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ABSTRACT. In this paper, we prove that any spherical character of any admissible representa-
tion of a real reductive group G with respect to any pair of spherical subgroups is a holonomic
distribution on G. This implies that the restriction of the spherical character to an open dense
subset is given by an analytic function. The proof is based on an argument from algebraic
geometry and thus implies also analogous results in the p-adic case.

As an application we give a short proof of the recent results of [KO13; KS] on bounded-
ness and finiteness of multiplicities of irreducible representations in the space of functions on a
spherical space.

In order to deduce this application we prove relative and quantitative analogs of the Bernstein-
Kashiwara theorem, which states that the space of solutions of a holonomic system of differen-
tial equations in the space of distributions is finite-dimensional. We also deduce that for every
algebraic group G, the space of G-equivariant distributions on any algebraic G-manifold X is
finite-dimensional if G has finitely many orbits on X .
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1. INTRODUCTION

1.1. The spherical character. In this paper we prove that a spherical character of a smooth
admissible Fréchet representation of moderate growth of a real reductive group is holonomic.
The spherical character is a basic notion of relative representation theory that generalizes the
notion of a character of a representation. By a real reductive group we mean a connected al-
gebraic reductive group defined over R. Unless confusion is possible, we will not distinguish
between such a group and the group of its real points. Let us now recall the notions of spher-
ical pair, spherical character and holonomic distribution. For the notion of smooth admissible
Fréchet representation of moderate growth we refer the reader to [Cas89] or [Wal88, Chapter
11].

Definition 1.1.1. Let G be a real reductive group and let H ⊂ G be its (algebraic) subgroup.
Let P denote a minimal parabolic subgroup of G and B denote a Borel subgroup of the com-
plexification GC. The subgroup H is called real spherical if it has finitely many orbits on G/P
and spherical if its complexification has finitely many orbits on GC/B.

Definition 1.1.2. LetG be a real reductive group and letH1, H2 ⊂ G be its (algebraic) spherical
subgroups. Let χi be characters of Hi. Let π be a smooth admissible Fréchet representation
of moderate growth of G and π̂ be its smooth contragredient. Let φ1 ∈ (π∗)H1,χ1 and φ2 ∈
(π̂∗)H2,χ2 be equivariant functionals. Fix a Haar measure on G. It gives rise to an action of the
space of Schwartz functions S(G) on π∗ and π̂∗, and this action maps elements of π∗ and π̂∗

to elements of π̂ and ˆ̂π = π respectively. For the definition of the space of Schwartz functions
S(G) see e.g. [Cas89; Wal88; AG08].

The spherical character ξφ1,φ2 of π, with respect to φ1 and φ2, is the tempered distribution on
G (i.e. a continuous functional on S(G)) defined by 〈ξφ1,φ2 , f〉 = 〈φ2, π

∗(f) · φ1〉.

Definition 1.1.3. The singular support1 SS(ξ) of a distribution ξ on a real algebraic manifold X
is the joint zero set in T ∗X of all the symbols of (algebraic) differential operators that annihilate
ξ. The distribution ξ is called holonomic if dim SS(ξ) = dimX .

In this paper we prove the following theorem.

Theorem A (See §4.2). In the situation of Definition 1.1.2, the spherical character ξφ1,φ2 is
holonomic.

We prove Theorem A using the following well-known statement.

Proposition 1.1.4 (See §4.2). Let g, hi be the Lie algebras of G and Hi Let

S := {(g, α) ∈ G× g∗|α is nilpotent, 〈α, h1〉 = 0, 〈α,Ad∗(g)(h2)〉 = 0}.
Then SS(ξφ1,φ2) ⊂ S.

Note that the Bernstein inequality states that the dimension of the singular support of any
non-zero distribution is at least the dimension of the underlying manifold. Thus Theorem A
follows from the following more precise version, which is the core of this paper.

Theorem B (See §2). We have dimS = dimG.

This theorem immediately implies the following corollary.

Corollary C. Let
U :=

{
g ∈ G | S ∩ T ∗gG = {(g, 0)}

}
.

Then U is a Zariski open dense subset of G.

1a.k.a. characteristic variety
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This corollary is useful in view of the next proposition, which follows from Proposition 1.1.4
and Corollary 3.1.3 below.

Proposition 1.1.5. The restriction ξφ1,φ2|U is an analytic function.

1.2. Bounds on the dimension of the space of solutions. Next we apply our results to repre-
sentation theory. For this we use the following theorem.

Theorem 1.2.1 (Bernstein-Kashiwara). Let X be a real algebraic manifold. Let

{Diξ = 0}i=1...n

be a system of linear PDE on X with algebraic coefficients. Suppose that the joint zero set of
the symbols of Di is dimX-dimensional. Then the space of solutions of this system in S∗(X)
is finite dimensional.

It seems that this theorem is not found in the literature in this formulation, however it has
two proofs, one due to Kashiwara (see [Kas74; KK76] for similar statements) and another due
to Bernstein (unpublished).

In order to make our applications in representation theory more precise, we need an effec-
tive version of this theorem. We prove such a version (see Theorem 3.2.2 below) following
Bernstein’s approach, as it more appropriate for effective bounds. We use this effective version
to derive a relative version. Namely we show that if the system depends on a parameter in an
algebraic way, then the dimension of the space of solutions is bounded (see §3.3 below).

This relative version allows us to deduce the following theorem.

