Relative Frobenius Formula

Avraham Aizenbud, Nir Avni and Yoav Krauz

December 21, 2015

Abstract

For a finite group G, Frobenius found a formula for the values of the function $\sum_{\operatorname{Irr} G}(\operatorname{dim} \pi)^{-s}$ for even integers s, where $\operatorname{Irr} G$ is the set of irreducible representations of G. We generalize this formula to the relative case: for a subgroup H, we find a formula for the values of the function $\sum_{\operatorname{Irr} G}(\operatorname{dim} \pi)^{-s}\left(\operatorname{dim} \pi^{H}\right)^{-t}$. We apply our results to compute the E-polynomials of Fock-Goncharov spaces and to relate the Gelfand property to the geometry of generalized Fock-Goncharov spaces.

Contents

1 Frobenius' formula 2
2 Relative representation theory 2
3 Relative version of Frobenius' formula 3
4 A criterion for Gelfand pairs 3
5 Fock-Goncharov spaces 4
6 Proof of Theorem 3.1 8
7 Acknowledgments 9
A An alternative proof of the Frobenus formula 9
B The spherical character 9

1 Frobenius' formula

Let S be a compact surface and let G be a finite group. A fundamental formula of Frobenius relates the number of homomorphisms from the fundamental group of S to G and the dimensions of the irreducible representations of G :

Theorem 1.1. Let S be a compact surface of genus k and let G be a finite group. Then, $|G|^{2 k-1} \sum_{\pi \in \operatorname{Irr} G}(\operatorname{dim} \pi)^{2-2 k}=\left|\operatorname{Hom}\left(\pi_{1}(S), G\right)\right|=\left|\left\{\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right) \in G^{2 k} \mid\left[x_{1}, y_{1}\right] \cdots\left[x_{k}, y_{k}\right]=1\right\}\right|$, where $\operatorname{Irr} G$ is the set of (isomorphism classes of) irreducible representations of G.

For example, $k=0$ gives $\sum_{\pi \in \operatorname{Irr} G}(\operatorname{dim} \pi)^{2}=|G|$, whereas from $k=1$ we get

$$
|\operatorname{Irr} G|=\frac{1}{|G|} \cdot\left|\left\{(x, y) \in G^{2} \mid x y=y x\right\}\right|=\sum_{x \in G} \frac{\left|C_{G}(x)\right|}{|G|}=\sum_{x \in G} \frac{1}{\left|x^{G}\right|}=|G / / G|
$$

Theorem 1.1 also has versions for compact Lie groups and for pro-finite groups (see [Wit91, AA]).

Theorem 1.1 is the case $g=1$ of the following theorem:
Theorem 1.2. Let G be a finite group and let $g \in G$. Then,

$$
|G|^{2 k-1} \sum_{\pi \in \operatorname{Irr} G}(\operatorname{dim} \pi)^{1-2 k} \chi_{\pi}(g)=\left|\left\{\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right) \in G^{2 k} \mid\left[x_{1}, y_{1}\right] \cdots\left[x_{k}, y_{k}\right]=g\right\}\right| .
$$

In this paper, we generalize Frobenius' formula to the relative case, i.e., we replace the representation theory of a group G by the harmonic analysis on some G-space X. We apply our result for Gelfand pairs and the Hodge theory of Fock-Goncharov spaces.

2 Relative representation theory

Relative representation theory is motivated by the following example:
Example 2.1. Let H be a (finite) group, and consider H as a $H \times H$-set via the action

$$
\left(h_{1}, h_{2}\right) \cdot h:=h_{1} h h_{2}^{-1} .
$$

Consider the space $\mathbb{C}[H]$ of complex-valued functions on H as a representation of $H \times H$. We have

$$
\mathbb{C}[H]=\bigoplus_{\pi \in \operatorname{Irr} H} \pi \otimes \pi^{*}
$$

This example shows that understanding the $H \times H$-representation $\mathbb{C}[H]$ "is the same" as understanding the representation theory of H. One can reformulate many concepts of the representation theory of H in terms of the $H \times H$-representation $\mathbb{C}[H]$. Relative representation theory (also known as abstract harmonic analysis) deals with those concepts considered in a wider generality: a group G acting on a set X and the representation of G on $\mathbb{C}[X]$.

