bounded
sets) and note that V ′ is a separated topological vector space.

If T : V → W is a morphism of topological vector spaces, then we denote
by T ′ : V ′ → W ′ the corresponding dual morphism. A morphism T : V → W
is called strict, provided that T induces an isomorphism of topological vector
spaces V/ kerT ' imT . Strict morphisms typically arise as morphisms which
have closed image and V,W are such that the open mapping theorem holds,
e.g. V,W are Fréchet spaces or more generally if V is strictly bornological and
W is an inductive limit of Fréchet spaces (see [G73, Ch. 4, §5, Th. 2]).

A topological vector space V is called reflexive if the canonical map

ι : V → V ′′ := (V ′)′; ι(v)(λ) := λ(v)

is an isomorphism.
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Our concern in this section is with bounded complexes of topological vec-
tor spaces (V•, d•). That is for all p ∈ Z we are given a topological vector
space Vp and morphisms dp : Vp → Vp−1 which satisfy dp+1 ◦ dp = 0. We
are interested in the homology of the complex H•(V•, d•) which is given by
Hp(V•, d•) := ker dp/ im dp+1. Clearly H•(V•, d•) is separated if all differentials
dp have closed image.

Attached to (V•, d•) is the dual complex (V •, d•) where V p := (Vp)
′ and

dp := d′p+1 : V p → V p+1. We denote by H•(V •, d•) the corresponding co-

homology spaces, that is Hp(V •, d•) := ker dp/ im dp−1. Note that there is a
natural mapping:

ιp : Hp(V•, d•)→ Hp(V •, d•)′, v + im dp+1 7→ (λ+ ker dp−1 7→ λ(v)) .

We introduce an auxiliary notion and call complex of topological vector spaces
(V•, d•) good if all maps ιp are isomorphisms.

In the sequel we will work with a special class of topological vector spaces
which are suited for topological homology. Let us denote by NF the category
of nuclear Fréchet spaces. Note that:

• Closed subspaces of an NF -space are NF .
• Quotients of NF -spaces by closed subspaces are NF .
• NF -spaces are reflexive.

The spaces dual to NF spaces are called DNF -spaces. Note that DNF -
spaces satisfy the assumptions of the open mapping theorem. Furthermore,
reflexivity implies that a morphism T : V → W between NF -spaces is strict
if and only if the dual morphism T ′ : W ′ → V ′ is strict. We summarize the
discussion (see also [CHM00, Lemma A.2]):

Lemma 2.1.1. Let (V•, d•) be a complex of NF -spaces (or DNF -spaces). Then
the following assertions hold:

(1) (V•, d•) is good if and only if all Hp(V•, d•) are separated.
(2) Hp(V•, d•) is separated if and only if Hp+1(V •, d•) is separated.

2.2. Extensions and limits of good complexes. Now we prove the following
lemma which is important in this paper.

Lemma 2.2.1. (Extension property) Let

0 −→ U• −→ V• −→ W• −→ 0

be a short exact sequence of bounded NF -complexes. Then if two of them are
good, the third is also good.

Proof. We only treat the case where U• and W• are good, as the other two cases
have a similar proof. Our objective is to show that V• is good, that is H•(V•) is
naturally isomorphic to H•(V •)′.
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Firstly, according to Lemma 2.1.1, the dual sequence

0 −→ W • −→ V • −→ U• −→ 0

is also exact.
We look at the sequence of homologies for the complex and the corresponding

dual complexes:

(1) Hi+1(W•) −→ Hi(U•) −→ Hi(V•) −→ Hi(W•) −→ Hi−1(U•)

and

(2) Hi−1(U•) −→ Hi(W •) −→ Hi(V •) −→ Hi(U•) −→ Hi+1(W •).

We prove by induction on i that Hi(V•) are separated. Since the complex
is bounded, the base is trivial. Fix i ∈ Z and assume that Hi−1(V•) is sepa-
rated. Lemma 2.1.1(2) implies that Hi(V •) is separated. Then according to
Lemma 2.1.1(1), we dualize (2) and arrive at the exact sequence:

Hi+1(W •)′ −→ Hi(U•)′ −→ Hi(V •)′ −→ Hi(W •)′ −→ Hi−1(U•)′ .

