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Abstract. We establish the existence of a transfer, which is compatible with Kloosterman integrals,
between Schwartz functions on GLn(R) and Schwartz functions on the variety of non-degenerate Her-
mitian forms. Namely, we consider an integral of a Schwartz function on GLn(R) along the orbits of
the two sided action of the groups of upper and lower unipotent matrices twisted by a non-degenerate

character. This gives a smooth function on the torus. We prove that the space of all functions obtained
in such a way coincides with the space that is constructed analogously when GLn(R) is replaced with
the variety of non-degenerate hermitian forms. We also obtain similar results for gln(R).

The non-Archimedean case is done in [Jac03a] and our proof is based on the ideas of this work.
However we have to face additional difficulties that appear only in the Archimedean case.
Those results are crucial for the comparison of the Kuznetsov trace formula and the relative trace

formula of GLn with respect to the maximal unipotent subgroup and the unitary group, as done in

[Jac05b] and [FLO].
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1. Introduction

Let Nn be the subgroup of upper triangular matrices in GLn with unit diagonal, and let An be the
group of invertible diagonal matrices. We define a character θ : Nn(R) → C× by

θ(u) = exp(i
n−1∑
k=1

uk,k+1).

Let S(GLn(R)) be the space of Schwartz functions on GLn(R). We define a map Ω : S(GLn(R)) →
C∞(An) by

Ω(Φ)(a) :=

∫
(u1,u2)∈Nn(R)×Nn(R)

Φ(ut1au2)θ(u1u2)du1du2.

Similarly, we let Sn(C) be the space of non-degenerate Hermitian matrices n × n . We define a map
Ω : S(Sn(C)) → C∞(An) by

Ω(Ψ)(a) :=

∫
u∈Nn(C)

Ψ(utau)θ(uu)du.

We say that Φ ∈ S(GLn(R)) matches Ψ ∈ S(Sn(C)) if for every a ∈ An(F ) , we have

Ω(Φ)(a) = γ(a)Ω(Ψ)(a),

where

γ(a) := sign(a1)sign(a1a2)...sign(a1a2, ..., an−1) for a = diag(a1, a2, ..., an).

The main theorem of this paper is

Theorem A. For every Φ ∈ S(GLn(R)) there is a matching Ψ ∈ S(Sn(C)), and conversely.

We also prove a similar theorem for gln.
We also consider non-regular orbital integrals and prove that if two functions match then their non-

regular orbital integrals are also equal (up to a suitable transfer factor). This implies in particular that
regular orbital integrals are dense in all orbital integrals.

1.1. Motivation and related works. The motivation for this paper comes from the relative trace
formula, and its use for comparison of representation theories of different groups. For a background on
the relevant relative trace formula and its connection with the problems studied in this paper we refer
the reader to [Jac05b, FLO].

Now we will give a brief description of this connection.
The study of Ad(G)-invariant distributions on a groupG is closely related to the study of representation

theory of G. One can replace the study of Ad(G)-invariant distributions on G by the study of Ad(G)-
orbital integrals. Similarly, the study of two-sided H1 × H2-orbital integrals on G is closely related to
harmonic analysis on G/H1 and on G/H2. Here, H1,H2 < G are subgroups. Those relations become
efficient in view of the trace formula and the relative trace formula.

Therefore in order to compare the harmonic analysis on G/H1 and G/H2 to harmonic analysis on
G′/H ′1 and G′/H ′2 using the relative trace formula one has to compare the orbital integrals. Here,
H ′1,H

′
2 < G′ is another triple of groups which is believed to be connected to H1,H2 < G.

The present work is relevant to the comparison of the triple GLn(F ), N
n(F ), Nn(F ) and the triple

GLn(E), Nn(E), U(E), where E is a quadratic extension of F and U denotes the unitary group. Since
one has to use the adelic trace formula in order to efficiently relate orbital integrals to harmonic analysis,
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one has to use the corresponding fundamental lemma, conjectured in [JY90] and proven in [Ngo97, Ngo99,
Jac04].

Also, in order to turn the local comparison into an adelic comparison one needs the local comparison
over both Archimedean and non-Archimedean local fields. In this paper we consider only the Archimedean
case. The non-Archimedean counterpart of this paper is done in [Jac03a, Jac03b] and our proof is based
on the ideas of these works. However we have to face additional difficulties that appear only in the
Archimedean case.

In the case of GL(2,R), Theorem A was proven in [Jac05a], using different methods.

1.2. A sketch of the proof.
First we show that the theorem for gln implies the theorem for GLn. Then we prove the theorem

for gln by induction. We construct certain open sets Oi ⊂ gln(R) (for their definition see §§3.1) and
use the intermediate Kloosterman integrals in order to describe Ω(S(Oi)) in terms of Ω(S(GLi(R)))
and Ω(S(gln−i(R))). This gives a smooth matching for S(Oi) by the induction hypothesis. We denote
U :=

∪
Oi and Z := gln(R)− U and obtain by partition of unity smooth matching for S(U).

Then we use an important fact. Namely, if Φ matches Ψ then the Fourier transform of Φ matches the
Fourier transform of Ψ multiplied by a constant. This is proven in [Jac03a] in the non-Archimedean case
and the same proof holds in the Archimedean case. The proof of this fact is based on an explicit formula
for the Kloosterman integral of the Fourier transform of Φ in terms of the Kloosterman integral of Φ (see
Theorem 3.2.6). We call the right hand side of this formula the Jacquet transform of Ω(Φ).

In order to complete the proof of the main theorem we prove the following Key Lemma.

Lemma B. Let Nn ×Nn act on gln by x 7→ ut1xu2. Let χ denote the character of Nn ×Nn defined by
χ(u1, u2) = θ(u1u2).

Then any function in S(gln(R)) can be written as a sum f + g + h s.t. f is a Schwartz function
on U , the Fourier transform of g is a Schwartz function on U and h is a function that annihilates any
(Nn ×Nn, χ)− equivariant distribution on gln(R) and in particular Ω(h) = 0.

Remark C. Our proof of the main theorem gives a recursive description of the space Ω(S(gln(R))).
Namely we prove that this space is the sum of the space Ω(S(U)) and its Jacquet transform. The space
Ω(S(U)) is the sum of the spaces Ω(Oi) and those spaces can be described in terms of Ω(S(gli(R))) and
Ω(S(gln−i(R))).

1.3. The spaces of functions considered.
Since the proof relies on Fourier transform, in the Archimedean case it would not be appropriate to

consider the space of smooth compactly supported functions. Therefore we had to work with Schwartz
functions. Theories of Schwartz functions were developed by various authors in various generalities. We
chose for this problem the version developed in [AG08, AG10] in the generality of Nash (i.e. smooth
semi-algebraic) manifolds. In Appendices A and B of the present paper we develop further the tools for
working with Schwartz functions from [AG08, AG10] and [AG09, Appendix B], for the purposes of this
paper.

1.4. Difficulties that we encounter in the Archimedean case.
Roughly speaking, most of the additional difficulties in the Archimedean case come from the fact

that the space of Schwartz functions in the Archimedean case is a topological vector space unlike the
space of Schwartz functions in the non-Archimedean case which is just a vector space. Part of those
difficulties are technical and can be overcome using the theory of nuclear Fréchet spaces. However there
are more essential difficulties in the Key Lemma. Namely, in the non-Archimedean case the Key lemma
is equivalent to the following one

Lemma D. Any (Nn ×Nn, χ)-equivariant distribution on gln(R) supported on Z, whose Fourier trans-
form is also supported on Z, vanishes.

Note that even this lemma is harder in the Archimedean since we have to deal with transversal deriva-
tives. However, this difficulty is overcome using the fact that the transversal derivatives are controlled
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by the action of stabilizer of a point on the normal space to its orbit. This actio is rather simple since it
is an algebraic action of a unipotent group.

The main difficulty, though, is that in the Archimedean case Lemma D in not equivalent to Lemma B
but only to the following weak version of it

Lemma E. Any function in S(gln(R)) can be approximated by a sum f + g + h s.t. f is a Schwartz
function on U , the Fourier transform of g is a Schwartz function on U and h is a function that annihilates
any (Nn ×Nn, χ)− equivariant distribution on gln(R) and in particular Ω(f) = 0.

We believe that the reason that the Key Lemma holds is a part of a general phenomenon. To describe
this phenomenon note that a statement concerning equivariant distributions can be reformulated to a
statement concerning closure of subspaces of Schwartz functions. The phenomenon is that in many cases
this statement holds without the need to consider the closure. We discuss two manifestations of this
phenomenon in §§§2.2.2 and 2.2.3, and prove them in appendices B and A.2. The proofs there remind in
their spirit the proof of the classical Borel Lemma.

1.5. Contents of the paper.
In §2 we fix notational conventions and list the basic facts on Schwartz functions and nuclear Fréchet

spaces that we will use.
In §3 we prove the main result. In §§3.1 we introduce the notation that we will use to discuss our

problem, and reformulate the main result in this notation. In §§3.2 we introduce the main ingredients
of the proof: description of Ω(S(Oi)) using intermediate Kloosterman integrals, inversion formula that
connects Fourier transform to Kloosterman integrals, and the Key lemma. In §§3.3 we deduce the main
result, Theorem A, from the main ingredients.

In §4 we prove the inversion formula.
In §5 we prove the Key lemma.
In §6 we consider non-regular orbital integrals, define matching for them and prove that if two functions

match then their non-regular orbital integrals also match.
In appendices A and B we give some complementary facts about Nash manifolds and Schwartz functions

on them and prove an analog of Dixmier - Malliavin Theorem and prove dual versions of special cases of
uncertainty principle and localization principle. Those versions are two manifestations of the phenomenon
described above.

1.6. Acknowledgments.
We would like to thank Erez Lapid for posing this problem to us and for discussing it with us.
We thank Joseph Bernstein and Gadi Kozma for fruitful discussions.
We thank Herve Jacquet for encouraging us and for his useful remarks, and Gerard Schiffmann

for sending us the paper [KV96].
Both authors were partially supported by a BSF grant, a GIF grant, and an ISF Center of excellency

grant. A.A was also supported by ISF grant No. 583/09 and D.G. by NSF grant DMS-0635607. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

Part of the work on this paper was done while the authors stayed at the Max-Planck-Institut fur
Mathematik in Bonn.

2. Preliminaries

2.1. General notation.

• All the algebraic varieties and algebraic groups we consider in this paper are real.
• For a group G acting on a set X and a point x ∈ X we denote by Gx or by G(x) the orbit of x,
by Gx the stabilizer of x and by XG the set of G-fixed points in X.

• For Lie groups G or H we will usually denote their Lie algebras by g and h.
• An action of a Lie algebra g on a (smooth, algebraic, etc) manifold M is a Lie algebra homomor-
phism from g to the Lie algebra of vector fields on M . Note that an action of a (Lie, algebraic,
etc) group on M defines an action of its Lie algebra on M .
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• For a Lie algebra g acting on M , an element α ∈ g and a point x ∈M we denote by α(x) ∈ TxM
the value at point x of the vector field corresponding to α. We denote by gx ⊂ TxM or by g(x)
the image of the map α 7→ α(x) and by gx ⊂ g its kernel.

• For a Lie algebra (or an associative algebra) g acting on a vector space V and a subspace L ⊂ V ,
we denote by gL ⊂ V the image of the action map g⊗ L→ V .

• For a representation V of a Lie algebra g we denote by V g the space of g-invariants and by
Vg := V/gV the space of g-coinvariants.

• For manifolds L ⊂M we denote by NM
L := (TM |L)/TL the normal bundle to L in M .