Two important examples of representation theoretical concepts that have relative counterparts are Schur's Lemma, whose relative counterpart is the Gelfand property (see Definition 4.1 below) and the notion of a character, whose relative counterpart is the notion of spherical (or relative) character (see Definition B. 1 below).

3 Relative version of Frobenius' formula

We prove the following theorem in $\S 6$:
Theorem 3.1. Let G be a finite group acting on a finite set X, let $g \in G$, and let $k \in \mathbb{Z}_{\geq 0}$, $m \in \mathbb{Z}_{\geq 1}$. Then:

$$
\begin{aligned}
& \sum_{\pi \in i r r G} \frac{\operatorname{dim}\left(\operatorname{Hom}_{G}(\pi, \mathbb{C}[X])\right)^{m}}{\operatorname{dim} \pi^{m+2 k-1}} \chi_{\pi}(g)=\frac{1}{\# G^{m+2 k-1}} . \\
& \cdot \#\left\{p_{1}, \ldots p_{m} \in X, h_{1}, \ldots h_{m}, a_{1}, \ldots a_{k}, b_{1}, \ldots b_{k} \in G \mid h_{i} \in G_{p_{i}}, \prod_{i=1}^{m} h_{i} \cdot \prod_{i=1}^{k}\left[a_{i}, b_{i}\right]=g\right\}= \\
& \quad=\frac{1}{\# G^{m+2 k-1}} \sum_{h_{2}, \ldots h_{m}, a_{1}, \ldots a_{k}, b_{1}, \ldots b_{k} \in G} \# X^{g^{-1} \cdot h_{2} \cdots h_{m} \cdot\left[a_{1}, b_{1}\right] \cdots\left[a_{k}, b_{k}\right]} \prod_{i=2}^{m} \# X^{h_{i}},
\end{aligned}
$$

where $[a, b]:=a b a^{-1} b^{-1}$ is the commutator of a and b.
In Appendix B we reformulate this theorem in terms of spherical characters.

4 A criterion for Gelfand pairs

Recall the definition of Gelfand pairs:
Definition 4.1. Let G be a finite group.

1. Assume that G acts on a finite set X. We say that X is multiplicity free if, for any $\pi \in \operatorname{Irr}(G)$, we have $\operatorname{dimHom}_{G}(\pi, \mathbb{C}[X]) \leq 1$.
2. Let $H<G$. We say that (G, H) is a Gelfand pair if G / H is a multiplicity free G-set.

Theorem 3.1 gives us the following criterion for Gelfand pairs:
Corollary 4.2. Let $H \subset G$ be a pair of groups, and let $X=G / H$. Then the pair (G, H) is a Gelfand pair if and only if

$$
\sum_{g, h \in G} \# X^{[g, h]}=\sum_{g, h \in G} \# X^{g} \cdot \# X^{h} \cdot \# X^{g h} .
$$

In fact, Theorem 3.1 implies also the following more general statement:
Corollary 4.3. Let $H \subset G$ be a pair of groups and let $X=G / H$. For every $k, m \in \mathbb{Z}_{\geq 0}$ denote:

$$
f(k, m):=\sum_{h_{1}, \ldots h_{m}, a_{1}, \ldots a_{k}, b_{1}, \ldots b_{k} \in G} \# X^{h_{1} \cdots h_{m} \cdot\left[a_{1}, b_{1}\right] \cdots\left[a_{k}, b_{k}\right]} \prod_{i=1}^{m} \# X^{h_{i}} .
$$

Then, the following are equivalent:

- The pair (G, H) is a Gelfand pair.
- For every $k, m \in \mathbb{Z}_{\geq 0}$ and $0<l \leq k$, we have $f(k-l, m)=f(k, m+2 l)$.
- For some $k, m \in \mathbb{Z}_{\geq 0}$ and $0<l \leq k$, we have $f(k-l, m)=f(k, m+2 l)$.

5 Fock-Goncharov spaces

Theorem 3.1 can also be interpreted as a counting formula for (generalized) FockGoncharov spaces, which we proceed to define. The setting for this section is as follows: let \bar{S} be a compact surface, let $p_{1}, \ldots, p_{m} \in \bar{S}, m \geq 1$, be distinct points, and denote $S=\bar{S} \backslash\left\{p_{1}, \ldots, p_{m}\right\}$. Such S is called a surface of finite type. Choose a base point $s \in S$ and, for each $i=1, \ldots, m$, choose a representative $\tau_{i} \in \pi_{1}(S, s)$ from the conjugacy class corresponding to a circle around p_{i}.