Theorem D (See §3.3). Let a real algebraic group G act on a real algebraic manifold X with
finitely many orbits. Let g be the Lie algebra of G. Let E be an algebraic G-equivariant bundle
on X . Then there exists C ∈ N such that for any character χ of g, dimS∗(X, E)(g,χ) < C.

1.3. Applications to representation theory. Using §3 we give a short proof of the following
recent result of [KO13; KS].

Theorem E (See §4). Let G be a real reductive group and H be an algebraic subgroup.

(i) If H is a real spherical subgroup then dim(π∗)H is finite for any π ∈ Irr(G).
(ii) If H is a spherical subgroup then dim(π∗)H is universally bounded, i. e. there exists

C ∈ N such that dim(π∗)H ≤ C for any π ∈ Irr(G).

The inverse implications for Theorem E are proven in [KO13].

1.4. The non-Archimedean case. Theorem B and Corollary C hold over arbitrary fields of
characteristic zero. They are useful also for p-adic local fields F , since the analogs of Propo-
sitions 1.1.4 and 1.1.5 hold in this case, see [AGS, Theorem A and Corollary F]. Namely, we
have the following theorem.

Theorem 1.4.1 ([AGS]). Let G be a reductive group defined over a non-Archimedean field F
of characteristic 0 and let ξ be a spherical character of a smooth admissible representation
with respect to two spherical subgroups H1, H2 ⊂ G. Let S and U be the sets defined in
Proposition 1.1.4 and Corollary C. Then

(i) The wave front set of ξ lies in S.
(ii) The restriction of ξ to U is given by a locally constant function.
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1.5. Related results. In the group case, i.e. the case whenG = H×H andH1 = H2 = ∆H ⊂
H × H , Theorem A essentially becomes the well-known fact that characters of admissible
representations are holonomic distributions.

As we mentioned above, Theorem E was proven earlier in [KO13; KS], using different
methods. An analog of Theorem E(i) over non-Archimedean fields is proven in [Del10] and
[SV, Theorem 5.1.5] for many spherical pairs, including arbitrary symmetric pairs.

The group case of Corollary C, Proposition 1.1.5, and Theorem 1.4.1(ii) is (the easy part of)
the Harish-Chandra regularity theorem (see [HC63; HC65]). Another known special case of
these results is the regularity of Bessel functions, see [LM; AGK; AG].

1.6. Future applications. Our proof of Theorem E(ii) does not use the Casselman embed-
ding theorem, unlike [KO13; KS]. This gives us hope that it can be extended to the non-
Archimedean case. The main difficulty is the fact that our proof heavily relies on the theory
of modules over the ring of differential operators, which does not act on distributions in the
non-Archimedean case. However in view of Theorem 1.4.1 we believe that this difficulty can
be overcome. Namely one can deduce an analog of Theorem E(ii) for many spherical pairs
from the following conjecture .

Conjecture 1.6.1. Let G be a reductive group defined over a non-Archimedean field F of char-
acteristic 0 and let H1, H2 ⊂ G be its (algebraic) spherical subgroups. Let χi be characters of
Hi. Fix a character λ of the Bernstein center z(G).

Then the space of distributions which are:
(1) left (H1, χ1)-equivariant,
(2) right (H2, χ2)-equivariant,
(3) (z(G), λ)-eigen,

is finite dimensional. Moreover, this dimension is uniformly bounded when λ varies.

Note that Theorem B and Theorem 1.4.1(i) imply that the dimension of (the Zariski closure
of) the wave front set of a distribution that satisfies (1-3) does not exceed dimG. In many
ways the wave front set replaces the singular support, in absence of the theory of differential
operators (see e.g [Aiz13; AD; AGS; AGK]). Thus in order to prove Conjecture 1.6.1 it is left
to prove analogs of Theorems 1.2.1 and 3.2.2 for the integral system of equations (1-3).

1.7. Structure of the paper. In §2 we prove Theorem B, using a theorem of Steinberg [Ste76]
concerning the Springer resolution.

In §3 we prove an effective version of Theorem 1.2.1, and then adapt it to algebraic families.
We also derive Theorem D.

In §4 we derive Theorem E from Theorem B and §3. We do that by embedding the multi-
plicity space into a certain space of spherical characters.

In Appendix A we prove Lemma 3.1.1 which computes the pullback of the D-module of
distributions with respect to a closed embedding. We use this lemma in §3.

In Appendix B we give a short proof for the result of [Ada] on the isomorphism between the
contragredient of an irreducible representation π and the twist of π by an involution. We use
this result in §4.

1.8. Acknowledgements. We thank Eitan Sayag and Bernhard Kroetz for fruitful discussions.
We thank Joseph Bernstein for telling us the sketch of his proof of Theorem 1.2.1.
A.A. was partially supported by ISF grant 687/13 and by the Minerva foundation with funding
from the Federal German Ministry for Education and Research; D.G. and A.M. were partially
supported by ISF grant 756/12 and by the Minerva foundation with funding from the Federal
German Ministry for Education and Research. D.G. was also supported in part by the ERC
grant 291612.
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2. PROOF OF THEOREM B

It is enough to prove the theorem for a reductive group G defined over an algebraically
closed field k of characteristic 0. Since S includes the zero section of T ∗G ∼=G× g∗, we have
dimS ≥ dimG. Thus, it is enough to prove that dimS ≤ dimG. Let B denote the flag variety
of G and N ⊂ g∗ denote the nilpotent cone. Since G is reductive, we can identify

T ∗B ∼= {(B,X)∈ B × g∗ |X ∈ (Lie(B))⊥}.