Since U• and W• are good we have natural isomorphism H•(W•) ' H•(W •)′

and likewise for U•. The Five Lemma implies that Hi(V•)→ Hi(V •)′ is a linear
isomorphism. In particular Hi(V•) is separated. �

Corollary 2.2.2. Let V i
• (i ∈ N) be a projective system of uniformly bounded

NF -complexes, such that Ti : V i+1
• −→ V i

• is onto. Let V• = lim←−V
i
• (the topo-

logical projective limit). Suppose that all V i
• are good. Then V• is good.

Proof. Let V pro
• =

∏
V i
• . Then it is known that V pro

• is also an NF -complex
(see [Tre67, Proposition 50.1]) and V• is a closed sub-complex of V pro

• . Moreover
it is easy to check that V pro

• is good.
On the other hand, since all Ti are onto, it is not difficult to check that the

following short sequence is exact:

0 −→ V• −→ V pro
•

T−→ V pro
• −→ 0,

with T (v0, ..., vi, ...) = (v0−T0(v1), ..., vi−Ti(vi+1), ...), is exact. The assertion
follows now from the previous Lemma 2.2.1 �

Later we will apply the results of this section to the Koszul complex attached
to a NF -module V for a finite dimensional Lie algebra h: Vp :=

∧p h ⊗ V for
p ≥ 0 and Vp = {0} for p < 0. The homology of the the Koszul-complex is
denoted by H•(h, V ).

We will call an NF -h-module V good if the associated Koszul complex is
good.
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3. Schwartz spaces on Nash manifolds

3.1. Nash manifolds. Nash manifolds are smooth semi-algebraic manifolds.
Nash manifolds are equipped with the restricted topology, in which open sets are
open semi-algebraic sets. This is not a topology in the usual sense of the word
as infinite unions of open sets are not necessarily open sets in the restricted
topology. However, finite unions of open sets are open and therefore in the
restricted topology we consider only finite covers. In particular, if E over X is a
Nash vector bundle it means that there exists a finite open cover Ui of X such
that E|Ui

is trivial. For more details on Nash manifolds we refer the reader to
[BCR98, Shi87, Sun].

Theorem 3.1.1 (Local triviality of Nash manifolds; [Shi87, Theorem I.5.12]).
Any Nash manifold can be covered by a finite number of open submanifolds Nash
diffeomorphic to Rn.

Theorem 3.1.2 (see e.g. [AG10, Theorem 2.4.16] ). Let s : X → Y be a
surjective submersive Nash map. Then locally it has a Nash section, i.e. there

exists a finite open cover Y =
k⋃

i=1

Ui such that s has a Nash section on each Ui.

A Lie group G is called a Nash group provided that G is a Nash manifold and
all group operations being Nash maps.

By a (Nash) stratification of a Nash-manifold X we understand a finite union

X =
⋃k

i=1Xi such that
⋃k

i=j Xi is an open Nash subset of X for any j.

Lemma 3.1.3. Let X be a Nash manifold, let E ,F be a Nash bundle over X and
φ : E → F be a morphism of Nash bundles. Then there exists a stratification of
X by Nash submanifolds such that φ has constant rank on each stratum.

For the proof of this lemma we will need another Lemma:

Lemma 3.1.4. Let X be a Nash manifold and Z be a closed subset (in the
restricted topology). Then there exists a stratification of Z by (locally closed)
Nash submanifolds of X.

Proof. Let ∆(Z) denote the singular locus of Z. The lemma is equivalent to the
fact that ∆(...∆(Z)) = ∅ for enough iterations of ∆. This statement is local, so
by Theorem 3.1.1 it is enough to prove it for X = Rn. In this case the lemma
is [BCR98, Theorem 9.1.8]. �

Proof of Lemma 3.1.3. It is easy that Xk := {x ∈ X s.t. rkφx ≤ k} is closed.
The assertion follows now from Lemma 3.1.4. �

3.2. Schwartz functions on Nash manifolds. Schwartz functions are func-
tions that decay, together with all their derivatives, faster than any polynomial.
On Rn it is the usual notion of Schwartz function. We also need the notion of

http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf


HAUSDORFFNESS FOR LIE ALGEBRA HOMOLOGY OF SCHWARTZ SPACES 7

tempered functions, i.e. smooth functions that grow not faster than a polyno-
mial, and so do all their derivatives. For precise definitions of those notions we
refer the reader to [AG08]. In this section we summarize some elements of the
theory of Schwartz functions.