Definition 5.1. Let G be a group acting on a set X. An X-framed representation $\pi_{1}(S, s) \rightarrow G$ is a tuple $\left(\rho, x_{1}, \ldots, x_{m}\right)$, where $\rho: \pi_{1}(S, s) \rightarrow G$ is a homomorphism, and $x_{i} \in X$ satisfy $\rho\left(\tau_{i}\right) x_{i}=x_{i}$. The collection of all X-framed representations is denoted by $\widehat{\mathcal{X}}_{S, s,\left(\tau_{i}\right), G, X}$.

If s^{\prime} and τ_{i}^{\prime} are different choices of a point and loops, then there is a bijection (depending on a choice of a path from s to s^{\prime}) between $\widehat{\mathcal{X}}_{S, s,\left(\tau_{i}\right), G, X}$ and $\widehat{\mathcal{X}}_{S, s^{\prime},\left(\tau_{i}^{\prime}\right), G, X}$. When no confusion arises, we will omit s and τ_{i} from the notation.

If \mathbf{G} is group scheme acting on a scheme \mathbf{X}, then the functor sending a scheme T to $\widehat{\mathcal{X}}_{S, \mathbf{G}(T), \mathbf{X}(T)}$ is representable by a scheme that we denote by $\widehat{\mathcal{X}}_{S, \mathbf{G}, \mathbf{X}}$.

Definition 5.2. Let \mathbf{G} be a group scheme acting on a scheme \mathbf{X}. Then, \mathbf{G} acts on $\widehat{\mathcal{X}}_{S, \mathbf{G}, \mathbf{X}}$, and we denote the quotient stack by $\mathcal{X}_{S, \mathbf{G}, \mathbf{X}}$. Similarly, if a group G acts on a set X, we denote the quotient groupoid $G \backslash \widehat{\mathcal{X}}_{S, G, X}$ by $\mathcal{X}_{S, G, X}$.

Remark 5.3.

- If \mathbf{X} is the flag variety of a reductive group \mathbf{G}, then the stack $\mathcal{X}_{S, \mathbf{G}, \mathbf{X}}$ was defined in [FG06]. The authors of [FG06] defined the notion of a framed \mathbf{G} local system and showed that $\mathcal{X}_{S, \mathbf{G}, \mathbf{X}}$ is the moduli stack of framed \mathbf{G} local systems on S (see [FG06, §2]). The notion of a framed \mathbf{G} local system extends to general \mathbf{G} and \mathbf{X}, and the same proof shows that $\mathcal{X}_{S, \mathbf{G}, \mathbf{X}}$ is the moduli space of framed (\mathbf{G}, \mathbf{X})-local systems.
- If \mathbf{G} is connected, then, by Lang's Theorem, $\mathcal{X}_{S, \mathbf{G}, \mathbf{X}}\left(\mathbb{F}_{p}\right) \cong \mathcal{X}_{S, \mathbf{G}\left(\mathbb{F}_{p}\right), \mathbf{X}\left(\mathbb{F}_{p}\right)}$.

In terms of the definitions above, Theorem 3.1 implies:
Theorem 5.4. Let G be a finite group acting on a finite set X. Then

$$
\# \widehat{\mathcal{X}}_{S, G, X}=(\# G)^{1-\chi(S)} \sum_{\pi \in \operatorname{Irr} G} \frac{\operatorname{dim}\left(\operatorname{Hom}_{G}(\pi, \mathbb{C}[X])\right)^{\#(\bar{S} \backslash S)}}{\operatorname{dim} \pi^{-\chi(S)}}
$$

and

$$
\operatorname{vol}\left(\mathcal{X}_{S, G, X}\right):=\sum_{x \text { is an isomorphism class of } \mathcal{X}_{S, G, X}} \frac{1}{\# \operatorname{Aut}(x)}=(\# G)^{-\chi(S)} \sum_{\pi \in \operatorname{Irr} G} \frac{\operatorname{dim}\left(\operatorname{Hom}_{G}(\pi, \mathbb{C}[X])\right)^{\#(\bar{S} \backslash S)}}{\operatorname{dim} \pi^{-\chi(S)}} .
$$