Recall the Springer resolution µ : T ∗B → N defined by µ(B,X) = X and consider the
following diagram.

(1) T ∗B × T ∗B
µ×µ

)) ))

G×N

α
uu

N ×N
res

��

h∗1 × h∗2

Here, α is defined by α(g,X) = (X, ad∗(g−1)X), and res is the restriction. Passing to the
fiber of 0 ∈ h∗1 × h∗2, we obtain the following diagram.

(2) L1 × L2

µ′

)) ))

S

α′vv

Nh1 ×Nh2

Here, Nhi := N ∩ h⊥i and Li := {(B,X) ∈ T ∗B |X ∈ h⊥i }.We need to estimate dimS. We
do it using the following lemma.

Lemma 2.0.1 (See §2.1 below). Let ϕi : Xi → Y , i = 1, 2, be morphisms of algebraic
varieties. Suppose that ϕ2 is surjective. Then, there exists y ∈ Y such that

dimX1 ≤ dimX2 + dimϕ−11 (y)− dimϕ−12 (y).

By this lemma, applied to φ1 = α′ and φ2 = µ′, it is enough to estimate the dimensions of
Li and of the fibers of µ′ and α′.

Lemma 2.0.2. We have dimL1 = dimL2 = dimB.

Proof. Since Hi has finitely many orbits in B, it is enough to show that Li is the union of the
conormal bundles to the orbits of Hi in B. Let B ∈ B, let b be its Lie algebra and identify
TBB ∼= g/b. Then TB(Hi ·B) ∼= hi/(b ∩ hi) and the conormal space at B to the Hi-orbit of B
is identified with b⊥ ∩ h⊥i . �

Let (η, ad∗(g)η) ∈ Im(α′). The fiber (α′)−1(η, ad∗(g)η) is isomorphic to the stabilizer Gη,
and the dimension of the fiber (µ′)−1(η, ad∗(g)η) is twice the dimension of the Springer fiber
µ−1(η). Recall the following theorem of Steinberg (conjectured by Grothendieck):

Theorem 2.0.3 ([Ste76, Theorem 4.6]).

dimGη − 2 dimµ−1(η) = rkG.
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Using Lemma 2.0.1 we obtain for some (η, ad∗(g)η):

dimS ≤ dim(L1 × L2) + dim(a′)−1(η, ad∗(g)η)− dim(µ′)−1(η, ad∗(g)η) =

= 2 dimB + dimGη − 2 dimµ−1(η) = 2 dimB + rkG = dimG.

�

2.1. Proof of Lemma 2.0.1. Recall that, for a dominant morphism ϕ : X → Y of irreducible
varieties, there exists an open dense U ⊂ Y such that dimX = dimY + dimϕ−1(y) for all
y ∈ U (see, e. g., [Mum99, Theorem 1.8.3]). Let Z be an irreducible component of X1 of
maximal dimension and W ⊂ Y be the Zariski closure of ϕ1(Z). Since W is irreducuble, there
exists an open dense U ⊂ W such that

(3) dimX1 = dimZ ≤ dimW + dimϕ−11 (y)

for all y ∈ U . Let V ⊂ U be an open dense subset such that ϕ−12 (V ) intersects those and
only those irreducible components C1, . . . , Cj of ϕ−12 (W ) that map dominantly to W . Note
that j > 0 since ϕ2 is surjective. Moreover, without loss of generality, we may assume that,
for every 1 ≤ i ≤ j, all fibers over V of the restriction of ϕ2 to Ci are of the same dimension.
Since one of these dimensions has to be equal to dimϕ−12 (V ) − dimV , we have, that there is
an 1 ≤ i ≤ j such that, for all y ∈ V ,
(4)
dimV = dimCi − dim(ϕ2|Ci

)−1(y) ≤ dimϕ−12 (V )− dimϕ−12 (y) ≤ dimX2 − dimϕ−12 (y).

Thanks to dimV = dimW , taking any y ∈ V , formulas (3) and (4) imply the statement. �

3. DIMENSION OF THE SPACE OF SOLUTIONS OF A HOLONOMIC SYSTEM

In this section, we prove an effective version of Theorem 1.2.1, and then adapt it to algebraic
families. We also derive Theorem D.

3.1. Preliminaries.

3.1.1. D-modules. In this section, we will use the theory of D-modules on algebraic varieties
over an arbitrary field k of characteristic zero. We will now recall some facts and notions that
we will use. For a good introduction to the algebraic theory of D-modules, we refer the reader
to [Ber] and [Bor87]. For a short overview, see [AG09a, Appendix B].

By a D-module on a smooth algebraic variety X we mean a coherent sheaf of right modules
over the sheaf DX of algebras of algebraic differential operators. Denote the category of DX-
modules byM(DX).

For a smooth affine variety V , we denote D(V ) := DV (V ). Note that the categoryM(DV )
of D-modules V is equivalent to the category of D(V )-modules. We will thus identify these
categories.

The algebra D(V ) is equipped with a filtration which is called the geometric filtration and
defined by the degree of differential operators. The associated graded algebra with respect to
this fitration is the algebra O(T ∗V ) of regular functions on the total space of the cotangent
bundle of V . This allows us to define the singular support of a D-module M on V in the
following way. Choose a good filtration on M , i.e. a filtration such that the associated graded
module is a finitely-generated module over O(T ∗V ), and define the singular support SS(M)
to be the support of this module. One can show that the singular support does not depend on
the choice of a good filtration on M .