Fix a Nash manifold X and a Nash bundle E over X. We denote by S(X) the
Fréchet space of Schwartz functions on X and by S(X, E) the space of Schwartz
sections of E . We collect a few central facts which will be used implicitly in the
sequel:

• S(Rn) = Classical Schwartz functions on Rn. See [AG08, Theorem 4.1.3].
• The space S(X, E) is a nuclear Fréchet space. See [AG10, Corollary

2.6.2].
• Let Z ⊂ X be a closed Nash submanifold. Then the restriction maps
S(X, E) onto S(Z, E|Z). See [AG08, §1.5].

Proposition 3.2.1 (Partition of unity, [AG08, §5]). Let X =
⋃
Ui be a finite

open cover of X. Then there exists a tempered partition of unity 1 =
∑n

i=1 λi
such that for any Schwartz section f ∈ S(X, E) the section λif is a Schwartz
section of E on Ui (extended by zero to X).

Proposition 3.2.2 ([AG08, Theorem 5.4.3]). Let U ⊂ X be a (semi-algebraic)
open subset, then

S(U, E) ∼= {φ ∈ S(X, E)| φ is 0 on X \ U with all derivatives}.
In particular, extension by zero defines a closed imbedding S(U, E) ↪→ S(X, E).

Let Z be a locally closed semi-algebraic subset of X. Denote

SX(Z, E) := S(X − (Z − Z), E)/S(X − Z, E) .

Here we identify S(X−Z, E) with a closed subspace of S(X− (Z−Z), E) using
the description of Schwartz functions on an open set (Proposition 3.2.2).

To obtain a feeling for the objects SX(Z, E) let us consider the case of the
trivial bundle and Z = {pt} a point. Then S{pt}(X) = S(X)/S(X − {pt})
and Proposition 3.2.2 implies that there is a well defined injective map (the
Taylor series map at the point {pt}) into the ring of power series in n = dimX
variables:

S{pt}(X)→ C[[x1, . . . , xn]] .

The contents of Borel’s Lemma is that this map is surjective. Note that the for-
mal power series have a natural structure as projective limit. The generalization
of Borel’s lemma now reads as (see [AG13, Lemmas B.0.8 and B.0.9]):

Lemma 3.2.3. Let Z ⊂ X be a Nash submanifold.
Then SX(Z, E) has a canonical countable decreasing filtration by closed sub-

spaces SX(Z, E)i satisfying:

http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
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(1)
⋂
SX(Z, E)i = {0}.

(2) gri(SX(Z, E)) ∼= S(Z, Symi(CNX
Z ) ⊗ E), where CNX

Z = (TX|Z/TZ)∗

denotes the conormal bundle to Z in X.
(3) The natural map

SX(Z, E)→ lim
←

(SX(Z, E)/SX(Z, E)i)

is an isomorphism.

The spaces SZ(X, E) naturally appear in the context of stratifications.

Lemma 3.2.4. Let X =
⋃k

i=1Xi be a Nash stratification of X. Then S(X, E)
has a natural filtration of length k such that Gri(S(X, E)) = SX(Xi, E). More-
over, if Y is a Nash manifold and X ⊂ Y is a (locally closed) Nash submanifold
then SY (X, E) has a natural filtration of length k such that Gri(SY (X, E)) =
SY (Xi, E).

Proof. Straightforward from the definitions. �

Finally we record:

Lemma 3.2.5 ([AGS, Lemma 5.1.1]). Suppose

0→ E1 → E2 → E3 → 0

is an exact sequence of Nash bundles on X. Then

0→ S(X, E1)→ S(X, E2)→ S(X, E3)→ 0.

is an exact sequence of Fréchet spaces.

3.3. Relative Shapiro lemma. We will use upper case Latin letters, e.g. H,
G etc., to denote real Lie groups and lower case Gothic letters for their corre-
sponding Lie algebras, e.g. h, g etc.

Theorem 3.3.1 ([AGS, Theorem 6.2.1]). Let H be an affine Nash group and
X be a transitive Nash H-manifold. Let Y be a Nash manifold. Let x ∈ X and
denote L := Hx. Let E → X×Y be a H equivariant Nash bundle. Suppose that
H and L are homologically trivial (i.e. all their homology except H0 vanish and
H0 = R).

Hi(h,S(X × Y, E)) ∼= Hi(l,S({x} × Y, E{x}×Y ⊗∆L · (∆−1H )|L)),

where ∆L and ∆H denote the modular characters of the groups L and H.

