Relative Frobenius Formula

Avraham Aizenbud, Nir Avni and Yoav Krauz

December 21, 2015

Abstract

For a finite group G, Frobenius found a formula for the values of the function $\sum_{\operatorname{Irr} G} (\dim \pi)^{-s}$ for even integers s, where $\operatorname{Irr} G$ is the set of irreducible representations of G. We generalize this formula to the relative case: for a subgroup H, we find a formula for the values of the function $\sum_{\operatorname{Irr} G} (\dim \pi)^{-s} (\dim \pi^H)^{-t}$. We apply our results to compute the E-polynomials of Fock–Goncharov spaces and to relate the Gelfand property to the geometry of generalized Fock–Goncharov spaces.

Contents

1	Frobenius' formula	2
2	Relative representation theory	2
3	Relative version of Frobenius' formula	3
4	A criterion for Gelfand pairs	3
5	Fock–Goncharov spaces	4
6	Proof of Theorem 3.1	8
7	Acknowledgments	9
A	An alternative proof of the Frobenus formula	9
в	The spherical character	9

1 Frobenius' formula

Let S be a compact surface and let G be a finite group. A fundamental formula of Frobenius relates the number of homomorphisms from the fundamental group of S to G and the dimensions of the irreducible representations of G:

Theorem 1.1. Let S be a compact surface of genus k and let G be a finite group. Then,

$$|G|^{2k-1} \sum_{\pi \in \operatorname{Irr} G} (\dim \pi)^{2-2k} = |\operatorname{Hom}(\pi_1(S), G)| = |\{(x_1, y_1, \dots, x_k, y_k) \in G^{2k} \mid [x_1, y_1] \cdots [x_k, y_k] = 1\}|$$

where $\operatorname{Irr} G$ is the set of (isomorphism classes of) irreducible representations of G.

For example, k = 0 gives $\sum_{\pi \in \operatorname{Irr} G} (\dim \pi)^2 = |G|$, whereas from k = 1 we get

$$|\operatorname{Irr} G| = \frac{1}{|G|} \cdot |\{(x,y) \in G^2 \mid xy = yx\}| = \sum_{x \in G} \frac{|C_G(x)|}{|G|} = \sum_{x \in G} \frac{1}{|x^G|} = |G//G|.$$

Theorem 1.1 also has versions for compact Lie groups and for pro-finite groups (see [Wit91, AA]).

Theorem 1.1 is the case g = 1 of the following theorem:

Theorem 1.2. Let G be a finite group and let $g \in G$. Then,

$$|G|^{2k-1} \sum_{\pi \in \operatorname{Irr} G} (\dim \pi)^{1-2k} \chi_{\pi}(g) = |\{(x_1, y_1, \dots, x_k, y_k) \in G^{2k} \mid [x_1, y_1] \cdots [x_k, y_k] = g\}|.$$

In this paper, we generalize Frobenius' formula to the relative case, i.e., we replace the representation theory of a group G by the harmonic analysis on some G-space X. We apply our result for Gelfand pairs and the Hodge theory of Fock–Goncharov spaces.

2 Relative representation theory

Relative representation theory is motivated by the following example:

Example 2.1. Let H be a (finite) group, and consider H as a $H \times H$ -set via the action

$$(h_1, h_2) \cdot h := h_1 h h_2^{-1}.$$

Consider the space $\mathbb{C}[H]$ of complex-valued functions on H as a representation of $H \times H$. We have

$$\mathbb{C}[H] = \bigoplus_{\pi \in \operatorname{Irr} H} \pi \otimes \pi^*.$$

This example shows that understanding the $H \times H$ -representation $\mathbb{C}[H]$ "is the same" as understanding the representation theory of H. One can reformulate many concepts of the representation theory of H in terms of the $H \times H$ -representation $\mathbb{C}[H]$. Relative representation theory (also known as abstract harmonic analysis) deals with those concepts considered in a wider generality: a group G acting on a set X and the representation of G on $\mathbb{C}[X]$.

Two important examples of representation theoretical concepts that have relative counterparts are Schur's Lemma, whose relative counterpart is the Gelfand property (see Definition 4.1 below) and the notion of a character, whose relative counterpart is the notion of spherical (or relative) character (see Definition B.1 below).