This definition easily extends to the non-affine case. A D-module M on X is called smooth
if SS(M) is the zero section of T ∗X . This is equivalent to being coherent over OX and to be
coherent and locally free over OX . The Bernstein inequality states that, for any non-zero M ,
we have dimSS(M) ≥ dimX . If equality holds then M is called holonomic.
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For a closed embedding i : X → Y of smooth affine algebraic varieties, define the functor
i! :M(DY )→M(DX) by i!(M) := {m ∈ M | IXm = 0}, where IX ⊂ O(Y ) is the ideal of
all functions that vanish on X .

If V is an affine space then the algebraD(V ) has an additional filtration, called the Bernstein
filtration. It is defined by deg(∂/∂xi) = deg(xi) = 1, where xi are the coordinates in V . This
gives rise to the notion of Bernstein’s singular support, that we will denote SSb(M) ⊂ T ∗V ∼=
V ⊕ V ∗. It is known that dimSS(M) = dimSSb(M).

We will also use the theory of analytic D-modules. By an analytic D-module on a smooth
complex analytic manifold X we mean a coherent sheaf of right modules over the sheaf DAn

X

of algebras of differential operators with analytic coefficients. All of the above notions and
statements, except those concerning the Bernstein filtration, have analytic counterparts. In
addition, all smooth analytic D-modules of the same rank are isomorphic.

3.1.2. Distributions. We will use the theory of distributions on differentiable manifolds and the
theory of tempered distributions on real algebraic manifolds, see e.g. [Hör90; AG08]. For a real
algebraic manifold X , we denote the space of distributions on X by D′(X) := (C∞c (X))∗ and
the space of tempered distributions (a.k.a. Schwartz distributions) by S∗(X) := (S(X))∗. Sim-
ilarly, for an algebraic bundle E over X we denote D′(X, E) := (C∞c (X, E))∗ and S∗(X, E) :=
(S(X, E∗))∗. The spaces D′(X) and S∗(X) form (right) D-modules over X . The space D′(X)
is also an analytic D-module. We define the singular support of a distribution to be the singu-
lar support of the D-module it generates. It is well-known that this definition is equivalent to
Definition 1.1.3. We say that a distribution is holonomic if it generates a holonomic D-module.

Lemma 3.1.1 (See Appendix A). Let i : X → Y be a closed embedding of smooth affine real
algebraic varieties. Then

D′(X) ∼= i!(D′(Y )) and S∗(X) ∼= i!(S∗(Y )).

Lemma 3.1.2. Let M be a smooth D(Cn)-module of rank r. Embed the space An(Cn) of
analytic functions on Cn into D′(Rn) using the Lebesgue measure. Then Hom(M,D′(Rn)) =
Hom(M,An(Cn)) and dim Hom(M,D′(Rn)) = r.

Proof. Let MAn := M ⊗O(Cn) An(Cn) and DAn(Cn) := D(Cn)⊗O(Cn) An(Cn) be the analy-
tizations of M and D(Cn). Then

HomD(Cn)(M,D′(Rn)) ∼= HomDAn(Cn)(MAn,D′(Rn)).

Since MAn is also smooth, it is well-known that MAn
∼= An(Cn)r. Thus it is left to prove that

HomDAn(Cn)(An(Cn),D′(Rn)) = HomDAn(Cn)(An(Cn), An(Cn)) and the latter space is one-
dimensional. This follows from the fact that a distribution with vanishing partial derivatives is
a multiple of the Lebesgue measure. �

Corollary 3.1.3. If a distribution generates a smooth D-module, then it is analytic.

3.1.3. Lie algebra actions.

Definition 3.1.4. Let X be an algebraic manifold over a field k and g be a Lie algebra over k.
(i) An action of g on X is a Lie algebra map from g to the algebra of algebraic vector fields

on X .
(ii) Assume that X is affine, fix an action of g on X and let E be an algebraic vector bundle

on X . Let M be the space of global regular sections of E . An action of g on E is a linear
map T : g→ Endk(M) such that for any α ∈ g, f ∈ O(X), v ∈M we have

T (α)(fv) = (αf)v + fT (α)v.

(iii) The definition above extends to non-affine X in a straightforward way.
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3.1.4. Weil representation.

Definition 3.1.5. Let V be a finite-dimensional real vector space. Let ω be the standard sym-
plectic form on V ⊕ V ∗. Denote by pV : V ⊕ V ∗ → V and pV ∗ : V ⊕ V ∗ → V ∗ the natural
projections. Define an action of the symplectic group Sp(V ⊕ V ∗, ω) on the algebra D(V ) by

(∂v)
g := π(g)(∂v) := pV ∗(g(v, 0)) + ∂pV (g(v,0)), wg := π(g)w := pV ∗(g(0, w)) + ∂pV (g(0,w))

where v ∈ V, w ∈ V ∗, ∂v denotes the derivative in the direction of v, and elements of V ∗ are
viewed as linear polynomials and thus differential operators of order zero. For a D(V )-module
M and an element g ∈ Sp(V ⊕ V ∗), we will denote by M g the D(V )-module obtained by
twisting the action of D(V ) by π(g).

Since the above action of Sp(V ⊕ V ∗) preserves the Bernstein filtration on D(V ), the fol-
lowing lemma holds.

Lemma 3.1.6. For a D(V )-module M and g ∈ Sp(V ⊕ V ∗) we have SSb(M g) = gSSb(M).