The proof in [AGS, Theorem 6.2.1] gives formally only an isomorphism of
vector spaces. However in view of the following lemma the same proof gives
isomorphism of topological vector spaces.



HAUSDORFFNESS FOR LIE ALGEBRA HOMOLOGY OF SCHWARTZ SPACES 9

Lemma 3.3.2. Let

· · · → Vi
di→ · · ·

and

· · · → Wi
ei→ · · ·

be complexes of Fréchet spaces. Let φi : Vi → Wi be a continuous morphism be-
tween them. Assume that the co-homologies of one of those complexes are sepa-
rated. Assume also that the φi induce linear isomorphisms on the co-homologies.

Then the co-homologies of both complexes are separated and φi induces topo-
logical vector spaces’ isomorphism on the co-homologies.

Proof. By the Banach open map theorem, it is enough to show that the co-
homologies of both complexes are separated. If the co-homologies of

· · · → Wi → · · ·

are separated then the statement is obvious, since Im di−1 = φ−1i (Im ei−1). Thus
we can assume that the co-homologies of

· · · → Vi → · · ·

are separated, and we want to prove that the co-homologies of

· · · → Wi → · · ·

are separated. Fix i. We need to prove that Im ei−1 is closed. Without loss of
generality we can assume that Vi+1 = Wi+1 = 0. So we know that

(1) Im di−1 is closed
(2) Im ei−1 + Imφi = Wi

(3) φ−1i (Im ei−1) = Im di−1.

Consider the map ei−1 ⊕ φi : Wi−1 ⊕ Vi → Wi. We know that this map is onto.
It is easy to see that

(ei−1 ⊕ φi)
−1(Im ei−1) = Wi−1 ⊕ φ−1i (Im ei−1) = Wi−1 ⊕ Im di−1.

Thus (ei−1 ⊕ φi)
−1(Im ei−1) is closed. By the Banach open map theorem this

implies that Im ei−1 is closed. �

Let a Nash group H act transitively on a Nash manifold Y and let Z be a
Nash manifold. Let Z “act” on H i.e. let H ′ be a Nash group acting on H by
automorphisms and a : Z → H ′ be a Nash map. This defines a twisted action
of H on Z × Y . More precisely

ρ1(g)(x, y) = (x, a(x)(g)(y)) .

Let ρ2 denote the non-twisted action of H on Z × Y , i.e. ρ2(g)(x, y) = (x, gy).
Let E −→ Z × Y be a H-equivariant Nash-bundle, with respect to the action
ρ1. We want to construct a H-equivariant structure on E with respect to the



10AVRAHAM AIZENBUD, DMITRY GOUREVITCH, BERNHARD KRÖTZ, AND GANG LIU

action ρ2, such that the representations of g on the global Schwartz sections of
the two bundles will have isomorphic homologies.

Let p : H × Z × Y −→ Z × Y be the natural projection. Define ã : H ×
Z × Y −→ H × Z × Y by ã(g, x, y) = (a(x)(g), x, y), and note that p = p ◦ ã
and ρ1 = ρ2 ◦ ã. The equivariant structure on E gives an isomorphism p∗(E) '
ρ∗1(E), and thus ã∗(p∗(E)) ' ã∗(ρ∗2(E)). Applying (ã−1)∗ we get an isomorphism
p∗(E) ' ρ∗2(E), which defines a ρ2 equivariant structure. Let πi denote the
representation of h on S(Z × Y, E) given by the action ρi.

Proposition 3.3.3. In the setting as above we have

H∗(h, π1) = H∗(h, π2).

This proposition is similar to [AGS, Proposition 6.2.5], which concerns only
line bundles, but in greater generality. However since we care here also about
the topology we will have to make the proof more explicit.

Proof. Consider the Koszul complexes

Ci : · · · → Λk(h)⊗ S(Z × Y, E)
dik→ Λk−1(h)⊗ S(Z × Y, E)→ · · · .

that compute the homologies of πi. Identify Λk(h) ⊗ S(Z × Y, E) with S(Z ×
Y,Λk(h)⊗ E). For any x ∈ Z we have an isomorphism

φx := Λk(da(x)) : Λk(h)→ Λk(h).

This gives us an isomorphism of vector bundles

Φk(x) : Λk(h)⊗ E → Λk(h)⊗ E ,

which in turn gives us an isomorphism

Fk : S(Z × Y,Λk(h)⊗ E)→ S(Z × Y,Λk(h)⊗ E).