• Denote by CNM
L := (NM

L )∗ the conormal bundle.
• For a point y ∈ L we denote by NM

L,y the normal space to L in M at the point y and by CNM
L,y

the conormal space.
• By bundle we always mean a vector bundle.
• For a manifold M we denote by C∞(M) the space of infinitely differentiable functions on M ,
equipped with the standard topology.

2.2. Schwartz functions on Nash manifolds.
We will require a theory of Schwartz functions on Nash manifolds as developed e.g. in [AG08]. Nash

manifolds are smooth semi-algebraic manifolds but in the present work, except of Appendix A, only
smooth real algebraic manifolds are considered. Therefore the reader can safely replace the word Nash
by smooth real algebraic in the body of the paper.

Schwartz functions are functions that decay, together with all their derivatives, faster than any poly-
nomial. On Rn it is the usual notion of Schwartz function. For precise definitions of those notions we
refer the reader to [AG08]. We will use the following notations.

Notation 2.2.1. Let X be a Nash manifold. Denote by S(X) the Fréchet space of Schwartz functions
on X.

We will need several properties of Schwartz functions from [AG08].

Property 2.2.2 ([AG08], Theorem 4.1.3). S(Rn) = Classical Schwartz functions on Rn.

Property 2.2.3 ([AG08], Theorem 5.4.3). Let U ⊂M be an open Nash submanifold, then

S(U) ∼= {ϕ ∈ S(M)| ϕ is 0 on M \ U with all derivatives}.

In this paper we will consider S(U) as a subspace of S(X).

Property 2.2.4 (see [AG08], §5). Let M be a Nash manifold. Let M =
∪n
i=1 Ui be a finite cover of

M by open Nash submanifolds. Then a function f on M is a Schwartz function if and only if it can be

written as f =
n∑
i=1

fi where fi ∈ S(Ui) (extended by zero to M).

Moreover, there exists a smooth partition of unity 1 =
n∑
i=1

λi such that for any Schwartz function

f ∈ S(M) the function λif is a Schwartz function on Ui (extended by zero to M).

Property 2.2.5 (see [AG08], §5). Let Z ⊂ M be a Nash closed submanifold. Then restriction maps
S(M) onto S(Z).

Property 2.2.6 ([AG09], Theorem B.2.4). Let ϕ : M → N be a Nash submersion of Nash manifolds.
Let E be a Nash bundle over N . Fix Nash measures µ on M and ν on N .

Then
(i) there exists a unique continuous linear map ϕ∗ : S(M) → S(N) such that for any f ∈ S(N) and
g ∈ S(M) we have ∫

x∈N
f(x)ϕ∗g(x)dν =

∫
x∈M

(f(ϕ(x)))g(x)dµ.

In particular, we mean that both integrals converge.
(ii) If ϕ is surjective then ϕ∗ is surjective.
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In fact

ϕ∗g(x) =

∫
z∈ϕ−1(x)

g(z)dρ

for an appropriate measure ρ.

We will need the following analog of Dixmier - Malliavin theorem.

Property 2.2.7. Let ϕ : M → N be a Nash map of Nash manifolds. Then multiplication defines an
onto map S(M)⊗ S(N) � S(M).

For proof see Theorem A.1.1.
We will also need the following notion.

Notation 2.2.8. Let ϕ : M → N be a Nash map of Nash manifolds. We call a function f ∈ C∞(M)
Schwartz along the fibers of ϕ if for any Schwartz function g ∈ S(N), we have (g ◦ ϕ)f ∈ S(M).

We denote the space of such functions by Sϕ,N (M). If there is no ambiguity we will sometimes denote
it by Sϕ(M) or by SN (M). We define the topology on Sϕ(M) using the following system of semi-norms:
for any seminorms α on S(N) and β on S(M) we define

Nα
β(f) := sup

g∈S(N)|α(g)<1

β(f(g ◦ ϕ)).

We will use the following corollary of Property 2.2.6.

Corollary 2.2.9. Let ϕ : M → N be a Nash map and ψ : L → M be a Nash submersion. Fix Nash
measures on L and M . Then there is a natural continuous linear map ϕ∗ : SN (L) → SN (M).

Remark 2.2.10. Let ϕ : M → N be a Nash map of Nash manifolds. Let V ⊂ N be a dense open Nash
submanifold. Let U := ϕ−1(V ). Suppose that U is dense in M . Then we have embeddings

S(M) ↪→ Sϕ,N (M) ↪→ Sϕ,V (U).

In this paper we will view S(M) and Sϕ,N (M) as subspaces of Sϕ,V (U).

2.2.1. Fourier transform.

Notation 2.2.11. Let V be a finite dimensional real vector space. Let B be a non-degenerate bilinear
form on V and ψ be a non-trivial additive character of R. Then B and ψ define Fourier transform
with respect to the self-dual Haar measure on V . We denote it by FB,ψ : S(V ) → S(V ). If there is no
ambiguity, we will omit B and ψ. We will also denote by F∗B,ψ : S∗(V ) → S∗(V ) the dual map.

We will use the following trivial observation.

Lemma 2.2.12. Let V be a finite dimensional real vector space. Let a Nash group G act linearly on V .
Let B be a G-invariant non-degenerate symmetric bilinear form on V . Let ψ be a non-trivial additive
character of R. Then FB,ψ commutes with the action of G.

2.2.2. Dual uncertainty principle.

Theorem 2.2.13. Let V be a finite dimensional real vector space. Let B be a non-degenerate bilinear
form on V and ψ be a non-trivial additive character of R. Let L ⊂ V be a subspace. Suppose that
L⊥ " L. Then

S(V − L) + F(S(V − L)) = S(V ).

For proof see Appendix A.2.

Remark 2.2.14. It is much easier to prove that

S(V − L) + F(S(V − L)) = S(V )

since this is equivalent to the fact that there are no distributions on V supported in L with Fourier
transform supported in L.
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2.2.3. Coinvariants in Schwartz functions.

Theorem 2.2.15. Let a connected algebraic group G act on a real algebraic manifold X. Let Z be a
G-invariant Zariski closed subset of X. Let g be the Lie algebra of G. Let χ be a unitary character of G.
Suppose that for any z ∈ Z and k ∈ Z≥0 we have

(χ⊗ Symk(CNX
Gz,z)⊗ ((∆G)|Gz/∆Gz ))gz = 0.

Then

S(X) = S(X − Z) + g(S(X)⊗ χ).

For proof see Appendix B.

Corollary 2.2.16. Let a unipotent group G act on a real algebraic manifold X. Let χ be a unitary
character of G.

Let Z ⊂ X be a Zariski closed G-invariant subset. Suppose also that for any point z ∈ Z the restriction
χ|Gz is non-trivial. Then

S(X)⊗ χ = S(X − Z)⊗ χ+ g(S(X)⊗ χ),

where g is the Lie algebra of G.

Proof. The action of Gz on Symk(CNX
Gz,z)⊗ ((∆G)|Gz/∆Gz ) is algebraic and hence if G is unipotent this

action is unipotent and therefore if (χ)gz = 0 then

(χ⊗ Symk(CNX
Gz,z)⊗ ((∆G)|Gz/∆Gz ))gz = 0.

�

Remark 2.2.17. Note that the statement that S(X) ⊗ χ = S(X − Z)⊗ χ+ g(S(X)⊗ χ) is equivalent
to the statement that any G-invariant distribution on X which is supported on Z vanishes, which is a
generalization of a result from [KV96].

2.3. Nuclear Fréchet spaces.
A good exposition on nuclear Fréchet spaces can be found in Appendix A of [CHM00].
We will need the following well-known facts from the theory of nuclear Fréchet spaces.

Proposition 2.3.1 (see e.g. [CHM00], Appendix A).
Let V be a nuclear Fréchet space and W be a closed subspace. Then both W and V/W are nuclear Fréchet
spaces.

Proposition 2.3.2 (see e.g. [CHM00], Appendix A).
Let 0 → V → W → U → 0 be an exact sequence of nuclear Fréchet spaces. Suppose that the embedding
V →W is closed. Let L be a nuclear Fréchet space. Then the sequence 0 → V ⊗̂L→W ⊗̂L→ U⊗̂L→ 0
is exact and the embedding V ⊗̂L→W ⊗̂L is closed.

Corollary 2.3.3.
Let V → W be onto map between nuclear Fréchet spaces and L be a nuclear Fréchet space. Then the
map V ⊗̂L→W ⊗̂L is onto.

Corollary 2.3.4. Let ϕi : Vi →Wi i = 1, 2 be onto maps between nuclear Fréchet spaces. Then the map
ϕ1⊗̂ϕ2 : V1⊗̂V2 →W1⊗̂W2 is onto.

Proposition 2.3.5 (see e.g. [AG10], Corollary 2.6.2).
Let M be a Nash manifold. Then S(M) is a nuclear Fréchet space.

Proposition 2.3.6 (Schwartz Kernel Theorem, see e.g. [AG10], Corollary 2.6.3).
Let Mi, i = 1, 2 be Nash manifolds Then

S(M1 ×M2) = S(M1)⊗̂S(M2).
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Definition 2.3.7. By a subspace of a topological vector space V we mean a linear subspace L ⊂ V
equipped with a topology such that the embedding L ⊂ V is continuous.

Note that by Banach open map theorem if L and V are nuclear Fréchet spaces and L is closed in V
then the topology of L is the induced topology from V .

By an image of a continuous linear map between topological vector spaces we mean the image equipped
with the quotient topology. Similarly for a continuous linear map between topological vector spaces ϕ :
V1 → V2 and a subspace L ⊂ V1 we the image ϕ(L) to be equipped with the quotient topology.

Similarly a sum of two subspaces will be considered with the quotient topology of the direct sum.

Remark 2.3.8. Note that by Proposition 2.3.1, sum of nuclear Fréchet spaces and image of a nuclear
Fréchet space are nuclear Fréchet spaces.

Note also the operations of taking sum of subspaces and image of subspace commute.
Finally note that if L and L′ are two nuclear Fréchet subspaces of a complete locally convex topological

vector space V which coincide as linear subspaces then they are the same. Indeed, by Banach open map
theorem they are both the same as L+ L′.

Notation 2.3.9. Let Vi, i = 1, 2 be locally convex complete topological vector spaces. Let Li ⊂ Vi be

subspaces. We denote by MV1,V2

L1,L2
: L1⊗̂L2 → V1⊗̂V2 the natural map.

From Corollary 2.3.4 we obtain the following corollary.

Corollary 2.3.10. Let Vi, i = 1, 2 be locally convex complete topological vector spaces. Let Li, i = 1, 2
be nuclear Fréchet spaces. Let ϕi : Li → Vi be continuous linear maps. Then

Im(ϕ1⊗̂ϕ2) = Im(MV1,V2

Im(ϕ1),Im(ϕ2)
).

Notation 2.3.11. Let Mi, i = 1, 2 be smooth manifolds. We denote by MM1,M2 : C∞(M1)⊗̂C∞(M2) →
C∞(M1 ×M2) the product map. For two subspaces Li ⊂ C∞(Mi) we denote by ML1,L2

: L1⊗̂L2 →
C∞(M1 ×M2) the composition MM1,M2 ◦M

C∞(M1),C
∞(M2)

L1,L2
.

3. Proof of the main result

3.1. Notation.
In this paper we let D be a semi-simple 2-dimensional algebra over R, i.e. D = C or D = R ⊕ R.

Let a 7→ a denote the non-trivial involution of D, i.e. complex conjugate or swap respectively. Let n
be a natural number. Let ψ : R → C× be a nontrivial character. The following notation will be used
throughout the body of the paper. In case when there is no ambiguity we will omit from the notations
the n, the D or the ψ.