Theorem 3.1.7 ([Wei64]). There exists a two-folded cover p : S̃p(V ⊕ V ∗) → Sp(V ⊕ V ∗)
and a representation Π of S̃p(V ⊕V ∗) on the space S∗(V ) of tempered distributions on V such
that for any α ∈ D(V ) and g ∈ S̃p(V ⊕ V ∗) we have

Π(g)(ξα) = (Π(g)ξ)αp(g).

Corollary 3.1.8. We have an isomorphism of D(V )-modules S∗(V )g ∼= S∗(V ) for any g ∈
Sp(V ⊕ V ∗).

In fact, this corollary can be derived directly from the Stone-von-Neumann theorem.

3.1.5. Flat morphisms.

Lemma 3.1.9. Let φ : X → Y be a proper morphism of algebraic varieties over a field k and
M be a coherent sheaf on X . Then there exists an open dense U ⊂ Y such thatM|φ−1(U) is
flat over U .

Proof. By [EGA IV, Théorème II.3.I], the set V of points x ∈ X for whichM is φ-flat at x is
open in X . Since φ is proper, the set Z := φ(X \ V ) is closed in Y . Note thatM is flat over
U := X \ Z, since φ−1(U) ⊂ V . Moreover, U contains the generic points of the irreducible
components of Y . Hence, U ⊂ Y is dense. �

Lemma 3.1.10 (See, e. g., [Mum74, Corollary on p. 50]). Let φ : X → Y be a proper mor-
phism of algebraic varieties andM be a coherent sheaf on X that is flat over Y . For a point
y ∈ Y , letMy denote the pullback ofM to φ−1(y). Then the function

y 7→ χ(My) =
∞∑
i=0

(−1)i dimk(y) Hi(My)

is locally constant.

Corollary 3.1.11. Let Y be an algebraic variety andM be a coherent sheaf on Y × Pn. Then
there exists an open dense U ⊂ Y such that the Hilbert polynomial2 ofMy does not depend on
y as long as y ∈ U .

2For the definition of Hilbert polynomial see [Har77, Chapter III, Exercise 5.2].
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3.2. Dimension of the space of solutions of a holonomic system.

Definition 3.2.1.
(i) Let M be a D-module over an affine space An. Let F i be a good filtration on M with

respect to the Bernstein filtration on the ring DAn . Let p be the corresponding Hilbert
polynomial of M , i.e. p(i) = dimF i for large enough i. Let k be the degree of p and ak
be the leading coefficient of p. Define the Bernstein degree of m to be degb(M) := k!ak.
It is well-known that k and ak do not depend on the choice of good filtration F i.

(ii) Let M be a D-module over a smooth algebraic variety X . Let X =
⋃l
i=1 Ui be an open

affine cover of X and let φi : Ui ↪→ Ani be closed embeddings. Denote

deg{(Ui,φi)}(M) :=
l∑

i=1

degb((φi)∗(M)).

Define the global degree of M by deg(M) := min deg{(Ui,φi)}(M), where the minimum
is taken over the set of all possible affine covers and embeddings.

In this subsection, we prove

Theorem 3.2.2. Let X be a real algebraic manifold. Let M be a holonomic right D-module.
Then dim Hom(M,S∗(X)) ≤ deg(M).

We will need the following geometric lemmas

Lemma 3.2.3. Let V be a vector space, L ⊂ V be a subspace and C ⊂ V be a closed conic
algebraic subvariety such that L∩C = {0}. Then the projection p : C → V/L is a finite map.

Proof. By induction, it is enough to prove the case dimL = 1. Choose coordinates x1, . . . , xn
on V such that the coordinates x1, . . . , xn−1 vanish on L. Let p be a homogeneous polynomial
that vanishes on C but not on L. Write p =

∑k
i=1 gix

i
n, where each gi is a homogeneous

polynomial of degree k − i in x1, . . . , xn−1. Then xn|C satisfies a monic polynomial equation
with coefficients in O(V/L). �

Lemma 3.2.4. Let W be a 2n-dimensional symplectic vector space, and C ⊂ W be a closed
conic subvariety of dimension n. Then there exists a Lagrangian subspace L ⊂ W such that
L ∩ C = {0}.

Proof. Let L denote the variety of all Lagrangian subspaces of W . Note that dimL = n(n +
1)/2. Let P (C) ⊂ P(W ) be the projectivizations of C and W . Consider the configuration
space

X := {(x, L) ∈ P (C)× L |x ⊂ L}.
We have to show that p(X) 6= L where p : X → L is the projection. Let q : X → P (C) be the
other projection. Note that dim q−1(x) = n(n− 1)/2 for any x ∈ P (C). Thus

dimX = n(n− 1)/2 + n− 1 < n(n+ 1)/2 = dimL,
and thus p : X → L cannot be onto. �

Corollary 3.2.5. Let V be a vector space of dimension n and consider the standard symplectic
form on V ⊕V ∗. LetC ⊂ V ⊕V ∗ be a closed conic subvariety of dimension n. Let p : V ⊕V ∗ →
V denote the projection. Then there exists a linear symplectic automorphism g ∈ Sp(V ⊕ V ∗)
such that p|gC is a finite map.