It is enough to show that

(3) d2k+1 ◦ Fk = Fk ◦ d1k+1

For this let m be an element of the total space of E and denote by (xm, ym)
its projection to Z × Y . Then according to our construction, for any h ∈ H we
have ρ2(h)(m) = ρ1(a

−1(xm)h)(m). Thus for any s ∈ S(Z × Y, E) we have

(4) (π1(h).s)(x, y) = ρ1(h)(s(x, (a(x)h−1).y))

(5) (π2(h).s)(x, y) = ρ1(a
−1(x)h)(s(x, h−1.y))

Further let X⊗s ∈ S(Z×Y,Λk(h)⊗E), where X ∈ Λk(h) and s ∈ S(Z×Y, E).
Then for any (x, y) ∈ Z × Y we have

(6) (Fk(X ⊗ s))(x, y) = φx(X)⊗ s(x, y) = da(x)(X)⊗ s(x, y).
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Now let Xj ∈ h (1 ≤ j ≤ k + 1) and s ∈ S(Z × Y, E). Then the differentials in
the Kozhul complexes are given by the following formula:

(7)

dik+1(X1 ∧ ... ∧Xk+1 ⊗ s) =
k+1∑
l=1

(−1)l(X1 ∧ ... ∧ X̂l ∧ ... ∧Xk+1 ⊗ dπi(Xl).s)+

+
∑
r<s

(−1)r+s([Xr, Xs] ∧X1 ∧ ... ∧ X̂r ∧ ...X̂s ∧ ... ∧Xk+1 ⊗ s).

Now note that the equality (3) follows now from (4,5,6,7) and implies the
assertion. �

4. Proof of Theorem B

Recall our general setting. H ′ is a Nash group and H is a normal Nash sub-
group of H ′. X is a Nash manifold and E is a Nash vector bundle of X. S(X, E)
denotes the space of Schwartz sections of E . Let H ′ act equivariantly on X and
E . Our assumptions are

(1) The number of H ′-orbits in X is finite.
(2) H and all the stabilizers Hx (x ∈ X) are homologically trivial (e.g.

contractible).

Our goal is to prove that as a h-module, S(X, E) is good.
Let us begin with two lemmas that we deduce from sections 2 and 3.2.

Lemma 4.0.1. Let X =
⋃n

i=1 Ui be a finite open covering. Assume that all
the spaces S(Ui, E) and for any finite set of indices {i1, . . . ik} ⊂ {1, . . . , n}, the

h-module S(
⋂k

j=1 Uij , E) is good. Then S(X, E) is also good.

Proof. Firstly, the proof can be reduced to the case where X = U1

⋃
U2. Indeed,

by induction on n, we can assume S(U, E) and S(Un, E) are good, where U =⋃n−1
i=1 Ui. On the other hand, we have X = U

⋃
Un and U

⋂
Un =

⋃n−1
i=1 Ui ∩ Un

and thus the induction hypothesis implies that S(Un, E) is good.
Now it remains to deal with the situation where X = U1

⋃
U2. By Proposition

3.2.1, we have the following exact sequence of h-modules:

0 −→ S(U1

⋂
U2, E)

T1−→ S(U1, E)
⊕
S(U2, E)

T2−→ S(X, E) −→ 0.

with T1(f) = (f̃1,−f̃2) and T2(f, g) = f̃ + g̃. Here for U ⊂ V (U, V are two

open subsets) and f ∈ S(U, E), we use f̃ ∈ S(V, E) to denote the extension by
zero of f .

Since by assumption the first two h-modules in the sequence are good, the
goodness of S(X, E) follows from Lemma 2.2.1. �
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Lemma 4.0.2. Let X =
⋃
Xi be a finite stratification of sub-manifolds. We

denote by CNX
Xi

, the co-normal bundle of Xi with respect to X. Assume that

all S(Xi, Symj(CNX
Xi

) ⊗ E) are good, where ”Symj” means the j-th symmetric
power. Then S(X, E) is also good.

Proof. To begin with it is not difficult to see that the proof can be reduced to
the case where X = U

⋃
Z, with U open and Z closed.

Now consider the short exact sequence:

0 −→ S(U, E) −→ S(X, E) −→ S(X, E)/S(U, E) −→ 0.