• Denote by Hn(D) the space of hermitian matrices of size n with coefficients in D.
• Denote Sn(D) := H(D) ∩GLn(D).
• Denote by ∆n

i : Hn(D) → R the main i-minor.
• Let Nn(D) < GLn(D) be the subgroup consisting of upper unipotent matrices.
• Let nn(D) denote the Lie algebra of Nn(D).

• We define a character χψ : Nn(D) → C× by χψ(x) := ψ(
∑n−1
i=1 (xi,i+1 + xi,i+1)).

• Let the group Nn(D) act on Hn(D) by x 7→ utxu.
• Fix a symmetric R-bilinear form BnD on Hn(D) by B(x, y) := TrR(xwyw), where w := wn is the
longest element in the Weyl group of GLn.

• Denote by An < GLn(R) the subgroup of diagonal matrices. We will also view An as a subset of
Sn(D).

• Define Ωn,ψD : Sdet,R×
(Sn(D)) → C∞(An) by

Ωn,ψD (Ψ)(a) :=

∫
N

Ψ(utau)χ(u)du.

Here, du is the standard Haar measure on N .
For proof that the integral converges absolutely, depends smoothly on a and defines a contin-

uous map Sdet(Sn(D)) → C∞(An) see Proposition 3.1.1 below. By Remark 2.2.10, Ωn,ψD defines
in particular a continuous map S(Hn(D)) → C∞(An).
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• Define a character ηD : R× → {±1} by ηD = 1 if D = R⊕ R and ηD = sign if D = C.
• Define σ : Hn(D) → R by σ(x) :=

∏n−1
i=1 ∆n

i (x).

• Define Ω̃n,ψD : Sdet,R×
(Sn(D)) → C∞(An) by

Ω̃nD(Ψ)(a) := η(σ(a))|σ(a)|Ω(Ψ)(a)

Proposition 3.1.1.

The integral Ωn,ψD converges absolutely and defines a continuous map

Ωn,ψD : Sdet(Sn(D)) → C∞(An).

Proof.
Consider the map β : Hn(D) → Rn defined by β = (∆1, ...,∆n). Consider An to be embedded in
Rn by (t1, ...tn) 7→ (t1, t1t2, ..., t1t2...tn). Let V := β−1(An) ⊂ Hn(D). Let pn : Rn → R denote the
projection on the last coordinate. Note that the action map defines an isomorphism Nn(D)× An → V .
Let α : V → Nn(D) denote the projection. Let X ∈ SId(V ) be defined by X(v) := χ(α(v)). Define

Ω′ : Sβ,A(V ) → SId(A) by Ω′(f) := β∗(Xf). Now, Ω
n,ψ
D is given by the following composition

Sdet,R×
(S) ⊂ Sβ,p

−1
n (R×)(S) ⊂ Sβ,A(V )

Ω′

→ SId(A) ⊂ C∞(A).

�

The main theorem (Theorem A) can be reformulated now in the following way:

Theorem 3.1.2.
(i) Ω̃nR⊕R(S(H(R⊕ R))) = Ω̃nC(S(H(C))).
(ii) Ω̃nR⊕R(S(S(R⊕ R))) = Ω̃nC(S(S(C))).

3.2. Main ingredients.
In this subsection we list three main ingredients of the proof of the main theorem.

3.2.1. Intermediate Kloosterman Integrals. First, let us introduce the intermediate Kloosterman integrals
and some related notation.

Notation 3.2.1.

• Let Oni (D) ⊂ Hn(D) be the subset of matrices with ∆n
i ̸= 0.

• Let Un(D) :=
∪n−1
i=1 Oi(D) and Zn(D) := Hn(D)− Un(D).

• Denote by Nn
i (D) < Nn(D) the subgroup defined by

Nn
i (D) :=

{(
Idi ∗
0 Idn−i

)}
.

• Define Ωn,ψD,i : S∆i(Oni (D)) → S∆i,R×
(Si(D) × Hn−i(D)), where Si × Hn−i is considered as a

subspace of Hn, in the following way

Ωn,ψD,i (Ψ)(a) :=

∫
Nn

i

Ψ(utau)χ(u)du.

Here, du is the standard Haar measure on Nn
i .

For proof that the integral converges absolutely, depends smoothly on a and defines a continuous
map S∆i(Oni (D)) → S∆i(Si(D)×Hn−i(D)) see Proposition 3.2.2 below.

• Define Ω̃n,ψD,i : S∆i,R×
(Oni (D)) → S∆i,R×

(Si(D)×Hn−i(D)), in the following way

Ω̃n,ψD,i (Ψ)(a) := η(∆n
i (a))

n−i|∆n
i (a)|n−iΩnD,i.

• We define Ωn1,...,nk,ψ
D : Sdet×...×det(Sn1(D)× ...× Snk(D)) → C∞(An1 × ...× Ank) in a similar

way to Ωn,ψD . Analogously we define Ω̃n1,...,nk,ψ
D .
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As before, in case when there is no ambiguity we will omit from the notations the n, the D or the ψ.
In particular, we will omit the D and the ψ till the end of this subsubsection.

Proposition 3.2.2. The integral Ωni converges absolutely and defines a continuous map

Ωni : S∆i(Oni ) → S∆i(Si ×Hn−i).

Proof. Consider Si ×Hn−i as a subset in Hn. Denote it by B. Consider the action map Ni × B → H.
Note that it is an open embedding and its image is Oi. We consider the standard Haar measures on
B and Ni, and their multiplication on Oi. Consider the projections: αi : Oi → Ni and βi : Oi → B.

Let Xi ∈ SId(Oi) be defined by Xi(v) := χ(αi(v)). Consider (βi)∗ : S∆i,R×
(Oi) → S∆i,R×

(B). Now,
Ωi(f) = (βi)∗(Xif). �

Proposition 3.2.3.

(i) The map Ω̃ni defines an onto map S(Oni ) → S(Si ×Hn−i).

(ii) Ω̃n = Ω̃i,n−i ◦ Ω̃ni .

Proof. (i) follows from Property 2.2.6, since the map βi from the proof of Proposition 3.2.2 is a surjective
submersion.
(ii) is straightforward. �

Proposition 3.2.4. Ω̃m,n(S(Sm × Hn)) = ImMΩ̃m(S(Sm)),Ω̃n(S(Hn)). For the definition of M see

Notation 2.3.11.

Proof. Let I : S(Sm)⊗̂S(Hn) ∼= S(Sm × Hn) denote the isomorphism given by the Schwartz kernel
theorem (see Property 2.3.6).

Clearly Ω̃m,n(S(Sm ×Hn)) = Im(Ω̃m,n ◦ I).
Note that

Ω̃m,n ◦ I = MAm,An ◦ Ω̃m|S(Sm)⊗̂Ω̃n|S(Hn).

By Corollary 2.3.10,

Im(Ω̃m|S(Sm)⊗̂Ω̃n|S(Hn)) = ImMC∞(Am),C∞(An)

Ω̃m(S(Sm)),Ω̃n(S(Hn))

Now,

Ω̃m,n(S(Sm ×Hn)) = Im(MAm,An ◦ Ω̃m|S(Sm)⊗̂Ω̃n|S(Hn)) =

= Im(MAm,An ◦MC∞(Am),C∞(An)

Ω̃m(S(Sm)),Ω̃n(S(Hn))
) = ImMΩ̃m(S(Sm)),Ω̃n(S(Hn)).

�

From the last two propositions we obtain the following corollary.

Corollary 3.2.5. Ω̃n(S(Oni )) = ImMΩ̃n−i(S(Sn−i)),Ω̃i(S(Hi)).

3.2.2. Inversion Formula.

Theorem 3.2.6 (Jacquet).

Ω̃ψD(F(f))(diag(a1, ..., an)) =

= c(ψ,D)
n(n−1)/2

∫
...

∫
Ω̃ψD(f)(diag(p1, ..pn))ψ(−

n∑
i=1

an+1−ipi +

n−1∑
i=1

1/(an−ipi))dpn...dp1.

Here, c(ψ,D) is a constant, we will discuss it in §§4.2. The integral here is just an iterated integral. In
particular we mean that the integral converges as an iterated integral.

The proof is essentially the same as in the p-adic case (see [Jac03a, Section 7]). For the sake of
completeness we repeat it in §4.
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Corollary 3.2.7. Let Ψ ∈ S(H(R⊕ R)) and Ψ ∈ S(H(C)). Suppose that

Ω̃ψR⊕R(Ψ) = Ω̃ψC(Φ).

Then

c(ψ,R⊕ R)−n(n−1)/2Ω̃ψR⊕R(F(Ψ)) = c(ψ,C)−n(n−1)/2Ω̃ψC(F(Φ)).

Later we will see that c(ψ,R⊕ R) = 1.

3.2.3. Key Lemma.

Lemma 3.2.8 (Key Lemma). Consider the actions of N and n on S(H) to be the standard actions
twisted by χ. Then

S(H) = S(U) + F(S(U)) + nS(H).

For proof see §5.

3.3. Proof of the main result.
We prove Theorem 3.1.2 by induction. The base n = 1 is obvious. Thus, from now on we assume that

n ≥ 2 and that Theorem 3.1.2 holds for all dimensions smaller than n.

Proposition 3.3.1.

Ω̃R⊕R(S(Oi(R⊕ R))) = Ω̃C(S(Oi(C))).

Proof. Follows from Corollary 3.2.5 and the induction hypothesis. �

Corollary 3.3.2.

Ω̃R⊕R(S(U(R⊕ R))) = Ω̃C(S(U(C))).

Proof. Follows from the the previous proposition and partition of unity (property 2.2.4). �

Corollary 3.3.3. Part (i) of Theorem 3.1.2 holds. Namely, Ω̃R⊕R(S(H(R⊕ R))) = Ω̃C(S(H(C))).

Proof. By the previous Corollary and the inversion formula (see Corollary 3.2.7),

Ω̃R⊕R(F(S(U(R⊕ R)))) = Ω̃C(F(S(U(C)))).

Clearly, Ω̃R⊕R(nS(H(R⊕ R))) = Ω̃C(nS(H(C))) = 0. Hence, by Remark 2.3.8

Ω̃R⊕R(S(U(R⊕ R)) + F(S(U(R⊕ R))) + nS(H(R⊕ R))) = Ω̃C(S(U(C)) + F(S(U(C))) + nS(H(C))),
where we again consider the actions of N and n on S(H) to be twisted by χ. Therefore, by the Key
Lemma

Ω̃R⊕R(S(H(R⊕ R))) = Ω̃C(S(H(C))).
�

It remains to prove part (ii) of Theorem 3.1.2.

Proof of part (ii) of Theorem 3.1.2. By Property 2.2.7,

S(S(R⊕ R)) = S(R×)S(S(R⊕ R)),
and hence

S(S(R⊕ R)) = S(R×)S(H(R⊕ R)),
where the action of S(R×) on S(H(R⊕ R)) is given via det : H(R⊕ R) → R.

Hence
Ω̃R⊕R(S(S(R⊕ R))) = S(R×)Ω̃R⊕R(S(H(R⊕ R))).

By part (i)

S(R×)Ω̃R⊕R(S(H(R⊕ R))) = S(R×)Ω̃C(S(H(C))).
As before,

S(R×)Ω̃C(S(H(C))) = Ω̃C(S(R×)S(H(C))) = Ω̃C(S(S(C))).
�
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Remark 3.3.4. One can give an alternative proof, that does not use Dixmier - Malliavin theorem (Prop-

erty 2.2.7), in the following way. Define maps Ω̃′ : S(H × R×) → C∞(A× R×) similarly to Ω̃, and not

involving the second coordinate. From (i), using §2.3, we get that Im Ω̃′C = Im Ω̃′R⊕R. Using the graph

of det we can identify S with a closed subset of H × R× and A with a closed subset of A × R×. By

Property 2.2.5, the restriction map S(H × R×) → S(S) is onto and hence Ω̃(S(S)) = Im res ◦ Ω̃′, where
res : C∞(A× R×) → C∞(A) is the restriction. This implies (ii).