Corollary 5.5. Let G be a finite group acting on a finite set X. The following are equivalent:

- X is a multiplicity free G-space.
- For any two non-compact surfaces of finite type S_{1}, S_{2} such that $\chi\left(S_{1}\right)=\chi\left(S_{2}\right)$, we have $\operatorname{vol}\left(\mathcal{X}_{S_{1}, G, X}\right)=\operatorname{vol}\left(\mathcal{X}_{S_{2}, G, X}\right)$.
- There are two non homeomorphic non-compact surfaces of finite type S_{1}, S_{2} such that $\chi\left(S_{1}\right)=\chi\left(S_{2}\right)$ and $\operatorname{vol}\left(\mathcal{X}_{S_{1}, G, X}\right)=\operatorname{vol}\left(\mathcal{X}_{S_{2}, G, X}\right)$.

Definition 5.6. We say that a set T of prime powers is dense if, for any finite Galois extension E / \mathbb{Q} and for any conjugacy class $\gamma \subset \operatorname{Gal}(E / \mathbb{Q})$, there exists $p^{n} \in T$ such that p is unramified in E and $\gamma=F r_{p}^{n}$.

Remark 5.7.

- The Chebotarev Density Theorem says that the set of all primes is dense.
- The Grothendieck trace formula implies that if X_{1}, X_{2} are two schemes such that $X_{1}\left(\mathbb{F}_{q}\right)=X_{1}\left(\mathbb{F}_{q}\right)$ when q ranges over a dense set of prime powers, then $X_{1}\left(\mathbb{F}_{p^{n}}\right)=$ $X_{1}\left(\mathbb{F}_{p^{n}}\right)$ for almost all primes p and for all natural numbers n.

The last corollary and [Kat08] implies:
Corollary 5.8. Let \mathbf{G} be a group scheme over \mathbb{Z} acting on a scheme \mathbf{X}. The following are equivalent:

- There is a dense set T of prime powers such that, for any $q \in T$, the set $\mathbf{X}\left(\mathbb{F}_{q}\right)$ is a multiplicity free $\mathbf{G}\left(\mathbb{F}_{q}\right)$ space.
- For all but finitely many primes p and for all n, the set $\mathbf{X}\left(\mathbb{F}_{p^{n}}\right)$ is a multiplicity free $\mathbf{G}\left(\mathbb{F}_{p^{n}}\right)$ space.

Moreover, if these conditions hold then, for any two non-compact surfaces S_{1}, S_{2} such that $\chi\left(S_{1}\right)=\chi\left(S_{2}\right)$, the varieties $\widehat{\mathcal{X}}_{S_{1}, \mathbf{G}, \mathbf{X}}$ and $\widehat{\mathcal{X}}_{S_{2}, \mathbf{G}, \mathbf{X}}$ have the same E-polynomial ${ }^{1}$.

We will now apply Theorem 5.4 for the case of $\mathbf{G L}_{n}$ acting on its flag variety $\mathbf{F l}_{n}$. Recall that, if $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition of n and λ^{*} is the conjugate partition, then

$$
h_{\lambda}(i, j)=\lambda_{i}-j+\lambda_{j}^{*}-i+1
$$

is the length of the hook in the Young diagram corresponding to λ passing through the box (i, j). We prove the following:

Theorem 5.9.

$$
\operatorname{vol}\left(\mathcal{X}_{S, \mathbf{G L}_{n}, \mathbf{F l}_{n}}\left(\mathbb{F}_{q}\right)\right)=(n!)^{\# \bar{S} \backslash S} \sum_{\lambda \text { is a partition of } n} q^{\sum_{k}(k-1) \lambda_{k} \chi(S)} \prod_{i, j: j \leq \lambda_{i}} \frac{\left(q^{h_{\lambda}(i, j)}-1\right)^{-\chi(S)}}{h_{\lambda}(i, j)^{\# \bar{S} \backslash S}} .
$$