By Lemma 3.2.3 there exists a (onto) projective system Fi, such that

Fi
∼= S(Z, Symi(CNX

Z )⊗ E) and S(X,E)/S(U, E) ∼= lim←−Fi.

By the assumption, all S(Z, Symi(CNX
Z )⊗ E) are good. Then the goodness of

S(X, E) follows from Lemma 2.2.1 and Corollary 2.2.2. �

Proof of the main theorem.

Case 1 X = X1×Y , where H acts transitively on X1 and the H-action on Y is
trivial. We will derive the goodness of S(X1×Y, E) from Theorem 3.3.1
and lemma 4.0.1 as follows: Fix a x ∈ X1 and denote its stabilizer Hx

by L. Then by Theorem 3.3.1 we have

Hi(h,S(X1 × Y, E)) ∼= Hi(l,S({x} × Y, E|{x}×Y ⊗∆L.(∆
−1
H )|L)).

It is clear that {x} × Y ∼= Y and l acts trivially on it. Let E ′ :=
E|{x}×Y ⊗ ∆L.(∆

−1
H )|L) and note that E ′ → Y is a Nash bundle. Ob-

serve that the action of h, although trivial on the base , is not neces-
sarily trivial on E ′ . The objective is now to show that Hi(l,S(Y, E ′))
is separated. To compute the homology we use the Koszul complex∧• l⊗S(Y, E ′) with differentials d•. As l acts trivially on the base we
get that

∧
il
⊗
S(Y, E ′) = S(Y,

∧
il
⊗

E ′), with ”
∧

il” on the right be-
ing considered as a trivial vector bundle over Y (of fibre

∧
il). We

abbreviate
∧

il
⊗
E ′ =: E ′i .

Now if all bundle maps di : E ′i −→ E ′i−1 are of constant rank, then we
obtain the desired result. Because in this case, all the images and kernels
(of di) are sub-bundles over Y . Thus each im di becomes the space of
Schwartz sections of a sub-bundle of E ′i−1 and thus it is closed. In the
general case, by Lemma 3.1.3 we can divide Y into a finite stratification
of Yj with each (Nash sub-manifold) Yj verifying the ”constant rank”
condition. Then the goodness of S(Y, E ′) follows from Lemma 4.0.2.

Case 2 X = Z × Y , where the H-action on Z × Y is ”twisted” by Z (with the
same setting as in Proposition 3.3.3).
This case follows from Proposition 3.3.3 and the previous case. More
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precisely, in this case we have H∗(h, π1) = H∗(h, π2) (Proposition 3.3.3).
On the other hand, π2 fits the setting of the previous case, so it is good.

Case 3 X = H ′/L for some Nash subgroup L < H ′.
We want to prove S(H ′/L, E) is good. In this case, the goodness of
S(H ′/L, E) follows essentially from the previous case and Lemma 4.0.1
in the following way.

Let p : H ′ −→ X and p1 : X −→ H ′/HL be the natural projections.
By Theorem 3.1.2 we can find a finite open cover {Vi} of H ′/HL, such
that (1) Ui := p−1(Vi) ∼= HL/L × Vi. (2) There exists a (smooth) map
si : Vi −→ H ′ and the following diagram commutes:

X Ui

H ′/HL Vi

H ′

p1 p1

Then S(Ui, E) and S(p−11 (Wi), E) (for any open subset Wi of Vi) fit
the setting of the previous step. Thus, S(Ui, E) and S(p−11 (Wi), E) are
good. Consequently, X =

⋃
Ui fits the setting of Lemma 4.0.1. Thus

we conclude that S(H ′/L, E) is good.
Case 4 General case.

Follows from Lemma 4.0.2 and the previous case. Indeed, X has a strat-
ification of H ′-orbits, and each H ′-orbit fits the setting of the previous
case. Then Lemma 4.0.2 implies that S(X, E) is good.

�

5. Relation to Comparison Theorems

In this section we let G be an algebraic real reductive group. We fix a maximal
compact subgroup K and write θ for the corresponding Cartan involution on G
which fixes K. Let P < G be a minimal parabolic subgroup and P = MAN be
a Langlands decomposition for P .

An algebraic subgroup H < G is called real spherical provided that the action
of P on G/H admits open orbits. We recall that real sphericity implies that the
double coset space P\G/H is finite [KS1]. Typical examples for real spherical
subgroups are H = N or H symmetric, e.g. H = K.