3 Relative version of Frobenius' formula

We prove the following theorem in $\S6$:

Theorem 3.1. Let G be a finite group acting on a finite set X, let $g \in G$, and let $k \in \mathbb{Z}_{\geq 0}$, $m \in \mathbb{Z}_{\geq 1}$. Then:

$$\sum_{\pi \in irrG} \frac{\dim(\operatorname{Hom}_{G}(\pi, \mathbb{C}[X]))^{m}}{\dim \pi^{m+2k-1}} \chi_{\pi}(g) = \frac{1}{\#G^{m+2k-1}} \cdot \\ \cdot \#\{p_{1}, \dots, p_{m} \in X, h_{1}, \dots, h_{m}, a_{1}, \dots, a_{k}, b_{1}, \dots, b_{k} \in G | h_{i} \in G_{p_{i}}, \prod_{i=1}^{m} h_{i} \cdot \prod_{i=1}^{k} [a_{i}, b_{i}] = g\} = \\ = \frac{1}{\#G^{m+2k-1}} \sum_{h_{2}, \dots, h_{m}, a_{1}, \dots, a_{k}, b_{1}, \dots, b_{k} \in G} \#X^{g^{-1} \cdot h_{2} \cdots h_{m} \cdot [a_{1}, b_{1}] \cdots [a_{k}, b_{k}]} \prod_{i=2}^{m} \#X^{h_{i}},$$

where $[a, b] := aba^{-1}b^{-1}$ is the commutator of a and b.

In Appendix B we reformulate this theorem in terms of spherical characters.

4 A criterion for Gelfand pairs

Recall the definition of Gelfand pairs:

Definition 4.1. Let G be a finite group.

1. Assume that G acts on a finite set X. We say that X is multiplicity free if, for any $\pi \in \operatorname{Irr}(G)$, we have dimHom_G $(\pi, \mathbb{C}[X]) \leq 1$.

2. Let H < G. We say that (G, H) is a Gelfand pair if G/H is a multiplicity free G-set.

Theorem 3.1 gives us the following criterion for Gelfand pairs:

Corollary 4.2. Let $H \subset G$ be a pair of groups, and let X = G/H. Then the pair (G, H) is a Gelfand pair if and only if

$$\sum_{g,h\in G} \# X^{[g,h]} = \sum_{g,h\in G} \# X^g \cdot \# X^h \cdot \# X^{gh}.$$

In fact, Theorem 3.1 implies also the following more general statement:

Corollary 4.3. Let $H \subset G$ be a pair of groups and let X = G/H. For every $k, m \in \mathbb{Z}_{\geq 0}$ denote:

$$f(k,m) := \sum_{h_1,\dots,h_m,a_1,\dots,a_k,b_1,\dots,b_k \in G} \# X^{h_1\dots h_m \cdot [a_1,b_1]\dots [a_k,b_k]} \prod_{i=1}^m \# X^{h_i}.$$

Then, the following are equivalent:

- The pair (G, H) is a Gelfand pair.
- For every $k, m \in \mathbb{Z}_{>0}$ and $0 < l \leq k$, we have f(k-l,m) = f(k,m+2l).
- For some $k, m \in \mathbb{Z}_{\geq 0}$ and $0 < l \le k$, we have f(k l, m) = f(k, m + 2l).

5 Fock–Goncharov spaces

Theorem 3.1 can also be interpreted as a counting formula for (generalized) Fock– Goncharov spaces, which we proceed to define. The setting for this section is as follows: let \overline{S} be a compact surface, let $p_1, \ldots, p_m \in \overline{S}, m \ge 1$, be distinct points, and denote $S = \overline{S} \setminus \{p_1, \ldots, p_m\}$. Such S is called a surface of finite type. Choose a base point $s \in S$ and, for each $i = 1, \ldots, m$, choose a representative $\tau_i \in \pi_1(S, s)$ from the conjugacy class corresponding to a circle around p_i .

Definition 5.1. Let G be a group acting on a set X. An X-framed representation $\pi_1(S,s) \to G$ is a tuple (ρ, x_1, \ldots, x_m) , where $\rho : \pi_1(S,s) \to G$ is a homomorphism, and $x_i \in X$ satisfy $\rho(\tau_i)x_i = x_i$. The collection of all X-framed representations is denoted by $\widehat{\mathcal{X}}_{S,s,(\tau_i),G,X}$.