[^0]- The E polynomial of $\widehat{\mathcal{X}}_{S, \mathbf{G L}_{n}, \mathbf{F l}_{n}}$ is

$$
(n!)^{\# \bar{S} \backslash S} \prod_{k=1}^{n}\left(x^{n} y^{n}-x^{k} y^{k}\right) \sum_{\lambda}(x y)^{\sum_{k}(k-1) \lambda_{k} \chi(S)} \prod_{i, j: j \leq \lambda_{i}} \frac{\left((x y)^{h_{\lambda}(i, j)}-1\right)^{-\chi(S)}}{h_{\lambda}(i, j)^{\# \bar{S} \backslash S}} .
$$

For the proof, we collect the following facts:
Proposition 5.10 ([Jam84]). For every partition λ of n, there exists a unique irreducible representation R_{λ} of $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)$ satisfying:

- R_{λ} appears in the permutation representation $\mathbb{C}\left[\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right) / \mathbf{P}_{\lambda}\left(\mathbb{F}_{q}\right)\right]$, where \mathbf{P}_{λ} is the standard parabolic corresponding to λ (see [Jam84, Chapter 11]).
- R_{λ} does not appear in the permutation representation $\mathbb{C}\left[\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right) / \mathbf{P}_{\mu}\left(\mathbb{F}_{q}\right)\right]$, for $\mu<\lambda$ (see [Jam84, Chapter 15]).
-

$$
\operatorname{dim} R_{\lambda}=q^{\sum_{k}(k-1) \lambda_{k}} \frac{\# \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)}{\prod_{i, j: j \leq \lambda_{i}}\left(q^{h_{\lambda}(i, j)}-1\right)} .
$$

(see [Jam84, Page 2]).
Let $\mathbf{B} \subset \mathbf{G L}_{n}$ be the standard Borel. Taking $T_{\lambda}=R_{\lambda}^{\mathbf{B}\left(\mathbb{F}_{q}\right)}$, we get
Corollary 5.11. For every partition λ of n, we have

- T_{λ} appears in the representation $\mathbb{C}\left[\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right) / \mathbf{P}_{\lambda}\left(\mathbb{F}_{q}\right)\right]^{\mathbf{B}\left(\mathbb{F}_{q}\right)}$.
- T_{λ} does not appear in the representation $\mathbb{C}\left[\mathbf{G} \mathbf{L}_{n}\left(\mathbb{F}_{q}\right) / \mathbf{P}_{\mu}\left(\mathbb{F}_{q}\right)\right]^{\mathbf{B}\left(\mathbb{F}_{q}\right)}$, for $\mu<\lambda$.

The following is classical:
Proposition 5.12. For every partition λ of n, there exists a unique irreducible representation π_{λ} of S_{n} satisfying:

- π_{λ} appears in the permutation representation $\mathbb{C}\left[S_{n} / S_{\lambda}\right]$, where $S_{\left(\lambda_{1}, \ldots, \lambda_{m}\right)}=S_{\lambda_{1}} \times$ $\cdots \times S_{\lambda_{m}} \subset S_{n}$.
- π_{λ} does not appear in the permutation representation $\mathbb{C}\left[S_{n} / S_{\mu}\right]$, for $\mu<\lambda$.
- $\operatorname{dim} \pi_{\lambda}=\frac{n!}{\prod_{i, j: i \leq \lambda_{j}} h_{\lambda}(i, j)}$.