In fact, this alternative proof of (ii) is obtained from the previous proof by replacing Property 2.2.7
with its weaker version that states (in the notation of property 2.2.7) that the map S(M)⊗̂S(N) → S(M)
is onto. This is much simpler version since it follows directly from Property 2.2.5 and Proposition 2.3.6.

4. Proof of the inversion formula

In this section we adapt the proof of Theorem 3.2.6 given in [Jac03a] to the Archimedean case. The
proof is by induction. The induction step is based on analogous formula for the intermediate Klooster-
mann integral which is based on the Weil formula.

In §§4.1 we give notations for various Fourier transforms on H. In §§4.2 we recall the Weil formula
and consider its special case which is relevant for us. In §§4.3 we introduce the Jacquet transform and
the intermediate Jacquet transform which appears on the right hand side of the inversion formulas. In
§§4.4 we prove the intermediate inversion formula. In §§4.5 we prove the inversion formula.

4.1. Fourier transform.

• We denote by F ′ := F ′Hn : S(Hn) → S(Hn) the Fourier transform w.r.t. the trace form (and the
character ψ).

• Note that FHn = ad(w) ◦ F ′Hn = F ′Hn ◦ ad(w).
• We denote by F ′Hi×Hn−i : S(Hn) → S(Hn) the partial Fourier transform w.r.t. the trace form

on Hi ×Hn−i.
• We denote by (Hi × Hn−i)⊥

′ ⊂ Hn the orthogonal compliment to Hi × Hn−i w.r.t. the trace
form.

• We denote by F ′
(Hi×Hn−i)⊥′ : S(Hn) → S(Hn) the partial Fourier transform w.r.t. the trace

form on (Hi ×Hn−i)⊥
′
.

• Note that F ′Hn = F ′
(Hi×Hn−i)⊥′ ◦ F ′Hi×Hn−i = F ′Hi×Hn−i ◦ F ′(Hi×Hn−i)⊥′ .

4.2. The Weil formula.
Recall the one dimensional Weil formula:

Proposition 4.2.1. Let a ∈ R×. Consider the function ξ : D → R defined by ξ(x) = ψ(axx̄)
as a distribution on D. Then F∗(ξ) = ζ, where ζ is a distribution defined by the function ζ(x) =
|a|−1ηD(a)c(D,ψ)ψ(−xx̄/a).

One can take this as a definition of the constant c(D,ψ).
The following proposition is proven by a straightforward computation.

Proposition 4.2.2.
(i) c(R⊕ R, ψ) = 1
(ii) c(C, ψ)2 = −1
(iii) c(C, ψ)c(C, ψ) = 1

Proposition 4.2.1 gives us the following corollary.

Corollary 4.2.3. Let V be a free module over D equipped with a volume form. We have a natural Fourier
transform F∗ : S∗(V ) → S∗(V ∗). Let Q be a hermitian form on V . Consider the function ξ : V → R
defined by ξ(v) = ψ(Q(v)) as a distribution on V . Let Q−1 be a hermitian norm on V ∗ which is the
inverse of Q. Let det(Q) be the determinant of Q with respect to the volume form on V . Let ζ be a
distribution defined by the function

ζ(x) = |det(Q)|−1(ηD(det(Q)c(D,ψ))dimV ψ(−Q−1(x)).
Then F∗(ξ) = ζ.
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Corollary 4.2.4. Let (A,B) ∈ Si × Sn−i. Consider the function ξ : (Hi × Hn−i)⊥
′ → R defined by

ξ

[(
0 ūt

u 0

)]
= ψ(BuAūt) as a distribution on V . Consider also the function ζ : (Hi × Hn−i)⊥

′ → R

defined by

ζ

[(
0 ūt

u 0

)]
= (η(detA)/|detA|)n−i(η(detB)/|detB|)ic(D,ψ)(n−i)iψ(B−1ūtA−1u)

as a distribution on V .
Then (F ′

(Hi×Hn−i)⊥′ )∗(ξ) = ζ.

4.3. Jacquet transform.

Definition 4.3.1. Let 0 ≤ i ≤ n.

• We define J ′i,n−i : C∞(Si × Sn−i) → C∞(Si × Sn−i) by J ′i,n−i(f)(A,B) =

f(A,B)ψ(wB−1wεA−1εt). Here ε is the matrix with n− i rows and i columns whose first row is
the row (0, 0, ..., 0, 1) and all other rows are zero.

• We define Ti,n−i : C∞(Si × Sn−i) → C∞(Sn−i × Si) by Ti,n−i(f)(A,B) = f(B,A).

• We denote by Ji,n−i the space S∆i,R×
(Si×Hn−i)∩F−1Hn−i(T −1i,n−i(J

′−1
i,n−i(S∆n−i,R×

(Sn−i×Hi)))).

• We define the partial Jacquet transform Ji,n−i : Ji,n−i → S∆n−i,R×
(Sn−i ×Hi)) by

Ji,n−i := FHi ◦ Ti,n−i ◦ J ′i,n−i ◦ FHn−i |Ji,n−i .

• Denote by An the set of diagonal matrices in H.
• We denote Fn : S∆n−1(An) → S∆n−1(An) the Fourier transform w.r.t. the last co-ordinate.
• We define

J (i)
n

′
: S∆n−1(An) → C∞(An)

by

J (i)
n

′
(f)(a1, ..., an) = f(a1, ..., ai−1, an, ai.., an−1)ψ(1/anan−1).

• We define J (i)
n : S∆n−1(An) → C∞(An) by J (i)

n = J (i)
n

′
◦ Fn for i < n.

• We define inductively a sequence of subspaces J
[i]
n ⊂ C∞(An) and operators J [i]

n : J
[i]
n → C∞(An)

in the following way J
[1]
n = S∆n−1(An), J [1]

n = Fn, J
[i]
n = S∆n−1(An) ∩ (J (i)

n )−1(J
[i−1]
n ) and

J [i]
n = J [i−1]

n ◦ J (n+1−i)
n .

• We define the Jacquet space J := Jn to be J
[n]
n and the Jacquet transform J := Jn : J → C∞(An)

to be J [n]
n .

4.4. The partial inversion formula.
In this subsection we prove an analog of Proposition 8 of [Jac03a], namely

Proposition 4.4.1.

(i) Ω̃ψi (S(H)) ⊂ Ji,n−i

(ii) Ji,n−i ◦ Ω̃ψi |S(H) = c(D,ψ)n(n−i)Ω̃ψ̄n−i ◦ FH

This proposition is equivalent to the following one

Proposition 4.4.2.

J ′i,n−i ◦ FHn−i ◦ Ω̃ψi,n−i|S(H) = c(D,ψ)n(n−i)T −1i,n−i ◦ (FHi)−1 ◦ Ω̃ψ̄n−i ◦ F .

For its proof we will need some auxiliary results.

Lemma 4.4.3. Let f ∈ S(H) be a Schwartz function. Then

Ω̃ψi (f)(A,B) = η(det(A))n−i|det(A)|−(n−i)
∫
f

[(
A X
X̄t B +XtA−1X

)]
ψ[Tr(εA−1X)+Tr(X̄tA−1εt)]dX

The proof is straightforward.
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Corollary 4.4.4. Let f ∈ S(H) be a Schwartz function. Then

FHn−i ◦ Ω̃ψi (f)(A,wn−iCwn−i) = η(det(A))n−i|det(A)|−(n−i)∫
f

[(
A X
X̄t B

)]
ψ[Tr(εA−1X) + Tr(X̄tA−1εt) + Tr(CXtA−1X)− Tr(CB)]dXdB

Notation 4.4.5.
(i) Let ξA,B ∈ S∗(H) be the distribution defined by

ξA,B(f) = J ′i,n−i ◦ FHn−i ◦ Ω̃ψi (f)(A,B).

(ii) Let ζA,B ∈ S∗(H) be the distribution defined by

ζA,B(f) = T −1i,n−i ◦ (FHi)−1 ◦ Ω̃ψ̄n−i(f)(A,B).

Proof of Proposition 4.4.2. We have to show that

ξA,B = c(D,ψ)n(n−i)F(ζA,B)

Let f ∈ S(H) be a Schwartz function. Denote m := n− i. By Corollary 4.4.4

ξA,C(f) = η(det(A))n−i|det(A)|−(n−i)ψ(wn−iC−1wn−iεA−1εt)∫
f

[(
A X
X̄t B

)]
ψ[Tr(εA−1X)+Tr(X̄tA−1εt)+Tr(wn−iCwn−iX

tA−1X)−Tr(wn−iCwn−iB)]dXdB

and

ζA,C(f) = η(det(C))i|det(C)|−i×∫
f

[(
C X
X̄t B

)]
ψ[−Tr(εC−1X + X̄tC−1εt + wiAwiX

tC−1X − wiAwiB)]dXdB.

Therefore

ad(wn)(ζA,C)(f) = η(det(C))i|det(C)|−i×∫
f

[(
B X
X̄t wmCwm

)]
ψ[−Tr(εC−1wmX̄

twm + wmXwmC
−1εt +AXwmC

−1wmX̄
t −AB)]dXdB.

Thus

F ′Hi×Hm(ad(wn)(ζA,C))(f) = η(det(C))i|det(C)|−i×∫
f

[(
A X
X̄t B

)]
ψ[−Tr(εC−1wmX̄

twm + wmXwmC
−1εt +AXwmC

−1wmX̄
t + wmCwmB)]dXdB.

Therefore by Corollary 4.2.4

F ′
(Hi×Hm)⊥′ (F ′Hi×Hm(ad(wn)(ζA,C)))(f) = c(D,ψ)n(n−i)ξA,C(f).

�

4.5. Proof of the inversion formula.
The inversion formula (Theorem 3.2.6) is equivalent to the following theorem.

Theorem 4.5.1.
(i) Ω̃n,ψ(S(H)) ⊂ J.

(ii) J ◦ Ω̃n,ψ|S(H) = c(D,ψ)n(n−1)/2Ω̃n,ψ̄ ◦ FH .

The proof is by induction. We will need the following straightforward lemma.
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Lemma 4.5.2. The induction hypotheses implies that

(i) Ω̃1,n−1,ψ(S∆1(S1 ×Hn−1)) ⊂ J
[n−1]
n

(ii)

Ω̃1,n−1,ψ̄ ◦ FHn−1,ψ = c(D,ψ)(n−1)(n−2)/2J [n−1]
n Ω̃1,n−1,ψ|S∆1 (S1×Hn−1)

Proof of Theorem 4.5.1. First let us prove (i). It is easy to see that

(1) Ω̃1,n−1,ψ|S∆1 (S1×Hn−1) ◦ Tn−1,1 ◦ J ′n−1,1|FH1 (Jn−1,1) = J (i)
n

′
◦ Ω̃1,n−1,ψ|FH1 (Jn−1,1)

This implies that

(2) Ω̃1,n−1,ψ|S∆1 (S1×Hn−1) ◦ Tn−1,1 ◦ J ′n−1,1 ◦ FH1 ◦ Ω̃n,ψn−1|S(H) = J (i)
n

′
◦ Fn ◦ Ω̃1,n−1,ψ ◦ Ω̃n,ψn−1|S(H)

By Proposition 3.2.3 this implies

(3) Ω̃1,n−1,ψ|S∆1 (S1×Hn−1) ◦ Tn−1,1 ◦ J ′n−1,1 ◦ FH1 ◦ Ω̃n,ψn−1|S(H) = J (i)
n

′
◦ Fn ◦ Ω̃n,ψ|S(H)

This together with Lemma 4.5.2 implies (i).
Now let us prove (ii). By Propositions 3.2.3 and 4.4.1 we have

(4) Ω̃n,ψ̄ ◦ FH = Ω̃1,n−1,ψ̄ ◦ Ω̃n,ψ̄1 ◦ FH = c(D,ψ)(n−1)Ω̃1,n−1,ψ̄ ◦ Jn−1,1 ◦ Ω̃n,ψn−1|S(H) =

= c(D,ψ)(n−1)Ω̃1,n−1,ψ̄ ◦ FHn−1 ◦ Tn−1,1 ◦ J ′n−1,1 ◦ FH1 ◦ Ω̃n,ψn−1|S(H)

(ii) follows now from (3), (4), and Lemma 4.5.2. �

5. Proof of the Key Lemma

We will use the following notation and lemma.

