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Let us start with the following motivating example. Consider the circle S1, let N ⊂ S1 be the north
pole and denote U := S1 \ N . Note that U is diffeomorphic to R via the stereographic projection.
Consider the space D(S1) of distributions on S1, that is the space of continuous linear functionals on the
Fréchet space C∞(S1). Consider the subspace DS1(N) ⊂ D(S1) consisting of all distributions supported
at N . Then the quotient D(S1)/DS1(N) will not be the space of distributions on U . However, it will
be the space S∗(U) of Schwartz distributions on U , that is continuous functionals on the Fréchet space
S(U) of Schwartz functions on U . In this case, S(U) can be identified with S(R) via the stereographic
projection.

The space of Schwartz functions on R is defined to be the space of all infinitely differentiable functions
that rapidly decay at infinity together with all their derivatives, i.e. xnf (k) is bounded for any n, k.

In this talk we extend the notions of Schwartz functions and Schwartz distributions to a larger geometric
realm.

As we can see, the definition is of algebraic nature. Hence it would not be reasonable to try to extend
it to arbitrary smooth manifolds. However, it is reasonable to extend this notion to smooth algebraic
varieties. Unfortunately, sometimes this is not enough. For example, a connected component of real
algebraic variety is not always an algebraic variety. By this reason we extend this notion to smooth
semi-algebraic manifolds. They are called Nash manifolds.

For any Nash manifold M , we will define the spaces G(M), T (M) and S(M) of generalized Schwartz
functions1, tempered functions and Schwartz functions on M . Informally, T (M) is the ring of
functions that have no more than polynomial growth together with all their derivatives, G(M) is the
space of generalized functions with no more than polynomial growth and S(M) is the space of functions
that decay together with all their derivatives faster than any inverse power of a polynomial.

As in the classical case, in order to define generalized Schwartz functions, we have to define Schwartz
functions first. Both G(M) and S(M) are modules over T (M).

The triple S(M), T (M), G(M) is analogous to C∞c (M), C∞(M) and C−∞(M) but it has additional
nice properties as we will see later.

We will show that for M = Rn, S(M) is the space of classical Schwartz functions and G(M) is the space
of classical generalized Schwartz functions. For compact Nash manifold M , S(M) = T (M) = C∞(M).

Main results.

Result 1. Let M be a Nash manifold and Z ⊂ M be a closed Nash submanifold. Then the restriction
maps T (M)→ T (Z) and S(M)→ S(Z) are onto.

Result 2. Let M be a Nash manifold and U ⊂ M be a semi-algebraic open subset. Then a Schwartz
function on U is the same as a Schwartz function on M which vanishes with all its derivatives on M \U .

This theorem tells us that extension by zero S(U)→ S(M) is a closed imbedding, and hence restriction
morphism G(M)→ G(U) is onto.

1Here we distinguish between the (similar) notions of a generalized function and a distribution. They can be identified
by choosing a measure. Without fixing a measure, a smooth function defines a generalized function but not a distribution.
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Classical generalized functions do not have this property. This was our main motivation for extending
the definition of Schwartz functions.

Schwartz sections of Nash bundles. Similar notions will be defined for Nash bundles, i.e. smooth
semi-algebraic bundles.

For any Nash bundle E over M we will define the spaces G(M,E), T (M,E) and S(M,E) of generalized
Schwartz, tempered and Schwartz sections of E.

As in the classical case, a generalized Schwartz function is not exactly a functional on the space
of Schwartz functions, but a functional on Schwartz densities, i.e. Schwartz sections of the bundle of
densities.

Therefore, we will define generalized Schwartz sections by G(M,E) = (S(M, Ẽ))∗, where Ẽ = E∗⊗DM

and DM is the bundle of densities on M.
Let Z ⊂ M be a closed Nash submanifold, and U = M \ Z. Result 2 tells us that the quotient space

of G(M) by the subspace G(M)Z of generalized Schwartz functions supported in Z is G(U). Hence it
is useful to study the space G(M)Z . As in the classical case, G(M)Z has a filtration by the degree of
transversal derivatives of delta functions. The quotients of the filtration are generalized Schwartz sections
over Z of symmetric powers of normal bundle to Z in M , after a twist.

This result can be extended to generalized Schwartz sections of arbitrary Nash bundles.

Restricted topology and sheaf properties. Similarly to algebraic geometry, the reasonable topology
on Nash manifolds to consider is a topology in which open sets are open semi-algebraic sets. Unfortunately,
it is not a topology in the usual sense of the word, it is only what is called restricted topology. This
means that the union of an infinite number of open sets does not have to be open. The only open covers
considered in the restricted topology are finite open covers.

The restriction of a generalized Schwartz function (respectively of a tempered function) to an open
subset is again a generalized Schwartz (respectively a tempered function). This means that they form
pre-sheaves. We will show that they are actually sheaves, which means that for any finite open cover

M =
n⋃

i=1

Ui, a function α on M is tempered if and only if α|Ui
is tempered for all i. It is of course not

true for infinite covers. We denote the sheaf of generalized Schwartz functions by GM and of the sheaf of
tempered functions by TM . By result 2, GM is a flabby sheaf.