Proof. By Lemma 3.2.4 there exists a Lagrangian subspace L ⊂ V ⊕V ∗ such that L∩C = {0}.
Since the action of Sp(V ⊕V ∗) on Lagrangian subspaces is transitive, there exists g ∈ Sp(V ⊕
V ∗) such that V = gL and thus gC ∩ V = {0}. From Lemma 3.2.3 we get that p|gC is a finite
map. �
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Proof of Theorem 3.2.2. Let X =
⋃l
i=1 Ui be an open affine cover of X and let φi : Ui ↪→ Ani

be closed embeddings. Clearly

dim Hom(M,S∗(X)) ≤
l∑

i=1

dim Hom(M |Ui
,S∗(Ui)).

By Lemma 3.1.1

Hom(M |Ui
,S∗(Ui)) ∼= Hom(M |Ui

, φ!
i(S∗(Rni)) ∼= Hom((φi)∗(M |Ui

),S∗(Rni)).

Thus it is enough to show that for any holonomic D-module N on an affine space An we have
dim Hom(N,S∗(F n)) ≤ degb(N).

Let C ⊂ A2n be the singular support of N with respect to the Bernstein filtration. By
Corollary 3.2.5, there exists g ∈ Sp2n such that p|gC is a finite map, where p : A2n → An is the
projection on the first n coordinates. By Corollary 3.1.8 we have

dim Hom(N,S∗(Rn)) = dim Hom(N g,S∗(Rn)g) = dim Hom(N g,S∗(Rn)).

By Lemma 3.1.6 we have SSb(N g) = gC. Let F be a good filtration on N g (with respect to
the Bernstein filtration on D(An)). We see that GrN g is finitely generated over O(An), and
thus so is N g. Thus N g is a smooth D-module. Note that rkO(An)N

g ≤ degbN
g = degbN .

By Lemma 3.1.2 dim Hom(N g,S∗(Rn)) ≤ rkO(An)N
g. �

3.3. Families of D-modules. In this section we discuss families of D-modules on algebraic
varieties over an arbitrary field k of zero characteristic.

Notation 3.3.1. Let φ : X → Y be a map of algebraic varieties and M be a quasi-coherent
sheaf of OX-modules. For any y ∈ Y , denote byMy the pullback ofM to φ−1(y).

Definition 3.3.2. Let X, Y be smooth algebraic varieties.
• If X and Y are affine we define the algebra D(X, Y ) to be D(X)⊗k O(Y ).
• Extending this definition we obtain a sheaf of algebras DX,Y on X × Y .
• By a family of DX-modules parameterized by Y , we mean a sheaf of right modules

over the sheaf of algebras DX,Y on X × Y which is quasicoherent as a sheaf of OX×Y -
modules.
• We call a family of DX-modules parameterized by Y coherent if it is locally finitely

generated as a DX,Y -module.
• For a familyM of DX-modules parameterized by Y and a point y ∈ Y , we callMy

the specialization ofM at y and consider it with the natural structure of a DX-module.
• We say that a coherent familyM is holonomic if every specialization is holonomic.

Theorem 3.3.3. Let X, Y be smooth algebraic varieties and M be a family of DX-modules
parametrized by Y . Then degMy is bounded when y ranges over the k-points of Y .

Proof. Without loss of generality, we can assume that X = An and Y is an affine variety, and
prove that degb(My) is bounded. We will prove this by induction on dimY .

The Bernstein filtration on D(An) gives rise to a filtration on D(An, Y ). Choose a filtration
F on M which is good with respect to this filtration and let N := GrM , considered as a
graded O(A2n × Y )-module. Associate to N a coherent sheaf N on P2n−1 × Y . Let Ny be
the pullback of N under the embedding of P2n−1 into P2n−1 × Y given by x 7→ (x, y). By
definition, the Hilbert polynomial of My with respect to the filtration induced by F is the
Hilbert polynomial of Ny. By Corollary 3.1.11, there exists an open dense subset U ⊂ Y such
that the Hilbert polynomial of Ny does not depend on y as long as y ∈ U . By the induction
hypothesis, degb(My) is bounded on Y \ U , and thus bounded on Y . �

For an application of this theorem we will need the following lemma.
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Lemma 3.3.4. Let a real Lie algebra g act on a real algebraic manifoldX and on an algebraic
vector bundle E on X . Let Y be the variety of characters of g. Then there exists a coherent
familyM of DX-modules parameterized by Y such that, for any χ ∈ Y , we have

(1) S∗(X, E)(g,χ) = HomDX
(Mχ,S∗(X)).

(2) The singular support of Mχ (with respect to the geometric filtration) is included in

{(x, φ) ∈ T ∗X | ∀α ∈ g we have 〈φ, α(x)〉 = 0}.

Proof. It is enough to prove the lemma for affine X . Let N be the coherent sheaf of the regular
sections of E (considered as a sheaf of OX-modules). Let N be the pullback of N to X × Y .
Let N ′ := N ⊗OX×Y

DX,Y , and N ′′ ⊂ N ′ be the DX,Y -submodule generated by elements
of the form αn ⊗ 1 + n ⊗ χα + n ⊗ ξα, where α ∈ g, χα is the function on X × Y given
by χα(x, y) = y(α) and ξα is the vector field on X corresponding to α. ThenM := N ′/N ′′
satisfies the requirements. �

Theorems 3.2.2 and 3.3.3 and Lemma 3.3.4 imply Theorem D.

4. PROOF OF THEOREMS A AND E

In this section, we derive Theorems A and E from Theorem B and §3. We do that by embed-
ding the multiplicity space into a certain space of spherical characters.

4.1. Preliminaries. For a real reductive group G, we denote by Irr(G) the collection of ir-
reducible admissible smooth Fréchet representation of G of moderate growth. We refer to
[Cas89; Wal88] for the background on these representations.