Notation 5.0.1. Denote

Z ′ :=




0 · · · 0 a
... . .

.
. .
.

∗

0 a . .
. ...

a ∗ · · · ∗

 s.t. a ∈ R

 ∩H =

= {x ∈ Z|xij = 0 for i+ j < n+ 1 and xi,n+1−i = xj,n+1−j ∈ R for any 1 ≤ i, j ≤ n} ⊂ Z

Denote also U ′ := H − Z ′.

Notation 5.0.2. We call a matrix x ∈ H relevant if χ|Nx
≡ 1, and irrelevant otherwise.

Lemma 5.0.3 ([Jac03a], §3, §5). Every relevant orbit in Hn(D) has a unique representative of the form

(5)


a1wm1 0 · · · 0

0 a2wm2
· · · 0

...
...

. . .
...

0 0 · · · anwmn


where m1 + ...+mj = n, a1, ..., aj ∈ R, and if det(g) = 0 then ∆n−1(g) ̸= 0.

For the sake of completeness we will repeat the proof here.

Proof. Step 1. Proof for Sn(R⊕ R)
Let Wn denote the group of permutation matrices. By Bruhat decomposition, every orbit has a unique
representative of the form wa with w ∈ Wn and a ∈ An. If this element is relevant, then for every
pair of positive roots (α1, α2) such that wα2 = −α1, and for ui ∈ Nαi(R) (where Nαi denotes the
one-dimensional subgroup of N corresponding to αi) we have

(6) ut1wau2 = wa⇒ χ(u1, u2) = 0.
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This condition implies that α1 is simple if and only if α2 is simple. Thus w and its inverse have the
property that if they change a simple root to a negative one, then they change it to the opposite of a
simple root. Let S be the set of simple roots α such that wα is negative. Then S is also the set of simple
roots α such that w−1α is negative and wS = S. Let M be the standard Levi subgroup determined by
S. Thus S is the set of simple roots of M for the torus A, w is the longest element of the Weyl group
of M , and w2 = 1. This being so, if α2 is simple, then condition (6) implies α2(a) = 1. Thus a is in the
center of M . Hence wa is of the form (5).

Step 2. Proof for Sn(C).
Every orbit has a unique representative of the form wa with w ∈Wn, and diagonal a ∈ GLn(C) (for proof
see e.g. [Spr85, Lemma 4.1(i)], for the involution g 7→ wng

−twn, where wn ∈ Wn denotes the longest
element). Since wa ∈ S, we have w = wt and hence w2 = 1 and waw = a.

Suppose that α is a simple root such that wα = −β where β is positive. For uα ∈ Nα, define

uβ := wa−1u−tα aw ∈ Nβ .

Then
utβwauα = wa = utαwauβ .

There exists an element uα+β ∈ Nα+β (i.e. uα+β = 1 if α+ β is not a root) such that u := uα+βuαuβ
satisfies utwau = wa. If wa is relevant, this relation implies χ(uαuβ) = 1.

Thus β is simple. Since w2 = 1, we see that, as before, there is a standard Levi subgroup M such that
w is the longest element in its Weyl group, and a ∈ Z(M) ∩An.

Step 3. Proof for Hn(D)− Sn(D).
Let s ∈ Hn(D) with det(s) = 0 be relevant. Then s = utwb with u ∈ N(D), w ∈ Wn and b upper
triangular. If a column of s of index i < n would be zero, then the row with index i would also be zero,
and hence s would be irrelevant. Hence b1,1 ̸= 0 and acting on s by N(D) we can bring b to the form

b =

(
b′ 0
0 0

)
, where b′ is diagonal and invertible. In particular, the last row of b is zero. We may replace

s by wbu−1. The last row of bu−1 is again zero. Since the rows of wbu−1 with index less than n cannot

be zero, w must have the form w =

(
w′ 0
0 0

)
. The theorem follows now from the 2 previous cases. �

Since Z and Z ′ are N -invariant we obtain

Corollary 5.0.4. Every relevant x ∈ Z lies in Z ′.

Using Corollary 2.2.16 we obtain

Corollary 5.0.5. Recall that we consider the action of N on S(H) to be the standard action twisted by
χ. Then S(U ′) = S(U) + nS(U ′).

Lemma 5.0.6. Z ′ + Z ′⊥.

Proof. For n > 2 this is obvious since dimZ ′ < n2

2 = dimH
2 .

For n = 2, dimZ ′ = n2

2 = dimH
2 . Hence it is enough to show that Z ′ ̸= (Z ′)⊥. Now

B

((
0 a
a b

)
,

(
0 c
c d

))
= 2ac,

which is not identically 0. �
Corollary 5.0.7. S(H) = S(U ′) + F(S(U ′)).

Proof. Follows from the previous lemma and Theorem 2.2.13. �
Proof of the Key Lemma (Lemma 3.2.8). By Corollaries 5.0.5 and 5.0.7,

S(H) = S(U ′) + F(S(U ′)) = S(U) + nS(U ′) + F(S(U) + nS(U ′)) =
= S(U) + nS(U ′) + F(S(U)) + nF(S(U ′)) =

= S(U) + F(S(U)) + n(S(U ′) + F(S(U ′))) ⊂ S(U) + F(S(U)) + n(S(H)).
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The opposite inclusion is obvious. �

6. Non-regular Kloostermann integrals

In this section we define Kloostermann integrals over relevant non-regular orbits. We prove that if two
functions match then their non-regular Kloostermann integrals also equal, up to a matching factor. In
the non-Archimedean case this was done in [Jac03b] and our proof follows the same lines.

We also deduce that if all regular Kloostermann integrals of a function vanish then all Kloostermann
integrals of this function vanish. In the non-Archimedean case this was also proven in [Jac03b] and earlier
and in a different way in [Jac98].

Recall that g ∈ Hn(D) is called relevant if the character χ is trivial on the stabilizer N(D)g of g. For

every relevant g ∈ Hn(D) and every Ψ ∈ Sdet,R×
(Sn(D)) we define

Ωn,ψD (Ψ, g) :=

∫
N/Ng

Ψ(utau)χ(u)du.

Recall the description of relevant orbits given in Lemma 5.0.3: every relevant orbit in Hn(D) has a unique
element of the form

(7) g =


a1wm1 0 · · · 0

0 a2wm2
· · · 0

...
...

. . .
...

0 0 · · · anwmn

 ,

where m1 + ... +mj = n, a1, ..., aj ∈ R, and if det(g) = 0 then ∆n−1(g) ̸= 0. In particular, Hn(C) and
Hn(R⊕ R) have the same set of representatives of regular orbits.

Notation 6.0.1. We define the transfer factor γ to all g of the form (7) by

• For a scalar a ∈ H1 we let γ(a, ψ) := 1
• γ(awn, ψ) = γ(−a−1wn−1, ψ)c(C, ψ)n(n−1)/2 sign(det(−a−1wn−1))

• For g =

(
x 0
0 y

)
let γ(g, ψ) := γ(x, ψ)γ(y, ψ) sign(det(x))i where y is an i× i matrix.

Note that this definition extends the definition of transfer factor γ that was given in the introduction
for g ∈ An.

Remark 6.0.2. Since c(C, ψ)2 = −1 and c(C, ψ)c(C, ψ) = 1, we have γ(awn+8, ψ) = γ(awn, ψ) and for
1 ≤ n ≤ 8, γ(awn, ψ) is determined by the sequence

1, c(C, ψ) sign(−a), sign(a), 1, −1, c(C, ψ) sign(−a), sign(−a), 1.

In particular γ(g, ψ) is always a fourth root of unity.

Theorem 6.0.3. Let Φ ∈ Sdet,R×
(Hn(R⊕ R)) and Ψ ∈ Sdet,R×

(Hn(C)). Suppose that

Ωn,ψR⊕R(Φ) = γΩn,ψC (Ψ).

Then for any g of the form (7) we have

Ωn,ψR⊕R(Φ, g) = γ(g, ψ)Ωn,ψC (Ψ, g).

For proof see §§6.2.
By substituting 0 in place of Φ or Ψ we obtain the following corollary

Corollary 6.0.4 (Density). Let Φ ∈ Sdet,R×
(Hn(D)). Suppose that Ωn,ψD (Φ) = 0. Then Ωn,ψD (Φ, g) = 0

for any relevant g ∈ D.

For the proof of Theorem 6.0.3 we will need the following lemma, which is a more elementary version
of the inversion formula.
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Lemma 6.0.5. Let n > 1. For any Φ ∈ S(Hn(D)), define the function fΦ on R× by fΦ(a) :=

Ωn,ψD (Φ, awn). Then fΦ ∈ S(R×) and

fΦ(a) = |a|−n
2+1

∫
Ωn,ψD (F(Φ),

(
−a−1wn−1 0

0 b

)
)db.

6.1. Proof of Lemma 6.0.5.

Notation 6.1.1.

• We denote V := {{ai,j} ∈ H|ai,j = 0 if i+ j ≤ n+ 1} ⊂ H.
• Note that V ⊥ = {{ai,j} ∈ H|ai,j = 0 if i+ j < n+ 1} ⊂ H.
• We denote e := {ei,j} ∈ H. where ei,j = δi+j,n.

The following two lemmas follow from change of variables.

Lemma 6.1.2. We have

fΦ(a) = |a|(n−n
2)/2

∫
v∈V

Φ(awn + v)ψ(< a−1e, v >)dv

Lemma 6.1.3. We have∫
Ωn,ψD (Φ,

(
awn−1 0

0 b

)
)db = |a|−(n+n

2)/2+1

∫
v∈V ⊥

Φ(ae+ v)ψ(< a−1w, v >)dv.

Lemma 6.1.4. The function fΦ is in S(R×).

Proof. LetW = Span(wn)⊕V . Let Ξ = Φ|W ∈ S(W ). Let Ξ̂V ∈ S(Span(wn)⊕V ∗) be the partial Fourier
transform of Ξ w.r.t. V . For any a ∈ R× let ϕ(a) ∈ V ∗ be the functional defined by ϕ(a)(v) = ⟨ae, v⟩.
Consider the closed embedding φ : R× → Span(wn)⊕V ∗ defined by φ(a) = (a, ϕ(a−1)). Now by Lemma

6.1.2, fΦ = Ξ̂V ◦ φ ∈ S(R×). �
Proof of Lemma 6.0.5. It is left to prove that

fΦ(a) = |a|−n
2+1

∫
Ωn,ψD (F(Φ),

(
−a−1wn−1 0

0 b

)
)db.

Let δae+V ∈ S(H) and δawn+V ⊥ ∈ S(H) be the Haar measures on ae+ V and awn+V
⊥ correspondingly.