Proof of Theorem 5.9. Since $\operatorname{dimHom}\left(R_{\lambda}, \mathbb{C}\left[\mathbf{F l}_{n}\right]\right)=\operatorname{dim} T_{\lambda}$, it is enough to show that $\operatorname{dim} T_{\lambda}=\operatorname{dim} \pi_{\lambda}$, for every λ. Recall that the Hecke algebra $H^{S_{n}}(t)$ corresponding to the Coxeter group S_{n} is a (polynomial) one parameter family of algebras whose underlying vector space is $\mathbb{C}\left[S_{n}\right]$; we denote the product in $H^{S_{n}}(t)$ by $*_{t}$. Recall that the product $*_{1}$ is the convolution on $\mathbb{C}\left[S_{n}\right]$ and that, if t is a prime power, then the product $*_{t}$ corresponds to the convolution in $\mathbb{C}\left[\mathbf{B}\left(\mathbb{F}_{t}\right) \backslash \mathbf{G} \mathbf{L}_{n}\left(\mathbb{F}_{t}\right) / \mathbf{B}\left(\mathbb{F}_{t}\right)\right]$ under the identification $\mathbb{C}\left[\mathbf{B}\left(\mathbb{F}_{t}\right) \backslash \mathbf{G} \mathbf{L}_{n}\left(\mathbb{F}_{t}\right) / \mathbf{B}\left(\mathbb{F}_{t}\right)\right] \cong \mathbb{C}\left[S_{n}\right]$ given by the Bruhat decomposition. Let $M_{\lambda}(t) \subset H^{S_{n}}(t)$ be the subspace of S_{λ}-(right)-invariant elements of $\mathbb{C}\left[S_{n}\right]$. For every prime power $t, M_{\lambda}(t)$ is an ideal, and, hence, the same is true for every t. Using the interpolation of the natural inner product, we get that, for $t \in \mathbb{R}_{\geq 1}$, the algebra $H^{S_{n}}(t)$ is semisimple, and, hence, there is an (analytic) trivialization of $\bar{H}^{S_{n}}(t)$ over $\mathbb{R}_{\geq 1}$. Since there are only finitely many isomorphism types of representations of a given dimension, we get that $M_{\lambda}(t)$ can also be trivialized over $\mathbb{R}_{\geq 1}$. Corollary 5.11 and Proposition 5.12 imply that, under the algebra isomorphism $\mathbb{C}\left[S_{n}\right] \rightarrow \mathbb{C}\left[\mathbf{B}\left(\mathbb{F}_{q}\right) \backslash \mathbf{G} \mathbf{L}_{n}\left(\mathbb{F}_{q}\right) / \mathbf{B}\left(\mathbb{F}_{q}\right)\right]$, the modules T_{λ} and π_{λ} are isomorphic, and hence have the same dimension.

6 Proof of Theorem 3.1

The case $k=0, m=1$ of theorem 3.1 is easy:
Lemma 6.1. Let G be a finite group acting on a finite set X. Then:

$$
\begin{equation*}
\sum_{\pi \in \operatorname{Irr} G} \operatorname{dim}\left(\operatorname{Hom}_{G}(\pi, \mathbb{C}[X])\right) \cdot \chi_{\pi}(g)=\chi_{\mathbb{C}[X]}(g)=\# X^{g} \tag{1}
\end{equation*}
$$

In order to deduce the general case we need a basic fact about convolution of characters. Recall that for two functions $f, g \in \mathbb{C}[G]$, the convolution is defined by

$$
(f * g)(h)=\sum_{u \in G} f(u) g\left(u^{-1} h\right) .
$$

Lemma 6.2. For any $\pi, \tau \in \operatorname{Irr} G$ we have:

$$
\chi_{\pi} * \chi_{\tau}=\frac{\delta_{\pi, \tau} \# G}{\operatorname{dim}(\pi)} \chi_{\pi} .
$$

Now we ready to prove the main theorem.
Proof of theorem 3.1. Applying Lemma 6.2, the assertion follows by convolving (1) with itself m times and with the formula in Theorem 1.2.

7 Acknowledgments

We thank Inna Entova Aizenbud for a helpful conversation. A.A. was partially supported by ISF grant $687 / 13$ and a Minerva foundation grant. N.A. was partially supported by NSF grant DMS-1303205. A.A. and N.A. were partially supported by BSF grant 2012247. N.A. thanks the Weizmann Institute for hospitality.

A An alternative proof of the Frobenus formula

Lemma 6.1 gives an alternative proof of the Frobenius formula (Theorem 1.1).
Let G be a finite group acting on a finite set X. For a representation π of G, define a function on $X \times X$ by

$$
\begin{equation*}
\chi_{\pi}^{X}(x, y)=\frac{1}{\# G} \sum_{h: h x=y} \chi_{\pi}(h) . \tag{2}
\end{equation*}
$$

Lemma A.1. Consider the 2-sided action of $G \times G$ on G. Let π be a representation of G. Then

$$
\chi_{\pi \otimes \pi^{*}}^{G}(1, g)=\frac{1}{\# G \operatorname{dim} \pi} \chi_{\pi}(g) .
$$

Proof.