If s' and τ'_i are different choices of a point and loops, then there is a bijection (depending on a choice of a path from s to s') between $\widehat{\mathcal{X}}_{S,s,(\tau_i),G,X}$ and $\widehat{\mathcal{X}}_{S,s',(\tau'_i),G,X}$. When no confusion arises, we will omit s and τ_i from the notation.

If **G** is group scheme acting on a scheme **X**, then the functor sending a scheme *T* to $\widehat{\mathcal{X}}_{S,\mathbf{G}(T),\mathbf{X}(T)}$ is representable by a scheme that we denote by $\widehat{\mathcal{X}}_{S,\mathbf{G},\mathbf{X}}$.

Definition 5.2. Let **G** be a group scheme acting on a scheme **X**. Then, **G** acts on $\widehat{\mathcal{X}}_{S,\mathbf{G},\mathbf{X}}$, and we denote the quotient stack by $\mathcal{X}_{S,\mathbf{G},\mathbf{X}}$. Similarly, if a group *G* acts on a set *X*, we denote the quotient groupoid $G \setminus \widehat{\mathcal{X}}_{S,G,X}$ by $\mathcal{X}_{S,G,X}$.

Remark 5.3.

- If X is the flag variety of a reductive group G, then the stack X_{S,G,X} was defined in [FG06]. The authors of [FG06] defined the notion of a framed G local system and showed that X_{S,G,X} is the moduli stack of framed G local systems on S (see [FG06, §2]). The notion of a framed G local system extends to general G and X, and the same proof shows that X_{S,G,X} is the moduli space of framed (G, X)-local systems.
- If **G** is connected, then, by Lang's Theorem, $\mathcal{X}_{S,\mathbf{G},\mathbf{X}}(\mathbb{F}_p) \cong \mathcal{X}_{S,\mathbf{G}(\mathbb{F}_p),\mathbf{X}(\mathbb{F}_p)}$.

In terms of the definitions above, Theorem 3.1 implies:

Theorem 5.4. Let G be a finite group acting on a finite set X. Then

$$#\widehat{\mathcal{X}}_{S,G,X} = (#G)^{1-\chi(S)} \sum_{\pi \in \operatorname{Irr} G} \frac{\dim(\operatorname{Hom}_G(\pi, \mathbb{C}[X]))^{\#(S \setminus S)}}{\dim \pi^{-\chi(S)}},$$

and

$$vol(\mathcal{X}_{S,G,X}) := \sum_{x \text{ is an isomorphism class of } \mathcal{X}_{S,G,X}} \frac{1}{\#Aut(x)} = (\#G)^{-\chi(S)} \sum_{\pi \in \operatorname{Irr} G} \frac{\dim(\operatorname{Hom}_G(\pi, \mathbb{C}[X]))^{\#(S \setminus S)}}{\dim \pi^{-\chi(S)}}$$

Corollary 5.5. Let G be a finite group acting on a finite set X. The following are equivalent:

- X is a multiplicity free G-space.
- For any two non-compact surfaces of finite type S_1, S_2 such that $\chi(S_1) = \chi(S_2)$, we have $vol(\mathcal{X}_{S_1,G,X}) = vol(\mathcal{X}_{S_2,G,X})$.
- There are two non homeomorphic non-compact surfaces of finite type S_1, S_2 such that $\chi(S_1) = \chi(S_2)$ and $vol(\mathcal{X}_{S_1,G,X}) = vol(\mathcal{X}_{S_2,G,X})$.

Definition 5.6. We say that a set T of prime powers is dense if, for any finite Galois extension E/\mathbb{Q} and for any conjugacy class $\gamma \subset Gal(E/\mathbb{Q})$, there exists $p^n \in T$ such that p is unramified in E and $\gamma = Fr_p^n$.

Remark 5.7.

- The Chebotarev Density Theorem says that the set of all primes is dense.
- The Grothendieck trace formula implies that if X_1, X_2 are two schemes such that $X_1(\mathbb{F}_q) = X_1(\mathbb{F}_q)$ when q ranges over a dense set of prime powers, then $X_1(\mathbb{F}_{p^n}) = X_1(\mathbb{F}_{p^n})$ for almost all primes p and for all natural numbers n.