Theorem 4.1.1 (See [Wal88, Theorem 4.2.1]). The center z(U(g)) of the universal enveloping
algebra of the Lie algebra of G acts finitely on every admissible smooth Fréchet representation
π of G of moderate growth. This means that there exists an ideal in z(U(g)) of finite codimen-
sion that annihilates π.

Lemma 4.1.2 ([Ada, Theorem 1.2 and Corollary 1.4]). For any real reductive group G, there
exists an involution θ of G such that, for any π ∈ Irr(G), we have π̃ ∼= πθ.

We also give an alternative short proof for this lemma in Appendix B, using [Sug59].

Theorem 4.1.3 (Casselman embedding theorem, see [CM82, Proposition 8.23]). Let G be a
real reductive group and P be a minimal parabolic subgroup of G. Let π ∈ Irr(G). Then
there exists a finite-dimensional representation σ of P and an epimorphism IndGP (σ) � π.

4.2. Proof of Theorem A and Proposition 1.1.4. Theorem A follows from Theorem B and
Proposition 1.1.4.

Proof of Proposition 1.1.4. Let ξ be a spherical character of a smooth admissible Fréchet
representation π of G of moderate growth with respect to a pair of subgroups (H1, H2) and
their characters χ1, χ2. By Theorem 4.1.1 there exists an ideal I ⊂ z(U(g)) of finite codi-
mension that annihilates π and thus annihilates ξ. For any element z ∈ z(U(g)) there exists
a polynomial p such that p(z) ∈ I and thus p(z)ξ = 0. This implies that the symbol of any
z ∈ z(U(g)) of positive degree vanishes on the singular support of ξ. It is well-known that the
joint zero-set of these symbols over each point g ∈ G is the nilpotent cone N (g∗). Since ξ is
(H1 ×H2, χ1 × χ2)-equivariant, this implies that the singular support of ξ lies in S. �
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4.3. Proof of Theorem E. Part (i) follows immediately from Theorem D and the Casselman
embedding theorem. If G is quasi-split then so does part (ii). For the proof of part (ii) in the
general case we will need the following lemma.

Lemma 4.3.1. Let G be a real reductive group and H1, H2 be spherical subgroups. Let
Y = Spec(z(U(g))). For any character λ ∈ Y (C) define Uλ := S∗(G)H1×H2,(z(U(g)),λ) be
the space of tempered distributions on G that are left invariant with respect to H1, right in-
variant with respect to H2 and are eigendistributions with respect to the action of z(U(g)) with
eigencharacter λ. Then dimUλ is bounded.

Proof. Let us construct a family of D(G)-modulesM parameterized by Y . For any α ∈ g let
rα and lα be the corresponding right and left invariant vector fields onG considered as elements
in D(X, Y ). For any β ∈ z(U(g)) let fβ be the function on Y given by fβ(λ) = λ(β) and dβ
be the differential operator on G corresponding to β. We consider both dβ and fβ as elements
of D(G, Y ). Let I ⊂ D(G, Y ) be the ideal generated by rα, lθ(α) and fβ+dβ where α ∈ h and
β ∈ z(U(g)). DefineM := D(G, Y )/I .

It is easy to see that Uλ ∼= Hom(Mλ,S∗(G)). As in the proof of Proposition 1.1.4, the
singular support ofMλ lies in S, for any λ. Thus Theorem B implies thatMλ is holonomic
and thusM is holonomic. By Theorem 3.2.2 we have dimUλ ≤ degMλ. By Theorem 3.3.3,
degMλ are bounded. �

Proof of Theorem E(ii). We choose an involution θ as in Lemma 4.1.2, let H1 := H, H2 :=
θ(H), and define the spaces Uλ as in Lemma 4.3.1.

Now let π ∈ Irr(G) such that (π∗)H 6= 0 and let λ be its infinitesimal character. By
Lemma 4.1.2, (π̃∗)θ(H) 6= 0. Fix a non-zero φ ∈ (π̃∗)θ(H). Then φ defines an embedding
(π∗)H ↪→ Uλ by ψ 7→ ξψ where ξψ is the spherical character defined by ξψ(f) := 〈ψ, π(f)φ〉.
Thus dim(π∗)H ≤ dimUλ, which is bounded by Lemma 4.3.1. �

APPENDIX A. PROOF OF LEMMA 3.1.1

For the proof, we will need the following standard lemmas. Let M be a smooth manifold
and N ⊂M be a closed smooth submanifold.

Lemma A.0.1. Denote IN := {f ∈ C∞c (N) |f |M = 0}. Let J ⊂ IN be an ideal in C∞c (M)
such that

(1) For any x ∈ N the space {dxf |f ∈ J} is the conormal space to N in M at the point x.
(2) For any x ∈M \N there exists f ∈ J s.t. f(x) 6= 0.

Then J = IN .

Proof. Using partition of unity it is enough to show that for any f ∈ IN and x ∈ M there
exists f ′ ∈ J such that f coincides with f ′ in a neighborhood of x. For x /∈ N this is obvious,
so we assume that x ∈ N . We prove the statement by induction on the codimension d of
N in M . The base case d = 1 follows, using the implicit function theorem, from the case
N = Rn−1 ⊂ Rn = M , which is obvious.