$$
\chi_{\pi \otimes \pi^{*}}^{G}(1, g)=\frac{1}{\# G} \sum_{h_{1}, h_{2}: h_{1} h_{2}^{-1}=g} \chi_{\pi}\left(h_{1}\right) \chi_{\pi}\left(h_{1}^{-1}\right)=\frac{\left(\chi_{\pi} * \chi_{\pi}\right)(g)}{\# G}=\frac{1}{\# G \operatorname{dim} \pi} \chi_{\pi}(g),
$$

where the last equality is by Lemma 6.2
Proof of Theorem 1.1. the case $k=1$ follows from the Lemma 6.1 and lemma A.1. The general case follows by taking convolution power of the case $k=1$ and using Lemma 6.2.

B The spherical character

The relative counterpart of the notion of the character of a representation is given in the following definition:

Definition B.1. Let G be a finite group acting on a finite set X. Let π be a representation of G.

1. Let $\phi: \pi \rightarrow \mathbb{C}[X]$ and $\psi: \pi^{*} \rightarrow \mathbb{C}[X]$ be morphisms of representations. Denote by ϕ^{t} and ψ^{t} the dual maps. We define the spherical character $\chi_{\pi}^{\phi \otimes \psi} \in \mathbb{C}[X \times X]$ by

$$
\chi_{\pi}^{\phi \otimes \psi}(x, y)=\left\langle\phi^{t}\left(\delta_{x}\right), \psi^{t}\left(\delta_{y}\right)\right\rangle,
$$

where $\delta_{x} \in \mathbb{C}[X]=\mathbb{C}[X]^{*}$ is the Kronecker delta function supported at x.
2. This definition extends (by linearity) to the case when $\phi \otimes \psi$ is replaced by any element of $\operatorname{Hom}(\pi, \mathbb{C}[X]) \otimes \operatorname{Hom}\left(\pi^{*}, \mathbb{C}[X]\right)=\operatorname{End}(\operatorname{Hom}(\pi, \mathbb{C}[X]))$.

Lemma B.2.

$$
\chi_{\pi}^{X}:=\chi_{\pi}^{I d_{H o m}(\pi, \mathbb{C}[X])} .
$$

Proof. For $x \in X$, let $L_{\pi}^{x}: \operatorname{Hom}_{G}(\pi, \mathbb{C}[X]) \rightarrow \pi^{*}$ be the linear map defined by

$$
\phi \in \operatorname{Hom}_{G}(\pi, \mathbb{C}[X]) \mapsto(u \in \pi \mapsto \phi(u)(x)) .
$$

Note that $\operatorname{Hom}_{G}(\pi, \mathbb{C}[X]), \operatorname{Hom}_{G}\left(\pi^{*}, \mathbb{C}[X]\right)$ are naturally dual to each other by the pairing

$$
\langle\phi, \psi\rangle:=\sum_{x \in X}\left\langle L_{\pi}^{x} \phi, L_{\pi^{*}}^{x} \psi\right\rangle \quad\left(\phi \in \operatorname{Hom}_{G}(\pi, \mathbb{C}[X]) ; \psi \in \operatorname{Hom}_{G}\left(\pi^{*}, \mathbb{C}[X]\right)\right)
$$

therefore we shall identify $\operatorname{Hom}_{G}\left(\pi^{*}, \mathbb{C}[X]\right)$ with $\operatorname{Hom}_{G}(\pi, \mathbb{C}[X])^{*}$.
Let $\phi \in \operatorname{Hom}_{G}(\pi, \mathbb{C}[X]), \psi \in \operatorname{Hom}_{G}\left(\pi^{*}, \mathbb{C}[X]\right)$. Then by definition,

$$
\chi_{\pi}^{\phi \otimes \psi}(x, y)=\left\langle\phi^{t}\left(\delta_{x}\right), \psi^{t}\left(\delta_{y}\right)\right\rangle=\left\langle L_{\pi}^{x} \phi, L_{\pi^{*}}^{y} \psi\right\rangle=\left\langle\left(L_{\pi^{*}}^{y}\right)^{t} L_{\pi}^{x} \phi, \psi\right\rangle,
$$

so $\chi_{\pi}^{I d_{H o m(\pi, \mathrm{C}[X])}}(x, y)=\operatorname{tr}\left(\left(L_{\pi^{*}}^{y}\right)^{t} L_{\pi}^{x}\right)$.
It is easy to see that $\left(L_{\pi}^{x}\right)^{t}: \pi \rightarrow \operatorname{Hom}_{G}\left(\pi^{*}, \mathbb{C}[X]\right)$ can be computed by

$$
\forall u \in \pi, f \in \pi^{*}:\left(\left(L_{\pi}^{x}\right)^{t} u\right)(f)=\frac{1}{\# G} \sum_{h \in G} f(\pi(h) u) \delta_{h x}
$$