The last corollary and [Kat08] implies:

Corollary 5.8. Let G be a group scheme over \mathbb{Z} acting on a scheme X. The following are equivalent:

- There is a dense set T of prime powers such that, for any $q \in T$, the set $\mathbf{X}(\mathbb{F}_q)$ is a multiplicity free $\mathbf{G}(\mathbb{F}_q)$ space.
- For all but finitely many primes p and for all n, the set X(F_{pⁿ}) is a multiplicity free G(F_{pⁿ}) space.

Moreover, if these conditions hold then, for any two non-compact surfaces S_1, S_2 such that $\chi(S_1) = \chi(S_2)$, the varieties $\widehat{\mathcal{X}}_{S_1,\mathbf{G},\mathbf{X}}$ and $\widehat{\mathcal{X}}_{S_2,\mathbf{G},\mathbf{X}}$ have the same E-polynomial¹.

We will now apply Theorem 5.4 for the case of \mathbf{GL}_n acting on its flag variety \mathbf{Fl}_n . Recall that, if $\lambda = (\lambda_1, \ldots, \lambda_m)$ is a partition of n and λ^* is the conjugate partition, then

$$h_{\lambda}(i,j) = \lambda_i - j + \lambda_j^* - i + 1$$

is the length of the hook in the Young diagram corresponding to λ passing through the box (i, j). We prove the following:

Theorem 5.9.

•

$$vol\left(\mathcal{X}_{S,\mathbf{GL}_{n},\mathbf{Fl}_{n}}(\mathbb{F}_{q})\right) = (n!)^{\#\overline{S}\smallsetminus S} \sum_{\lambda \text{ is a partition of } n} q^{\sum_{k}(k-1)\lambda_{k}\chi(S)} \prod_{i,j:j\leq\lambda_{i}} \frac{(q^{h_{\lambda}(i,j)}-1)^{-\chi(S)}}{h_{\lambda}(i,j)^{\#\overline{S}\smallsetminus S}}$$

¹For the definition of the E-polynomial see e.g. [Kat08]

• The *E* polynomial of $\widehat{\mathcal{X}}_{S,\mathbf{GL}_n,\mathbf{Fl}_n}$ is

$$(n!)^{\#\overline{S}\smallsetminus S} \prod_{k=1}^{n} (x^{n}y^{n} - x^{k}y^{k}) \sum_{\lambda} (xy)^{\sum_{k} (k-1)\lambda_{k}\chi(S)} \prod_{i,j:j\leq\lambda_{i}} \frac{((xy)^{h_{\lambda}(i,j)} - 1)^{-\chi(S)}}{h_{\lambda}(i,j)^{\#\overline{S}\smallsetminus S}}.$$

For the proof, we collect the following facts:

Proposition 5.10 ([Jam84]). For every partition λ of n, there exists a unique irreducible representation R_{λ} of $\mathbf{GL}_{n}(\mathbb{F}_{q})$ satisfying:

- R_{λ} appears in the permutation representation $\mathbb{C}[\mathbf{GL}_n(\mathbb{F}_q)/\mathbf{P}_{\lambda}(\mathbb{F}_q)]$, where \mathbf{P}_{λ} is the standard parabolic corresponding to λ (see [Jam84, Chapter 11]).
- R_{λ} does not appear in the permutation representation $\mathbb{C}[\mathbf{GL}_n(\mathbb{F}_q)/\mathbf{P}_{\mu}(\mathbb{F}_q)]$, for $\mu < \lambda$ (see [Jam84, Chapter 15]).
- •

$$\dim R_{\lambda} = q^{\sum_{k}(k-1)\lambda_{k}} \frac{\# \operatorname{GL}_{n}(\mathbb{F}_{q})}{\prod_{i,j:j \leq \lambda_{i}} (q^{h_{\lambda}(i,j)} - 1)}$$

(see [Jam84, Page 2]).

Let $\mathbf{B} \subset \mathbf{GL}_n$ be the standard Borel. Taking $T_{\lambda} = R_{\lambda}^{\mathbf{B}(\mathbb{F}_q)}$, we get

Corollary 5.11. For every partition λ of n, we have

- T_{λ} appears in the representation $\mathbb{C}[\mathbf{GL}_n(\mathbb{F}_q)/\mathbf{P}_{\lambda}(\mathbb{F}_q)]^{\mathbf{B}(\mathbb{F}_q)}$.
- T_{λ} does not appear in the representation $\mathbb{C}[\mathbf{GL}_n(\mathbb{F}_q)/\mathbf{P}_{\mu}(\mathbb{F}_q)]^{\mathbf{B}(\mathbb{F}_q)}$, for $\mu < \lambda$.