We assume now that H is a spherical subgroup of G. It is no loss of generality
to assume that PH is open, that is g = h + p. Observe once H is fixed that
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there is no canonical choice of K. After replacing K by Ad(a)K for generic
a ∈ A we may and will assume in the sequel that

g = h + a + k

holds true (see [KS2], Section 5).
We denote by U(g) the universal enveloping algebra of g and by Z(g) its

center. The following is an analogue of the Casselman-Osborne-Lemma (see
[HS83], Lemma 2.2.2) for spherical subalgebras (cf. [KS2], Lemma 5.5):

Lemma 5.0.1. There exists a finite subset Y ⊂ U(g) such that

U(g) = U(h)YZ(g)U(k) .

In this section we use V to denote a Harish-Chandra module for the pair
(g, K). The unique smooth moderate growth globalization of V is denoted by
V ∞ (see [BK]). Note that V ∞ is an NF-module for G.

Lemma 5.0.2. Let V be a Harish-Chandra module for (g, K).Then the following
assertions hold true:

(1) V is finitely generated as an h-module.
(2) Hp(h, V ) is finite dimensional for all p.

Proof. We recall that every Harish-Chandra module is Z(g)-finite, i.e. V is
annihilated by an ideal I/Z(g) of finite co-dimension. As V is finitely generated
as an (g, K)-module there is a finite dimensional K-invariant subspace W ⊂ V
which generates V as g-module. In view of Lemma 5.0.1, this implies (1).
Finally (2) is a consequence of (1) and the fact that U(h) is Noetherian. �

The Casselman subrepresentation theorem asserts that every Harish-Chandra
module has a (g, K)-realization in the space of smooth sections of a finite di-
mensional homogeneous vector bundle E := G ×P U → X := G/P where U is
a a finite dimensional P -module . We use the dual version: for every Harish-
Chandra module V we obtain V ∞ as a quotient of C∞(X, E).

If E is a Nash-vector bundle of X, then it is clear that C∞(X, E) = S(X, E).
In this case, we call the induced generalized principal series representation a
Nash generalized principal series representation. It is noted that E is Nash if
and only if U is a Nash representation of P . Moreover if U is irreducible, then U
is a Nash representation of P if and only if the A-character λ := U |A is rational
(see [Sun] for more details).

Note that the inclusion mapping V → V ∞ yields morphism in homology
H•(h, V ) → H•(h, V

∞). For instance if h = n, then the Casselman comparison
theorem asserts that these two homology theories coincide. This is conjectured
to hold for any spherical subgroup. A first step in this direction is:
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Theorem 5.0.3. Let h ⊂ g be a subalgebra such that n ⊂ h ⊂ a + n. Let V
be a Harish-Chandra module, such that V ∞ is a quotient of a Nash generalized
principal series representation. Then the natural homomorphism

Φ0 : H0(h, V )→ H0(h, V
∞)

is an isomorphism.

Proof. We first show that Φ0 is injective. A slight modification of the automatic
continuity theorem of Casselman (see [BK], Theorem 11.4) implies that for all
Harish-Chandra modules V , we have

Homh(V,C) ' Homh(V
∞,C) .

The isomorphism is given by the restriction of an h-invariant functional fom V ∞

to V . Note that Homh(V,C) = (V/hV )∗ and Homh(V
∞,C) = (V ∞/hV ∞)′. We

conclude that

(8) V/hV ' V ∞/hV ∞

and in particular that Φ0 is injective.
To establish the surjectivity of Φ0 we first assume that V ∞ = S(X, E). Then

Theorem B implies that hV ∞ = hV ∞. The surjectivity is thus immediate
from (8). Note that by Lemma 5.0.2, this implies especially V ∞/hV ∞ is finite
dimensional.

The general case now follows from the realization of V ∞ as a quotient of
S(X, E) in the following way. Firstly, since S(X, E)/hS(X, E) is finite dimen-
sional, it follows that V ∞/hV ∞ is finite dimensional. Further, consider the map
T : h

⊗
V ∞ −→ V ∞ by T (X ⊗ v) = X.v for X ∈ h and v ∈ V ∞. Then the

cokernel of T is exactly V ∞/hV ∞ which is finite dimensional. Thus according
to [CHM00, Lemma A.1], T is a strict morphism, which means in our case that
hV ∞ = hV ∞. �
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