Now, $\chi_{\pi}^{I d_{H o m(\pi, \mathrm{C}[X])}}=\operatorname{tr}\left(\left(L_{\pi^{*}}^{y}\right)^{t} L_{\pi}^{x}\right)=\operatorname{tr}\left(L_{\pi}^{x}\left(L_{\pi^{*}}^{y}\right)^{t}\right)$. Note that $L_{\pi}^{x}\left(L_{\pi^{*}}^{y}\right)^{t}$ is the linear mapping $\pi^{*} \rightarrow \pi^{*}$ defined by

$$
\forall f \in \pi^{*}:\left(L_{\pi}^{x}\left(L_{\pi^{*}}^{y}\right)^{t}\right) f=\left(u \in \pi \mapsto \frac{1}{\# G} \sum_{h \in G}\left\langle u,\left(\pi^{*}(h) f\right)\right\rangle \delta_{h y, x}\right)=\frac{1}{\# G} \sum_{h \text { s.t. } h y=x} \pi^{*}(h) f
$$

so

$$
\chi_{\pi}^{I d_{H o m(\pi, \mathrm{C}[X])}}=\operatorname{tr}\left(L_{\pi}^{x}\left(L_{\pi^{*}}^{y}\right)^{t}\right)=\frac{1}{\# G} \sum_{h \text { s.t. } h y=x} \chi_{\pi^{*}}(h)=\frac{1}{\# G} \sum_{h \text { s.t. } h x=y} \chi_{\pi}(h)=\chi_{\pi}^{X}(x, y)
$$

We reformulate Theorem 3.1 in terms of the spherical character:
Theorem B.3. Let G be a finite group that acts on a finite set X. Then:

$$
\begin{aligned}
& \sum_{\pi \in \operatorname{Irr} G} \frac{\operatorname{dim}\left(\operatorname{Hom}_{G}(\pi, \mathbb{C}[X])\right)^{m}}{\operatorname{dim} \pi^{m+2 k-1}} \chi_{\pi}^{X}\left(x_{1}, x_{2}\right)=\frac{1}{\# G^{m+2 k}} . \\
\cdot & \#\left\{p_{1}, \ldots p_{m} \in X, h_{1}, \ldots h_{m}, a_{1}, \ldots a_{k}, b_{1}, \ldots b_{k} \in G \mid h_{i} \in G_{p_{i}}, \prod_{i=1}^{m} h_{i} \cdot \prod_{i=1}^{k}\left[a_{i}, b_{i}\right] \cdot x_{1}=x_{2}\right\} .
\end{aligned}
$$

References

[AA] Aizenbud, A.; Avni, N.; Representation growth and rational singularities of the moduli space of local systems. Arxiv 1307.0371, to appear in Inventiones Mathematicae.
[FG06] V. Fock, A. Goncharov, Moduli spaces of local systems and higher Teichmuller theory. Publications Mathematiques de l'Institut des Hautes Etudes Scientifiques 103/1, (2006).
[HR08] T. Hausel, F. Rodriguez-Villegas, Mixed Hodge polynomials of character varieties. Invent. Math. 174/3, (2008).
[Jam84] G.D. James, Representations of general linear groups, London Math. Soc. Lec. Notes Series, 94 (1984).
[Kat08] N. Katz, Appendix of [HR08]: E-polynomials, zeta-equivalence, and polynomial-count varieties. Invent. Math. 174/3, (2008).
[Wit91] Witten, Edward On quantum gauge theories in two dimensions. Comm. Math. Phys. 141 (1991), no. 1, 153-209.

[^0]: ${ }^{1}$ For the definition of the E-polynomial see e.g. [Kat08]