The following is classical:

Proposition 5.12. For every partition λ of n, there exists a unique irreducible representation π_{λ} of S_n satisfying:

- π_{λ} appears in the permutation representation $\mathbb{C}[S_n/S_{\lambda}]$, where $S_{(\lambda_1,\ldots,\lambda_m)} = S_{\lambda_1} \times \cdots \times S_{\lambda_m} \subset S_n$.
- π_{λ} does not appear in the permutation representation $\mathbb{C}[S_n/S_{\mu}]$, for $\mu < \lambda$.
- dim $\pi_{\lambda} = \frac{n!}{\prod_{i,j:i \le \lambda_j} h_{\lambda}(i,j)}$.

Proof of Theorem 5.9. Since dimHom $(R_{\lambda}, \mathbb{C}[\mathbf{Fl}_n]) = \dim T_{\lambda}$, it is enough to show that $\dim T_{\lambda} = \dim \pi_{\lambda}$, for every λ . Recall that the Hecke algebra $H^{S_n}(t)$ corresponding to the Coxeter group S_n is a (polynomial) one parameter family of algebras whose underlying vector space is $\mathbb{C}[S_n]$; we denote the product in $H^{S_n}(t)$ by $*_t$. Recall that the product $*_1$ is the convolution on $\mathbb{C}[S_n]$ and that, if t is a prime power, then the product $*_t$ corresponds to the convolution in $\mathbb{C}[\mathbf{B}(\mathbb{F}_t) \setminus \mathbf{GL}_n(\mathbb{F}_t) / \mathbf{B}(\mathbb{F}_t)]$ under the identification $\mathbb{C}[\mathbf{B}(\mathbb{F}_t) \setminus \mathbf{GL}_n(\mathbb{F}_t) / \mathbf{B}(\mathbb{F}_t)] \cong \mathbb{C}[S_n]$ given by the Bruhat decomposition. Let $M_{\lambda}(t) \subset H^{S_n}(t)$ be the subspace of S_{λ} -(right)-invariant elements of $\mathbb{C}[S_n]$. For every prime power t, $M_{\lambda}(t)$ is an ideal, and, hence, the same is true for every t. Using the interpolation of the natural inner product, we get that, for $t \in \mathbb{R}_{\geq 1}$, the algebra $H^{S_n}(t)$ is semisimple, and, hence, there is an (analytic) trivialization of $H^{S_n}(t)$ over $\mathbb{R}_{\geq 1}$. Since there are only finitely many isomorphism types of representations of a given dimension, we get that $M_{\lambda}(t)$ can also be trivialized over $\mathbb{R}_{>1}$. Corollary 5.11 and Proposition 5.12 imply that, under the algebra isomorphism $\mathbb{C}[S_n] \to \mathbb{C}[\mathbf{B}(\mathbb{F}_q) \setminus \mathbf{GL}_n(\mathbb{F}_q) / \mathbf{B}(\mathbb{F}_q)]$, the modules T_{λ} and π_{λ} are isomorphic, and hence have the same dimension.

6 Proof of Theorem 3.1

The case k = 0, m = 1 of theorem 3.1 is easy:

Lemma 6.1. Let G be a finite group acting on a finite set X. Then:

$$\sum_{\pi \in \operatorname{Irr} G} \dim(\operatorname{Hom}_G(\pi, \mathbb{C}[X])) \cdot \chi_{\pi}(g) = \chi_{\mathbb{C}[X]}(g) = \# X^g.$$
(1)

In order to deduce the general case we need a basic fact about convolution of characters. Recall that for two functions $f, g \in \mathbb{C}[G]$, the convolution is defined by

$$(f * g)(h) = \sum_{u \in G} f(u)g(u^{-1}h).$$

Lemma 6.2. For any $\pi, \tau \in \operatorname{Irr} G$ we have:

$$\chi_{\pi} * \chi_{\tau} = \frac{\delta_{\pi,\tau} \# G}{\dim(\pi)} \chi_{\pi}.$$

Now we ready to prove the main theorem.