Let fa, ga ∈ C∞(H) be defined by fa(x) = ψ(< ae, x >) and ga(x) = ψ(< awn, x >). By Lemmas 6.1.2
and 6.1.3 the assertion follows from the fact that

δae+V g−a−1 = F∗(δ−a−1wn+V ⊥fa).

�
6.2. Proof of Theorem 6.0.3.

We prove the theorem by induction on n. From now on we suppose that it holds for every r < n.

Lemma 6.2.1. It is enough to prove Theorem 6.0.3 for the case Φ ∈ S(Hn(R⊕R)) and Ψ ∈ S(Hn(C)).

Proof. Suppose that there exist Φ ∈ Sdet,R×
(Hn(R⊕R)) and Ψ ∈ Sdet,R×

(Hn(C)) that form a counterex-
ample for Theorem 6.0.3. We have to show that then there exist Φ′ ∈ S(Hn(R⊕R)) and Ψ′ ∈ S(Hn(C))
that also form a counterexample.

We have Ωn,ψR⊕R(Φ) = γΩn,ψC (Ψ) but Ωn,ψR⊕R(Φ, g) ̸= γ(g, ψ)Ωn,ψC (Ψ, g) for some g. Let f ∈ C∞c (R) such
that f(det(g)) = 1. Let f ′ := f ◦ det, and define Φ′ := f ′Φ and Ψ′ := f ′Ψ. Note that Φ′ and Ψ′ are
Schwartz functions and form a counterexample since determinant is invariant under the action of N . �

Lemma 6.2.2. Let Φ ∈ S(Hn(R ⊕ R)) and Ψ ∈ S(Hn(C)) such that Ωn,ψR⊕R(Φ) = γΩn,ψC (Ψ). Let

g =

(
x 0
0 y

)
, where x ∈ Si(D) and y ∈ Hn−i(D). Then Ωn,ψR⊕R(Φ, g) = γ(g, ψ)Ωn,ψC (Ψ, g).

This lemma follows from the induction hypotheses using intermediate Kloostermann integrals, i.e.
integration over Nn

i (D) (cf. §§3.2.1).
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Lemma 6.2.3. Let Φ ∈ S(Hn(R⊕R)) and Ψ ∈ S(Hn(C)) such that Ωn,ψR⊕R(Φ) = γΩn,ψC (Ψ). Let g = awn

where a ∈ R×. Then Ωn,ψR⊕R(Φ, g) = γ(g, ψ)Ωn,ψC (Ψ, g).

Proof. Indeed

Ωn,ψR⊕R(Φ, g) = |a|−n
2+1

∫
Ωn,ψR⊕R(F(Φ),

(
−a−1wn−1 0

0 b

)
)db =

= |a|−n
2+1

∫
c(ψ,C)−n(n−1)/2γ(

(
−a−1wn−1 0

0 b

)
, ψ)Ωn,ψC (F(Ψ),

(
−a−1wn−1 0

0 b

)
)db =

= c(ψ,C)−n(n−1)/2γ(−a−1wn−1, ψ) sign(det(−a−1wn−1))Ωn,ψC (Ψ, g) = γ(g, ψ)Ωn,ψC (Ψ, g).

Here, the first and the third equality follow from Lemma 6.0.5, while the second equality follows from the
previous lemma (Lemma 6.2.2) and the inversion formula (see Corollary 3.2.7). The last equality holds
by definition of γ (Notation 6.0.1). �

The theorem follows now from the last 3 lemmas.

Appendix A. Schwartz functions on Nash manifolds

In this appendix we give some complementary facts about Nash manifolds and Schwartz functions on
them and prove Property 2.2.7 and Theorems 2.2.15 and 2.2.13 from the preliminaries.

Theorem A.0.1 (Local triviality of Nash manifolds). Any Nash manifold can be covered by finite number
of open submanifolds Nash diffeomorphic to Rn.

For proof see [Shi87, Theorem I.5.12].

Theorem A.0.2. [Nash tubular neighborhood] Let M be a Nash manifold and Z ⊂ M be closed Nash
submanifold. Then there exists an finite cover Z = ∪Zi by open Nash submanifolds of Z, and open
embeddings NM

Zi
↪→M that are identical on the zero section.

This follows from e.g. [AG08, Corollary 3.6.3].

Notation A.0.3. We fix a system of semi-norms on S(Rn) in the following way:

Nk(f) := max
{α∈Zn

≥0
| |α|≤k}

max
{β∈Zn

≥0
| |β|≤k}

sup
x∈Rn

|xα ∂|β|

(∂x)β
f |.

Notation A.0.4. For any Nash vector bundle E over X we denote by S(X,E) the space of Schwartz
sections of E.

The properties of Schwartz functions on Nash manifolds listed in the preliminaries hold also for
Schwartz sections of Nash bundles.

Remark A.0.5. One can put the notion of push of Schwartz functions in a more invariant setting. Let
ϕ : X → Y be a morphism of Nash manifolds. Let E be a bundle on Y . Let E′ be a bundle on X defined
by E′ := ϕ∗(E ⊗D−1Y )⊗DX , where DX and DY denote the bundles of densities on X and Y . Then we
have a well defined map ϕ∗ : S(X,E′) → S(Y,E).

A.1. Analog of Dixmier-Malliavin theorem.
In this subsection we prove Property 2.2.7. Let us remind its formulation.

Theorem A.1.1. Let ϕ : M → N be a Nash map of Nash manifolds. Then multiplication defines an
onto map S(M)⊗ S(N) � S(M).

First let us remind the formulation of the classical Dixmier-Malliavin theorem.

Theorem A.1.2 (see [DM78]). Let a Lie group G acct continuously on a Fréchet space E. Then
C∞c (G)E = E∞, where E∞ is the subspace of smooth vectors in E and C∞c (G) acts on E by integrating
the action of G.
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Corollary A.1.3. Let L ⊂ V be finite dimensional linear spaces, and let L act on V by translations.
Then S(L) ∗ S(V ) = S(V ), where ∗ means convolution.

Proof of Theorem A.1.1. Step 1. The case N = Rn, M = Rn+k, ϕ is the projection.
Follows from Corollary A.1.3 after applying Fourier transform.

Step 2. The case N = Rn, M = Rk, ϕ - general.
Identify N with the graph of ϕ in N×M . The assertion follows now from the previous step using Property
2.2.5.

Step 3. The general case.
Follows from the previous step using partition of unity (Property 2.2.4) and local triviality of Nash
manifolds (Theorem A.0.1). �

A.2. Dual uncertainty principle.

Notation A.2.1. Let V be a finite dimensional real vector space. Let ψ be a non-trivial additive character

of R. Let µ be a Haar measure on V . Let f ∈ S(V ) be a function. We denote by f̂ ∈ S(V ∗) the Fourier
transform of f defined by µ and ψ.

In this subsection we prove the following generalization of Theorem 2.2.13.

Theorem A.2.2. Let V be a linear space, L ⊂ V and L′ ⊂ V ∗ be subspaces. Suppose that (L′)⊥ " L.
Then

S(V − L) + ̂S(V ∗ − L′) = S(V ).

The following lemma is obvious.

Lemma A.2.3. There exists f ∈ S(R) such that f vanishes at 0 with all its derivatives and F(f)(0) = 1.

Corollary A.2.4. Let L be a quadratic space. Let V := L ⊕ R be enhanced with the obvious quadratic
form. Let g ∈ S(L). Then there exists f ∈ S(V ) such that f ∈ S(V − L) and F(f)|L = g.

Corollary A.2.5. Let L be a quadratic space. Let V := L⊕ Re be enhanced with the obvious quadratic
form. Let g ∈ S(L). Let i be a natural number. Then there exists f ∈ S(V ) such that f ∈ S(V − L),
∂iF(f)
(∂e)i |L = g and ∂iF(f)

(∂e)j |L = 0 for any j < i.

Corollary A.2.6. Let L be a quadratic space. Let V := L⊕ Re be enhanced with the obvious quadratic
form. Let g ∈ S(L). Then for all i and ε there exists f ∈ S(V ) such that Ni−1(f) < ε, f ∈ S(V − L),
∂iF(f)
(∂e)i |L = g and ∂iF(f)

(∂e)j |L = 0 for any j < i.

Proof. Let f ∈ S(V ) be s.t. f ∈ S(V − L), ∂
iF(f)
(∂e)i |L = g and ∂iF(f)

(∂e)j |L = 0 for any j < i.

Let f t ∈ S(V ) defined by f t(x + αe1) = ti+2f(x + tαe1). It is easy to see that ∂iF(f)
(∂e)i |L = g and

∂iF(f)
(∂e)j |L = 0 for any j < i. Also it is easy to see that lim

t→0
Ni−1(f

t) = 0. This implies the assertion. �

Corollary A.2.7. Let L be a quadratic space. Let V := L⊕ Re be enhanced with the obvious quadratic
form. Let {gi}∞i=0 ∈ S(L). Then there exists f ∈ S(V ) such that f vanishes on L with all its derivatives

and ∂iF(f)
(∂e)i |L = gi.

Proof. Define 3 sequences of functions fi, hi ∈ S(V ), g′i ∈ S(L) recursively in the following way: f0 = 0.

g′i = gi− ∂iF(fi−1)
(∂e)i |L. Let hi ∈ S(V ) s.t. hi ∈ S(V −L), Ni−1(hi) < 1/2i, ∂

iF(hi)
(∂e)i |L = g′i and

∂iF(hi)
(∂e)j |L = 0

for any j < i. Define fi = fi−1 + hi.
Clearly f := lim

i→∞
fi exists and satisfies the requirements. �

Corollary A.2.8. Let L be a quadratic space. Let V := L⊕ Re be enhanced with the obvious quadratic
form.

Then S(V − L) + F(S(V − L)) = S(V ).



SMOOTH TRANSFER (THE ARCHIMEDEAN CASE) 21

Proof. Let f ∈ S(V ). Let f ′ ∈ S(V − L) s.t. ∂iF(f ′)
(∂e)i |L = ∂iF(f)

(∂e)i |L. Let f ′′ = f − f ′. Clearly

f ′′ ∈ F(S(V − L)). �
Corollary A.2.9. Let V be a linear space, L ⊂ V and L′ ⊂ V ∗ be subspaces of codimension 1. Suppose
that (L′)⊥ " L. Then

S(V − L) + ̂S(V ∗ − L′) = S(V ).

Proof. Choose a non-degenerate quadratic form on V s.t. L⊥(L′)⊥. This form gives an identification
V → V ∗ which maps L to L′. Now the corollary follows from the previous corollary. �

Now we are ready to prove Theorem A.2.2.

Proof of Theorem A.2.2. Let M ⊃ L be a sub-space in V of codimension 1 s.t. M⊥ " L′. Let M ′ ⊃ L′

be a sub-space in V ∗ of codimension 1 s.t. M⊥ " M ′. The theorem follows now from the previous
corollary. �

Appendix B. Coinvariants in Schwartz functions

Definition B.0.1. Let a Nash group G act on a Nash manifold X. A tempered G-equivariant bundle
E over X is a Nash bundle E with an equivariant structure ϕ : a∗(E) → p∗(E) (here a : G×X → X is
the action map and p : G×X → X is the projection) such that ϕ corresponds to a tempered section of the
bundle Hom(a∗(E), p∗(E)) (for the definition of tempered section see e.g. [AG08]), and for any element
α in the Lie algebra of G the derivation map a(α) : C∞(X,E) → C∞(X,E) preserves the sub-space of
Nash sections of E.

In this subsection we prove the following generalization of Theorem 2.2.15.

Theorem B.0.2. Let a connected algebraic group G act on a real algebraic manifold X. Let Z be a
G-invariant Zariski closed subset of X. Let g be the Lie algebra of G. Let E be a tempered G-equivariant
bundle over X. Suppose that for any z ∈ Z and k ∈ Z≥0 we have

(E|z ⊗ Symk(CNX
Gz,z)⊗ ((∆G)|Gz/∆Gz ))gz = 0.