For the induction step take g ∈ J such that dxg 6= 0. Let

Z := {y ∈M | g(y) = 0} and U := {y ∈M | dyg 6= 0}.
By the implicit function theorem U ∩ Z is a closed submanifold of U . Choose ρ ∈ C∞c (M)
such that ρ = 1 in a neighborhood of x and Supp(ρ) ⊂ U . Let f̄ := (ρf)|U∩Z . Let

J̄ := {α|U∩S|α ∈ J and Suppα ⊂ U}.
By the induction hypothesis f̄ ∈ J̄ . Thus there exists f ′′ ∈ J such that f − f ′′ vanishes in a
neighborhood of x in Z. Now, the case d = 1 implies that there exists α ∈ C∞c (M) such that
f − f ′ coincides with αg in a neighborhood of x. �
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Lemma A.0.2. The restriction C∞c (M)→ C∞c (N) is an open map.

Proof. Let K ⊂ M be a compact subset. It is easy to see that there exists a compact K ′ ⊃ K
such that the restriction map C∞K′(M) → C∞K′∩N(N) is onto, using the partition of unity. By
the Banach open map theorem this map is open. Thus the restriction C∞c (M)→ C∞c (N) is an
open map. �

Let Y be a real algebraic manifold and X be a closed algebraic submanifold. Let i : X → Y
denote the embedding.

Lemma A.0.3. Let ξ be a distribution on X such that i∗ξ is a tempered distribution. Then ξ is
a tempered distribution.

Proof. The map i∗ is dual to the pullback map C∞c (Y ) → C∞c (X). This can be extended to
a continuous map i∗ : S(Y ) → S(X) which is onto by [AG08, Theorem 4.6.1]. The Banach
open map theorem implies that i∗ is an open map. It is easy to see that i∗ξ : S(Y ) → C
vanishes on Ker(i∗), and thus it gives rise to a continuous map S(X) → C, which extends
ξ. �

Lemma A.0.4. Let ξ be a distribution on Y such that pξ = 0 for any polynomial p on Y that
vanishes on X . Then ξ is a pushforward of a distribution on X .

Proof. Let J(X) be the ideal of all polynomials on Y that vanish onX . Let J := J(X)C∞c (Y ).
By Lemma A.0.1 we have J = IX . Thus ξ vanishes on IX and thus, by Lemma A.0.2, ξ is a
pushforward of a distribution on X . �

Lemma 3.1.1 follows now from Lemmas A.0.3 and A.0.4 and the definition of i! for closed
embedding of smooth affine varieties.

APPENDIX B. PROOF OF LEMMA 4.1.2, BY ANDREY MINCHENKO

In this appendix, unlike the rest of the paper, we will not ignore the difference between real
algebraic varieties and their real points.

Lemma 4.1.2 follows from [AG09b, Theorem 8.2.1]3 and the next lemma.

Lemma B.0.1. Let G be a connected real reductive algebraic group and G0 := G(R). Then
there exists an automorphism θ of G0 such that, for all semisimple g ∈ G0, θ(g) and g−1 are
conjugate in G0.

Proof. Let g stand for the Lie algebra of G. Let us show that there exists an automorphism
θ of g and a subset X ⊂ g such that θ(x) = −x for all x ∈ X and every Cartan subalgebra
of g is conjugate to a subset of X . Let τ be a Cartan involution of g and let a ⊂ g be a
maximal split torus. Then t := zg(a) is a Cartan subalgebra of g. Let Σ be a root system
of g(C). By a theorem of Chevalley, one can choose a vector eα 6= 0, α ∈ Σ, in each root
subspace of g(C) with respect to the Cartan subalgebra t(C) such that [eα, eβ] = rα,βeα+β ,
where rα,β = r−α,−β ∈ Z. Note that elements ihα, i(eα + e−α), dα := eα − e−α span a
compact form u of g, which is stable under τ . We may assume without loss of generality that
g = uτ + iu−, where u− := {x ∈ u : τ(x) = −x}.

We claim, that we can take X := SpanR{t, dα − dτα} and θ defined by θ(h) = −h, h ∈
t, θ(eα) = −e−α. Using τ(u) = u, one verifies θτ = τθ, hence, θ(g) = g. By [Sug59,
Theorem 5], every Cartan subalgebra of g is conjugate to one of the form h = hτ + h−, where
h− ⊂ a and the orthogonal complement to h− in a is spanned by hβ , where β runs through
some Y ⊂ Σ with β1 ± β2 6∈ Σ for all β1 6= β2 ∈ Y . Moreover, by [Sug59, Proposition

3One can also use Harish-Chandra’s regularity theorem instead [AG09b, Theorem 8.2.1].
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5], h is determined by h− uniquely, up to conjugacy. On the other hand, for every such Y ,
h′ := h− + tτ + SpanR{dα}α∈Y ⊂ X is a Cartan subalgebra of g.

Let us take U ⊂ G0 to be the set of semisimple elements. Clearly, the lift of θ to an au-
tomorphism of the universal cover Ĝ acts on the center by inversion. Hence, it preserves any
central subgroup and, therefore, induces an automorphism of G. By [Kna02, Theorem 7.108],
U lies in the union of conjugates of Cartan subgroups of G, which are centralizers of Cartan
subalgebras of g. Since every Cartan subgroup of G(R) belongs to a Cartan subgroup of G(C),
it follows that θ acts by inversion on every Cartan subgroup of G whose Lie algebra belongs to
X . This completes the proof. �

Remark B.0.2. A thorough check of the proof of Lemma B.0.1 and references there reveals that
one may as well take G0 to be any Lie group satisfying G(R)◦ ⊂ G0 ⊂ G(R).
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