Proof of theorem 3.1. Applying Lemma 6.2, the assertion follows by convolving (1) with itself m times and with the formula in Theorem 1.2.

7 Acknowledgments

We thank Inna Entova Aizenbud for a helpful conversation. A.A. was partially supported by ISF grant 687/13 and a Minerva foundation grant. N.A. was partially supported by NSF grant DMS-1303205. A.A. and N.A. were partially supported by BSF grant 2012247. N.A. thanks the Weizmann Institute for hospitality.

A An alternative proof of the Frobenus formula

Lemma 6.1 gives an alternative proof of the Frobenius formula (Theorem 1.1).

Let G be a finite group acting on a finite set X. For a representation π of G, define a function on $X \times X$ by

$$\chi_{\pi}^{X}(x,y) = \frac{1}{\#G} \sum_{h : hx=y} \chi_{\pi}(h).$$
(2)

Lemma A.1. Consider the 2-sided action of $G \times G$ on G. Let π be a representation of G. Then

$$\chi^G_{\pi\otimes\pi^*}(1,g) = \frac{1}{\#G\mathrm{dim}\pi}\chi_{\pi}(g).$$

Proof.

$$\chi_{\pi\otimes\pi^*}^G(1,g) = \frac{1}{\#G} \sum_{h_1,h_2:\ h_1h_2^{-1} = g} \chi_{\pi}(h_1)\chi_{\pi}(h_1^{-1}) = \frac{(\chi_{\pi}*\chi_{\pi})(g)}{\#G} = \frac{1}{\#G\mathrm{dim}\pi}\chi_{\pi}(g),$$

where the last equality is by Lemma 6.2

Proof of Theorem 1.1. the case k = 1 follows from the Lemma 6.1 and lemma A.1. The general case follows by taking convolution power of the case k = 1 and using Lemma 6.2.

B The spherical character

The relative counterpart of the notion of the character of a representation is given in the following definition:

Definition B.1. Let G be a finite group acting on a finite set X. Let π be a representation of G.

1. Let $\phi : \pi \to \mathbb{C}[X]$ and $\psi : \pi^* \to \mathbb{C}[X]$ be morphisms of representations. Denote by ϕ^t and ψ^t the dual maps. We define the spherical character $\chi_{\pi}^{\phi \otimes \psi} \in \mathbb{C}[X \times X]$ by

$$\chi_{\pi}^{\phi \otimes \psi}(x,y) = \langle \phi^t(\delta_x), \psi^t(\delta_y) \rangle,$$

where $\delta_x \in \mathbb{C}[X] = \mathbb{C}[X]^*$ is the Kronecker delta function supported at x.

2. This definition extends (by linearity) to the case when $\phi \otimes \psi$ is replaced by any element of $Hom(\pi, \mathbb{C}[X]) \otimes Hom(\pi^*, \mathbb{C}[X]) = End(Hom(\pi, \mathbb{C}[X])).$

Lemma B.2.

$$\chi_{\pi}^{X} := \chi_{\pi}^{Id_{Hom(\pi,\mathbb{C}[X])}}.$$

Proof. For $x \in X$, let L^x_{π} : Hom_G $(\pi, \mathbb{C}[X]) \to \pi^*$ be the linear map defined by

$$\phi \in \operatorname{Hom}_G(\pi, \mathbb{C}[X]) \mapsto (u \in \pi \mapsto \phi(u)(x)).$$

Note that $\operatorname{Hom}_G(\pi, \mathbb{C}[X])$, $\operatorname{Hom}_G(\pi^*, \mathbb{C}[X])$ are naturally dual to each other by the pairing

$$\langle \phi, \psi \rangle := \sum_{x \in X} \langle L^x_{\pi} \phi, L^x_{\pi^*} \psi \rangle \qquad (\phi \in \operatorname{Hom}_G(\pi, \mathbb{C}[X]); \ \psi \in \operatorname{Hom}_G(\pi^*, \mathbb{C}[X]))$$

therefore we shall identify $\operatorname{Hom}_G(\pi^*, \mathbb{C}[X])$ with $\operatorname{Hom}_G(\pi, \mathbb{C}[X])^*$.