Then
(S(X,E)/S(X − Z,E))g = 0.

For the proof of this theorem we will need some auxiliary results.

Lemma B.0.3. Let V be a representation of a Lie algebra g. Let F be a finite g-invariant filtration of
V . Suppose grF (V )g = 0. Then Vg = 0.

The proof is evident by induction on the length of the filtration.

Lemma B.0.4. Let V be a representation of a finite dimensional Lie algebra g. Let Fi be a countable
decreasing g-invariant filtration of V . Suppose

∩
F i(V ) = 0, F 0(V ) = V and that the canonical map

V → lim
←

(V/F i(V )) is an isomorphism. Suppose also that griF (V )g = 0. Then Vg = 0.

This lemma is standard and we included its proof for the sake of completeness.

Proof. We have to prove that the map g⊗ V → V is onto. Let v ∈ V . We will construct in an inductive
way a sequence of vectors wi ∈ g⊗V/F i(V ) s.t. their image under the action map g⊗V/F i(V ) → V/F i(V )
coincides with the image of v under the quotient map V → V/F i(V ). Define w0 = 0. Suppose we have
already defined wn and we have to define wn+1. Let w

′
n+1 be an arbitrary lifting of wn to g⊗V/Fn+1(V ).

Let v′n+1 be the image of w′n+1 under the action map g ⊗ V/Fn+1(V ) → V/Fn+1(V ) and let vn+1 be
the image of v under the quotient map V → V/Fn+1(V ). Let dv = vn+1 − v′n+1. Clearly dv lies in
Fn(V )/Fn+1(V ). Let dw be its lifting to g⊗ (Fn(V )/Fn+1(V )). Denote wn+1 = w′n+1 + dw.

Since g is finite dimensional, the canonical map g ⊗ V → lim
←

g ⊗ (V/F i(V )) is an isomorphism.

Therefore there exists a unique w ∈ g ⊗ V s.t. its image in g ⊗ (V/F i(V )) is wi. Thus the image of w
under the map g⊗ V → V is v. �
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Notation B.0.5. Let Z be a locally closed semi-algebraic subset of a Nash manifold X. Let E be a Nash
bundle over X. Denote

SX(Z,E) := S(X − (Z − Z), E)/S(X − Z,E).

Here we identify S(X − Z,E) with a closed subspace of S(X − (Z − Z), E) using the description of
Schwartz functions on an open set (property 2.2.3).

Lemma B.0.6. Let Y be a locally closed semi-algebraic subset of a Nash manifold X. Let U ⊂ X be
an open semi-algebraic subset of X that includes Y . Then extension by zero defines an isomorphism
SU (Y ) → SX(Y ).

Proof. Replacing X by X − (Z − Z) and U by U − (Z − Z) we may assume that Z is closed in X (and
in U). Clearly the extension by zero defines an injection e : SU (Y ) → SX(Y ). In order to show that the
extension map is onto we have to show that S(X) = S(U) + S(X − Y ). This follows from partition of
unity (Property 2.2.4).

�

Corollary B.0.7. Let X be a Nash manifold and Z ⊂ X be a locally closed semi-algebraic subset. Let
E be a Nash bundle over X. Let Si be a finite stratification of Z by locally closed semi-algebraic subsets,

i.e. Zi :=
∪i
j=1 Si is closed in Z for every i. Then SX(Z,E) has a canonical descending filtration s.t.

gri(SX(Z,E)) ∼= SX(Si, E)).

Proof. Replacing X by X − (Z − Z) we may assume that Z is closed. Let SX(Z,E)i := S(X −
Zi−1, E)/S(X − Z,E) ⊂ SX(Z,E). Then gri(SX(Z,E)) = SX(Z,E)i/SX(Z,E)i+1 = S(X −
Zi−1, E)/S(X − Zi, E) and SX(Zi, E) = S(X,E)/S(X − Zi, E). Taking U = X − Zi−1 and Y = Si
in the previous lemma we get S(X − Zi−1, E)/S(X − Zi, E) ∼= S(X,E)/S(X − Zi, E) and hence
gri(SX(Z,E)) ∼= SX(Zi, E)). �

Lemma B.0.8. Let X be a Nash manifold and Z ⊂ X be Nash submanifold. Then SX(Z) has a canonical
countable decreasing filtration satisfying

∩
(SX(Z))i = 0 s.t. gri(SX(Z,E)) ∼= S(Z, Symi(CNX

Z )⊗ E).

Proof. It follows from the proof of Corollary 5.5.4. in [AG08].
�

Lemma B.0.9 (E. Borel). Let X be a Nash manifold and Z ⊂ X be Nash submanifold. Then the natural
map

SX(Z,E) → lim
←

(SX(Z,E))/SX(Z,E))i)

is an isomorpihsm.

Proof. Step 1. Reduction to the case when X is a total space of a bundle over Z.
It follows immediately from the existence of Nash tubular neighborhood (Theorem A.0.2).

Step 2. Reduction to the case when Z = Rn is standardly embedded inside X = Rn+k.
It follows immediately from local triviality of Nash manifolds (Theorem A.0.1) and partition of unity
(Property 2.2.4).

Step 3. Proof for the case when Z = Rn standardly embedded inside X = Rn+k.
It is the same as the proof of the classical Borel Lemma. �

Definition B.0.10. We call an action of a Nash group G on a Nash manifold X factorisable if the map
ϕG,X : G×X → X ×X defined by (g, x) 7→ (gx, x) has a Nash image and is a submersion onto it.

Theorem B.0.11 (Chevalley). Let a real algebraic group act on a real algebraic variety X. Then there
exists a finite G-invariant smooth stratification Xi of X s.t. the action of G on Xi is factorizable.

Proof. By the classical Chevalley Theorem there exists a Zariski open subset U ⊂ G ×X s.t. the map
ϕG,X |U is a submersion to its smooth image. Let X0 ⊂ X be the projection of U to X. It is easy
to see that ϕG,X |G×X0 is a submersion to its smooth image. The theorem now follows by Noetherian
induction. �
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Theorem B.0.12. Let a Nash group G act factorizably on a Nash manifold X and E be a tempered
G-equivariant bundle over X. Suppose that for any x ∈ X we have

((E|x ⊗ ((∆G)|Gx/∆Gx)))gx = 0.

Then
(S(X,E))g = 0.

For the proof see section B.1 below.
Now we ready to prove Theorem B.0.2.

Proof of Theorem B.0.2.
Step 1. Reduction to the case when the action of G on Z is factorizable.
By Theorem B.0.11, in the general case there is a stratification Z =

∪n
i=1 Si such that the action on each

strata Si is factorizable. By Corollary B.0.7, the associated graded parts of this filtration are isomorphic
to SX(Zi, E). The reduction follows now from Lemma B.0.3.

Step 2. Reduction to the case when the action of G on Z is factorizable and Z = X.
It follows from the Borel Lemma (Lemma B.0.9) and Lemma B.0.4.

Step 3. Proof for the case that the action of G on Z is factorizable and Z = X.
It follows from Theorem B.0.12. �
B.1. Proof of Theorem B.0.12.

B.1.1. A sketch of the proof. The proof is rather technical, so let us start with a brief description of the
main steps of the proof. First we give a geometric description of the space of co-invariants of an action of
a Nash group G on the space of Schwartz sections of a G-equivariant bundle, see Corollary B.1.9 below.
In the notation of Theorem B.0.12 this corollary describes gS(X,E).

Then we try to generalize this description to the case of Nash family of groups (see Definition B.1.10
below) and furthermore to the case of Nash family of Nash torsors, i.e. a family of spaces which will
become groups after a choice of a point in each space (see Definition B.1.21 below). Unfortunately we
can not generalize Corollary B.1.9 completely for this case, but we can easily obtain its partial analog
(see Corollary B.1.17 below).

Now we attach to our situation a family of torsors parameterized by an appropriate subset of X ×X.
Namely for each pair of points in X we consider the subset of G consisting of elements which connect
those points.

Then we use our descriptions of the spaces of co-invariants and conclude that in order to show the
vanishing of g co-invariants of S(X,E) it is enough to show vanishing of co-invariants of a certain family
of finite dimensional representations of the family of torsors described above.

This follows from the conditions of the theorem using Lemma B.1.18 below.

B.1.2. A description of the space of co-invariants.

Notation B.1.1. Let ϕ : X → Y be a map of (Nash) manifolds.
(i) Denote DX

Y := Dϕ := ϕ∗(D∗Y )⊗DX .
(ii) Let E → Y be a (Nash) bundle. Denote ϕ?(E) = ϕ∗(E)⊗DX

Y .

Remark B.1.2. Note that
(i) If ϕ is a submersion then for all y ∈ Y we have DX

Y |ϕ−1(y)
∼= Dϕ−1(y).

(ii) If ϕ is a submersion then by Remark A.0.5 we have a well defined map ϕ∗ : S∗(X,ϕ?(E)) → S∗(Y,E).
(iii) If a Lie group G acts on a smooth manifold X and E is a G-equivariant vector bundle (i.e. we have
a map p∗(E) → a∗(E), where p : G ×X → X is the projection and a : G ×X → X is the action) then
we also have a natural map p?(E) → a?(E). If G, X and E are Nash and the actions of G on X and
E are Nash then the map p?(E) → a?(E) is Nash. If the action of G on E is tempered then the map
p?(E) → a?(E) corresponds to a tempered section of Hom(p?(E), a?(E)).

Notation B.1.3. Let G be a Nash group. We denote

S(G,DG)0 := {f ∈ S(G,DG)|
∫
G

f = 0}.
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Lemma B.1.4. Let G be a connected Nash group and g be its Lie algebra. Then gS(G,DG) = S(G,DG)0.

For the proof we will need the following lemma which is a special case of [AG10, Theorem 3.1.8].

Lemma B.1.5. Let X be an n-dimensional connected orientable Nash manifold. Let 0 ≤ i ≤ n and
let ΩiX denote the bundle of differential i-forms on X. Then the image of the De-Rham differential

d : S(X,Ωn−1X ) → S(X,ΩnX) is of co-dimension 1.

Proof of lemma B.1.4. The inclusion gS(G,DG) ⊂ S(G,DG)0 is evident. It remains to prove that
gS(G,DG) is of co-dimension 1 in S(G,DG).

The proof of this fact is analogous to the proof of Proposition 4.0.11 in [AG10]. For the sake of
completeness, let us perform it. Since G is orientable we will identify ΩnG with DG. By lemma B.1.5 it
is enough to prove that the image of the derivation map ϕ : g ⊗ S(G,DG) → S(G,DG) coincides with
the image of d : S(X,Ωn−1X ) → S(X,ΩnX) . Note the the map ψ : g ⊗ S(G,DG) → S(X,Ωn−1X ) defined
by ψ(α, ω) = iα(ω) is surjective. By the homotopy formula for Lie derivative, for any α ∈ g and any
ω ∈ S(G,ΩnG) we have αω = d(iα(ω)). Therefore ϕ = d ◦ ψ. This proves that Imϕ = Imd. �

Notation B.1.6. Let G be a Nash group, X be a Nash manifold and E be a Nash bundle over X. Let
p : G×X → X be the projection. Denote by S(G×X, p?(E))0,X the kernel of the map

p∗ : S(G×X, p?(E)) → S(X,E).

In cases when there is no ambiguity we will denote it just by S(G×X, p?(E))0.

Lemma B.1.7. Let G be a Nash group, X be a Nash manifold and E be a Nash bundle over X. Let
p : G×X → X be the projection. Then

S(G×X, p?(E))0,X ∼= S(G,DG)0⊗̂S(X,E).