Similarly, for any Nash bundle E over M we will define the sheaf T E
M of tempered sections and the

sheaf GE
M of generalized Schwartz sections.

As we have mentioned before, Schwartz functions behave similarly to compactly supported smooth
functions. In particular, they cannot be restricted to an open subset, but can be extended by zero from
an open subset. This means that they do not form a sheaf, but an object dual to a sheaf, a so-called
cosheaf. We denote the cosheaf of Schwartz functions by SM . We will prove that SM is actually a cosheaf
and not just pre-cosheaf by proving a Schwartz version of the partition of unity theorem. Similarly, for
any Nash bundle E over M we will define the cosheaf SE

M of Schwartz sections.

Possible applications. Schwartz functions are used in the representation theory of algebraic groups.
Our definition coincides with Casselman’s definition (cf. [Cas1]) for algebraic groups. Our paper allows
to use Schwartz functions in more situations in the representation theory of algebraic groups, since an
orbit of an algebraic action is a Nash manifold, but does not have to be an algebraic group or even an
algebraic variety.

Generalized Schwartz sections can be used for “devisage”. We mean the following. Let U ⊂M be an
open (semi-algebraic) subset. Instead of dealing with generalized Schwartz sections of a bundle on M ,
we can deal with generalized Schwartz sections of its restriction to U and generalized Schwartz sections
of some other bundles on M \ U .

For example if we are given an action of an algebraic group G on an algebraic variety M , and a
G-equivariant bundle E over M , then devisage to orbits helps us to investigate the space of G-invariant
generalized sections of E.
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Summary. To sum up, for any Nash manifold M we define a sheaf TM of algebras on M (in the restricted
topology) consisting of tempered functions, a sheaf GM of modules over TM consisting of generalized
Schwartz functions, and a cosheaf SM of modules over TM consisting of Schwartz functions.

Moreover, for any Nash bundle E over M we define sheaves T E
M and GE

M of modules over TM consisting
of tempered and generalized Schwartz sections of E respectively and a cosheaf SE

M of modules over TM

consisting of Schwartz sections of E.
Let us list the main properties of these objects that we will prove in this paper:

1. Compatibility: For open semi-algebraic subset U ⊂M , SE
M |U = SE|U

U , T E
M |U = T E|U

U , GE
M |U = GE|U

U .

2. S(Rn) = Classical Schwartz functions on Rn.

3. For compact M , S(M,E) = T (M,E) = C∞(M,E).

4. GE
M = (S eE

M )∗ , where Ẽ = E∗ ⊗DM and DM is the bundle of densities on M.

5. Let Z ⊂ M be a closed Nash submanifold. Then the restriction maps S(M,E) onto S(Z,E|Z) and
T (M,E) onto T (Z,E|Z).

6. Let U ⊂M be a semi-algebraic open subset, then

SE
M (U) ∼= {φ ∈ S(M,E)| φ is 0 on M \ U with all derivatives}.

7. Let Z ⊂ M be a closed Nash submanifold. Consider G(M,E)Z = {ξ ∈ G(M,E)|ξ is sup-
ported in Z}. It has a canonical filtration such that its factors are canonically isomorphic to
G(Z,E|Z ⊗ Si(NM

Z )⊗D∗M |Z ⊗DZ) where NM
Z is the normal bundle of Z in M and Si means i-th sym-

metric power.

Remarks.

Remark 0.0.1. Harish-Chandra has defined a Schwartz space for every reductive Lie group. However,
Harish-Chandra’s Schwartz space does not coincide with the space of Schwartz functions that we define
in this paper even for the algebraic group R×.

Remark 0.0.2. There is a different approach to the concept of Schwartz functions. Namely, if M is
embedded as an open subset in a compact manifold K then one can define the space of Schwartz functions
on M to be the space of all smooth functions on K that vanish outside M together with all their derivatives.
This approach is implemented in [CHM], [KS], [Mor] and [Pre]. In general, this definition depends on the
embedding into K. Our results show that for Nash manifolds M and K it coincides with our definition
and hence does not depend on the embedding.

Remark 0.0.3. After the completion of this project we found out that many of the properties of Schwartz
functions on affine Nash manifolds have been obtained already in [dCl].

An application to representation theory. Using the theory of Schwartz functions we showed the
following theorem:

Theorem 0.0.4. Let F be either the field of real or complex numbers and consider the standard imbedding
GLn(F ) ↪→ GLn+1(F ). We consider the two-sided action of GLn(F )×GLn(F ) on GLn+1(F ) defined by
(g1, g2)h := g1hg

−1
2 . Then any GLn(F )×GLn(F ) invariant distribution on GLn+1(F ) is invariant with

respect to transposition.

This theorem has the following corollary in representation theory.

Theorem 0.0.5. . Let (π,E) be an irreducible admissible continuous representation of GLn+1(F ) on a
Hilbert space E. Then

(1) dimHomGLn(F )(E∞,C) ≤ 1

Clearly, the last theorem implies in particular that (1) holds for unitary irreducible representations of
GLn+1(F ). That is, the pair (GLn+1(F ),GLn(F )) is a generalized Gelfand pair in the sense of [vD].
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