Let $\phi \in \operatorname{Hom}_G(\pi, \mathbb{C}[X]), \psi \in \operatorname{Hom}_G(\pi^*, \mathbb{C}[X])$. Then by definition,

$$\chi_{\pi}^{\phi\otimes\psi}(x,y) = \langle \phi^t(\delta_x), \psi^t(\delta_y) \rangle = \langle L_{\pi}^x \phi, L_{\pi^*}^y \psi \rangle = \langle (L_{\pi^*}^y)^t L_{\pi}^x \phi, \psi \rangle,$$

so $\chi_{\pi}^{Id_{Hom(\pi,\mathbb{C}[X])}}(x,y) = \operatorname{tr}\left(\left(L_{\pi^*}^y\right)^t L_{\pi}^x\right).$

It is easy to see that $(L^x_\pi)^t : \pi \to \operatorname{Hom}_G(\pi^*, \mathbb{C}[X])$ can be computed by

$$\forall u \in \pi, f \in \pi^* : \left(\left(L_{\pi}^x \right)^t u \right) (f) = \frac{1}{\#G} \sum_{h \in G} f(\pi(h)u) \,\delta_{hx}$$

Now, $\chi_{\pi}^{Id_{Hom(\pi,\mathbb{C}[X])}} = \operatorname{tr}\left((L_{\pi^*}^y)^t L_{\pi}^x\right) = \operatorname{tr}\left(L_{\pi}^x \left(L_{\pi^*}^y\right)^t\right)$. Note that $L_{\pi}^x \left(L_{\pi^*}^y\right)^t$ is the linear mapping $\pi^* \to \pi^*$ defined by

$$\forall f \in \pi^* : \left(L^x_{\pi} \left(L^y_{\pi^*} \right)^t \right) f = \left(u \in \pi \mapsto \frac{1}{\#G} \sum_{h \in G} \langle u, (\pi^*(h)f) \rangle \delta_{hy,x} \right) = \frac{1}{\#G} \sum_{h \text{ s.t. } hy = x} \pi^*(h) f$$

 \mathbf{SO}

$$\chi_{\pi}^{Id_{Hom(\pi,\mathbb{C}[X])}} = \operatorname{tr}\left(L_{\pi}^{x}\left(L_{\pi^{*}}^{y}\right)^{t}\right) = \frac{1}{\#G}\sum_{h \text{ s.t. } hy=x}\chi_{\pi^{*}}(h) = \frac{1}{\#G}\sum_{h \text{ s.t. } hx=y}\chi_{\pi}(h) = \chi_{\pi}^{X}(x,y)$$

1			
- 1			
1			
- 6			

We reformulate Theorem 3.1 in terms of the spherical character:

Theorem B.3. Let G be a finite group that acts on a finite set X. Then:

$$\sum_{\pi \in \operatorname{Irr} G} \frac{\dim(\operatorname{Hom}_G(\pi, \mathbb{C}[X]))^m}{\dim \pi^{m+2k-1}} \chi_{\pi}^X(x_1, x_2) = \frac{1}{\#G^{m+2k}} \cdot \\ \#\{p_1, \dots, p_m \in X, h_1, \dots, h_m, a_1, \dots, a_k, b_1, \dots, b_k \in G | h_i \in G_{p_i}, \prod_{i=1}^m h_i \cdot \prod_{i=1}^k [a_i, b_i] \cdot x_1 = x_2\}.$$

References

•

- [AA] Aizenbud, A.; Avni, N.; Representation growth and rational singularities of the moduli space of local systems. Arxiv 1307.0371, to appear in Inventiones Mathematicae.
- [FG06] V. Fock, A. Goncharov, Moduli spaces of local systems and higher Teichmuller theory. Publications Mathematiques de l'Institut des Hautes Etudes Scientifiques 103/1, (2006).
- [HR08] T. Hausel, F. Rodriguez-Villegas, *Mixed Hodge polynomials of character varieties*. Invent. Math. 174/3, (2008).
- [Jam84] G.D. James, *Representations of general linear groups*, London Math. Soc. Lec. Notes Series, 94 (1984).
- [Kat08] N. Katz, Appendix of [HR08]: E-polynomials, zeta-equivalence, and polynomial-count varieties. Invent. Math. 174/3, (2008).
- [Wit91] Witten, Edward On quantum gauge theories in two dimensions. Comm. Math. Phys. 141 (1991), no. 1, 153–209.