Proof. The sequence

0 → S(G,DG)0 → S(G,DG) → C → 0

is exact. Therefore by Proposition 2.3.2 the sequence

0 → S(G,DG)0⊗̂S(X,E) → S(G,DG)⊗̂S(X,E) → S(X,E) → 0

is also exact. Thus it is enough to show that the map S(G,DG)⊗̂S(X,E) → S(X,E) corresponds to the
map p∗ : S(G × X, p?(E)) → S(X,E) under the identification S(G,DG)⊗̂S(X,E) ∼= S(G × X, p?(E)).
Since those maps are continuous it is enough to check that they are the same on the image of S(G,DG)⊗
S(X,E), which is evident. �

Corollary B.1.8. Let G be a Nash group, X be a Nash manifold and E be a Nash bundle over X. Let
g be the Lie algebra of G. Let p : G×X → X be the projection. Let G act on S(G×X, p?(E)) by acting
on the G coordinate. Then gS(G×X, p?(E)) = S(G×X, p?(E))0,X .

Proof. By Lemma B.1.4, the derivation map ϕ : g ⊗ S(G,DG) → S(G,DG)0 is surjective. Thus by
Proposition 2.3.2 so is the derivation map ϕ′ : g⊗S(G,DG)⊗̂S(X,E) → S(G,DG)0⊗̂S(X,E). Therefore
by the last lemma the derivation map ϕ′′ : g⊗ S(G×X, p?(E)) → S(G×X, p?(E))0,X is surjective too.

�

Corollary B.1.9. Let G be a connected Nash group and g be its Lie algebra. Let G act on a Nash
manifold X and let E be a tempered G-equivariant bundle over X. Let p : G×X → X be the projection.
Let a : G×X → X be the action map.

Then gS(X,E) is the image a∗(S(G×X, a?(E))0,X,a) where S(G×X, a?(E))0,X,a denotes the image
of S(G×X, p?(E))0,X under the identification S(G×X, p?(E)) ∼= S(G×X, a?(E)).

Proof. Let G act on S(G×X, p?(E)) by acting on the G coordinate. The identification S(G×X, p?(E)) ∼=
S(G×X, a?(E)) gives us an action of G on S(G×X, a?(E)). It is easy to see that a∗ : S(G×X, a?(E)) →
S(X,E) is a morphism of G-representations. By property 2.2.6 a∗ is surjective. Therefore (gS(X,E)) =
a∗((gS(G×X, a?(E))). The assertion follows now by the previous corollary. �
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B.1.3. Nash family of groups.

Definition B.1.10. A Nash family of groups over a Nash manifold X is a surjective submersion
G → X, a Nash map m : G ×X G → G and a Nash section e : X → G s.t. for any x ∈ X the map
m|G|x×G|x gives a group structure on the fiber G|x and e(x) is the unit of this group.

Definition B.1.11. A Nash family of Lie algebras over a Nash manifold X is a Nash bundle g → X,
a Nash section m of the bundle Hom(g⊗ g, g) s.t. for any x ∈ X the map m(x) : g|x ⊗ g|x → g|x gives a
Lie algebra structure on the fiber g|x .

Definition B.1.12. A Nash family of Lie algebras of a Nash family of groups G over a Nash Manifold
X is the bundle e∗(NG

e(X)) equipped with the natural structure of a Nash family of Lie algebras. We will

denote it by Lie(G).

Notation B.1.13. Let G be a Nash family of groups over a Nash manifold X. Let E be a bundle over X.
Let p : G → X be the projection. Denote by S(G, p?(E))0,X the kernel of the map p∗ : S(G, p?(E))) →
S(X,E). If there is no ambiguity we will denote it by S(G, p?(E))0.

Lemma B.1.14. Let G be a Nash family of groups over a Nash manifold X and g be its family of Lie
algebras. Then the image of the natural map S(X, g)⊗S(G,DG) → S(G,DG) is included in S(G,DG)0,X .

Proof. It follows immediately from the case when X is one point and E is C which follows from Lemma
B.1.4. �
Definition B.1.15. A Nash family of representations of a Nash family of Lie algebras g over a Nash
manifold X is a bundle E over X and a Nash section a of the bundle Hom(g⊗E,E) s.t. for any x ∈ X
the map a(x) : g|x ⊗ E|x → E|x gives a structure of a representation of g|x on the fiber E|x.
Definition B.1.16. Let G be a Nash family of groups over a Nash manifold X. Let g be its family of Lie
algebras. Let p : G → X be the projection. A tempered (finite dimensional) family of representations of
G is a pair (E, a) where E is a Nash bundle over X and a is a tempered section of the bundle End(p∗E)
s.t. for any x ∈ X the section a|G|x gives a structure of a representation of G|x on the fiber E|x and
s.t. the differential of a considered as a section of Hom(g ⊗ E,E) gives a structure of a Nash family of
representations of g on E.

Lemma B.1.14 gives us the following corollary.

Corollary B.1.17. Let G be a Nash family of groups over a Nash manifold X and g be its Lie algebra.
Let (E, a) be a tempered (finite dimensional) family of representations of G. Let ϕ denote the composition

S(G, p?(E))
a→ S(G, p?(E))

p∗→ S(X,E). Then the image of the natural map S(X, g)⊗S(X,E) → S(X,E)
is included in ϕ(S(G, p?(E)⊗DG)0,X).

Proof. Let V be the space S(G, p?(E)) equipped with the action action of the Lie algebra S(X, g) which
is given by the action a. LetW be the same space S(G, p?(E)) equipped with the action of the Lie algebra
S(X, g) which is given by the trivial action of G on E. Note that the maps a :W→V and p∗ : V→S(X,E)
are S(X, g)-equivariant and surjective. The assertion follows now from Lemma B.1.14. �
Lemma B.1.18. Let g be a Nash family of Lie algebras over a Nash manifold X. Let E be a Nash family
of its representations. Consider S(X, g) as a Lie algebra and S(X,E) as its representation. Suppose that
for any x ∈ X we have (E|x)g|x = 0. Then (S(X,E))S(X,g) = 0.

Proof. For any x ∈ X denote by ax the map g|x ⊗ E|x → E|x. By partition of unity (property 2.2.4) we
may assume that E and g are trivial bundles with fibers V and W . Fix a basis for V and W and the
corresponding basis for W ⊗ V . Let S be the collection of coordinate subspaces of W ⊗ V of dimension
dimV . For any L ∈ S denote UL = {x ∈ X|ax(L) = V }. Clearly X =

∪
UL. Thus by partition of unity

we may assume that X = UL for some L. For this case the lemma is evident. �
Corollary B.1.19. Let G be a Nash family of groups over a Nash manifold X and g be its Lie algebra.
Let (E, a) be a tempered (finite dimensional) family of representations of G. Let ϕ denote the composition

S(G, p?(E))
a→ S(G, p?(E))

p∗→ S(X,E).
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Suppose that for any x ∈ X we have (E|x)gx = 0. Then

ϕ(S(G, p?(E))0,X) = S(X,E).

B.1.4. Nash family of torsors.

Definition B.1.20. We call a set G equipped with a map m : G×G×G→ G a torsor if there exists
a group structure on G s.t. m(x, y, z) = z((z−1x)(z−1y)). One may say that a torsor is a group without
choice of identity element.

Definition B.1.21. A Nash family of torsors over a Nash manifold X is a surjective submersion G→ X
and a Nash map m : G×XG×XG→ G s.t. for any x ∈ X the map m|G|x×G|x×G|x gives a torsor structure
on the fiber G|x.

Definition B.1.22. Let G be a Nash family of torsors over a Nash manifold X. Let p : G → X be the
projection. Consider Ker dp as a subbundle of TG. It has a natural structure of a family of Lie algebras
over G. We will call this family the family of Lie algebras of G.

Remark B.1.23. One could define the family of Lie algebras of G to be a family of Lie algebras over X.
This definition would be more adequate, but it is technically harder to phrase it. We did not do it since
it is unnecessary for our purposes.

Definition B.1.24. A representation of a torsor G is a pair (V,W ) of vector spaces and a morphism
of torsors G→ Iso(V,W ).

Definition B.1.25. Let G be a Nash family of torsors over a Nash manifold X. Let g be its family
of Lie algebras. Let p : G → X by the projection. A tempered (finite dimensional) family of
representations of G is a triple (E,L, a), where E and L are (Nash) bundles over X and a is a
tempered section of the bundle Hom(p∗E, p∗L) s.t. for any x ∈ X the section a|G|x gives a structure of
a representation of G|x on the fibers E|x and L|x and s.t. the differential of a considered as a section of
Hom(g⊗ p∗L, p∗L) gives a structure of a Nash family of representations of g on p∗L.

Notation B.1.26. Let G be a Nash family of torsors over a Nash manifold X. Let E be a bundle
over X. Let p : G → X be the projection. Again we denote by S(G, p?(E))0,X the kernel of the map
p∗ : S(G, p?(E))) → S(X,E). If there is no ambiguity we will denote it by S(G, p?(E))0.

Corollary B.1.19 gives us the following corollary.

Corollary B.1.27. Let G be a Nash family of torsors over a Nash manifold X and g be its family of Lie
algebras. Let (E,L, a) be a tempered (finite dimensional) family of representations of G. Let ϕ denote
the composition

S(G, p?(E))
a→ S(G, p?(L)) p∗→ S(X,L).

Suppose that for any x ∈ G we have (L|p(x))gx = 0. Then

ϕ(S(G, p?(E))0) = S(X,L).

For the proof we will need [AG10, Theorem 2.4.3]. Let us recall it:

Theorem B.1.28. Let M and N be Nash manifolds and ν : M → N be a surjective submersive Nash
map. Then locally (in the restricted topology) it has a Nash section, i.e. there exists a finite open cover

N =
k∪
i=1

Ui such that ν has a Nash section on each Ui.

Now we ready to deduce the corollary.

Proof of Corollary B.1.27. By Theorem B.1.28 we can cover X by finitely many Nash open sets X =
k∪
i=1

Ui such that p|p−1(Ui) will have a section. Using partition of unity (property 2.2.4) we may assume

that p have a section. thus we G becomes a Nash family of groups. The assertion follows now from
Corollary B.1.19. �
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B.1.5. Proof of Theorem B.0.12. By Lemma B.1.9 it is enough to show that

a∗(S(G×X, a?(E))0,X,a) = S(X,E).

Let Y be the image of the map b : G × X → X × X defined by b(g, x) = (x, gx). Let Ei = p?i (E) for
i = 1, 2. Here pi : Y → X is the projection to the i’s coordinate. Note that G×X has a natural structure
of a family of torsors over Y and the G-equivariant structure on E gives a family of representations
(ψ,E1, E2) of the family of torsors b : G×X → Y . It is enough to show that

b∗(S(G×X, a?(E)))0) = S(Y,E2).

Recall that a∗(S(G × X, a?(E))0,X,a) is the image of S(G × X, p?(E))0,X under the identification ϕ :
S(G × X, a?(E)) → S(G × X, p?(E))). Note that S(G × X, p?(E))0,X includes S(G × X, p?(E))0,Y .
Therefore it is enough to show that the image of S(G×X, b?(E1))0,Y under the composition

S(G×X, b?(E1)) → S(G×X, b?(E2)) → S(Y,E2)

is S(Y,E2). This follows by Corollary B.1.27 from the fact that for every y ∈ Y we have ((E2)|y)gp2(y)
= 0.

This fact is a reformulation of the fact that

((E|p2(y) ⊗ ((∆G)|Gp2(y)
/∆Gp2(y)

)))gp2(y)
= 0,

which is part of the assumptions of the theorem. �
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