Appendix D. Distinguished representations in the Archimedean case, by Avraham Aizenbud and Erez Lapid

In this appendix we consider representations of $G=G L(n, \mathbb{C})$ and a unitary group $G^{x}=U(p, q) \subset$ G defined with respect to a Hermitian form x with signature (p, q). Recall that we denote complex conjugation by τ, the diagonal torus of G by M_{0} and the upper-triangular Borel subgroup by P_{0}. For a character χ of M_{0} we denote by $I(\chi)$ the representation induced from the character χ on P_{0}.

Let W_{2} be the set of involutions in W. Any $w \in W_{2}$ can be written as a product of g_{w} disjoint transpositions where the number of fixed points of w is $f_{w}=n-2 g_{w}$. Set $\mathfrak{m}(w)=\binom{f_{w}}{q-g_{w}}=\binom{f_{w}}{p-g_{w}}(=0$ if $\left.g_{w}>\mathfrak{w}(x)=\min (p, q)\right)$.

In this appendix we will prove the following result.
Theorem D.1. Suppose that π is the Langlands quotient of $I(\chi)$ where $\chi=\left(\chi_{1}, \ldots, \chi_{n}\right)$ is a character of M_{0} such that $|\chi(t)|=\left|t_{1}\right|^{\lambda_{1}} \cdots\left|t_{n}\right|^{\lambda_{n}}$ with $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then

$$
\begin{equation*}
\operatorname{dim} \operatorname{Hom}_{G^{x}}(\pi, \mathbb{C}) \leq \operatorname{dim} \operatorname{Hom}_{G^{x}}(I(\chi), \mathbb{C}) \leq \sum_{w \in W_{2}: w \chi=\chi^{\tau}} \mathfrak{m}(w) \tag{1}
\end{equation*}
$$

In particular, if π is G^{x}-distinguished then there exists $w \in W_{2}$ with $g_{w} \leq \mathfrak{w}(x)$ such that $w \chi=\chi^{\tau}$. Hence π is τ-invariant and $\mathfrak{w}(\pi) \leq \mathfrak{w}(x)$.

For $w \in W_{2}$ set $I_{w}=\{(i, j): i>j, w(i)<w(j)\}$ and define for any $\kappa: I_{w} \rightarrow \mathbb{Z}_{\geq 0}$ a character of M_{0} by

$$
\alpha_{\kappa}\left(\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)\right)=\prod_{(i, j) \in I_{w}}\left(\left(t_{i} / t_{j}\right)^{\kappa(i, j)}\right) .
$$

Let

$$
S_{w}(\chi)=\left\{\kappa: I_{w} \rightarrow \mathbb{Z}_{\geq 0} \mid \chi^{\tau} w(\chi)^{-1}=\alpha_{\kappa}^{\tau} w\left(\alpha_{\kappa}\right)^{-1}\right\}
$$

Note that if χ satisfies the assumption of Theorem D.1 then

$$
S_{w}(\chi)= \begin{cases}\{\kappa \equiv 0\} & \text { if } w \chi=\chi^{\tau} \\ \emptyset & \text { otherwise }\end{cases}
$$

Thus, Theorem D. 1 would follow from the following Proposition which will be proved at the end of the appendix.

Proposition D.2. Let χ be a character of M_{0}. Then

$$
\operatorname{dim} \operatorname{Hom}_{G^{x}}(I(\chi), \mathbb{C}) \leq \sum_{w \in W_{2}} \mathfrak{m}(w)\left|S_{w}(\chi)\right|
$$

We will prove the Proposition by representing the G^{x}-invariant linear forms on $I(\chi)$ as equivariant distributions on the Schwartz space of G / G^{x} and using the analysis of equivariant distributions developed in AG1.

Henceforth, we will use the following notational conventions. For now, G is an arbitrary group.

- For any G-set X and a point $x \in X$ we denote by $G(x)$ the G-orbit of x and by G^{x} the stabilizer of x.
- For any representation of G on a vector space V we denote by V^{G} the subspace of G-invariant vectors in V. For a character χ of G we denote by $V^{G, \chi}$ the subspace of (G, χ)-equivariant vectors in V.
- Given manifolds $L \subset M$ we denote by $N_{L}^{M}:=\left(\left.T_{M}\right|_{L}\right) / T_{L}$ the normal bundle to L in M and by $C N_{L}^{M}:=\left(N_{L}^{M}\right)^{*}$ the conormal bundle. For any point $y \in L$ we denote by $N_{L, y}^{M}$ the normal space to L in M at the point y and by $C N_{L, y}^{M}$ the conormal space.
- The symmetric algebra of a vector space V will be denoted by $\operatorname{Sym}(V)=\oplus_{k \geq 0} \operatorname{Sym}^{k}(V)$.

We will use the theory of Schwartz functions and distributions on Nash manifolds as developed in AG1] generalizing the usual notions for $\mathbb{R}^{n}{ }^{1}$

[^0]We denote the Fréchet space of Schwartz functions on a Nash manifold X by $\mathcal{S}(X)$ and the dual space of Schwartz distributions by $\mathcal{S}^{*}(X):=\mathcal{S}(X)^{*}$. For a closed subset Z of a smooth manifold X we set $\mathcal{S}_{X}^{*}(Z):=\left\{\xi \in \mathcal{S}^{*}(X): \operatorname{Supp}(\xi) \subset Z\right\}$. More generally, for a locally closed subset $Y \subset X$ we set $\mathcal{S}_{X}^{*}(Y):=\mathcal{S}_{X \backslash(\bar{Y} \backslash Y)}^{*}(Y)$.

If U is an open Nash submanifold of X then we have the following exact sequence

$$
0 \rightarrow \mathcal{S}_{X}^{*}(X \backslash U) \rightarrow \mathcal{S}^{*}(X) \rightarrow \mathcal{S}^{*}(U) \rightarrow 0
$$

For any Nash vector bundle E over X we denote by $\mathcal{S}(X, E)$ the space of Schwartz sections of E and by $\mathcal{S}^{*}(X, E)$ its dual space.

We denote by D_{X} the bundle of densities over X (AG1, A.1.1]) and by $\mathcal{G}(X):=\mathcal{S}^{*}\left(X, D_{X}\right)$ the space of generalized functions on X. More generally we set $\mathcal{G}(X, E):=\mathcal{S}^{*}\left(X, E^{*} \otimes D_{X}\right)$ for any Nash vector bundle E over X. Note that $\mathcal{S}(X, E)$ is naturally imbedded into $\mathcal{G}(X, E)$ but not into $\mathcal{S}^{*}(X, E)$. For any locally closed subset Y of X the spaces $\mathcal{S}_{X}^{*}(Y, E), \mathcal{G}_{X}(Y, E)$ and $\mathcal{G}_{X}(Y)$ are similarly defined.

Suppose that a group G acts on a Nash manifold X. Then G naturally acts on $\mathcal{S}(X)$ and $\mathcal{S}^{*}(X)$ and T_{X} has a natural G-equivariant structure. Therefore all the standard bundles constructed from T_{X}, such as D_{X}, also have G-equivariant structure. This gives rise to an action of G on $\mathcal{S}\left(X, D_{X}\right)$ and the dual action on $\mathcal{G}(X)$. Note that the G-action on $\mathcal{G}(X)$ extends the action on $\mathcal{S}(X)$ and similarly the action on $\mathcal{S}^{*}(X)$ extends the action on $\mathcal{S}\left(X, D_{X}\right)$.

We will use some standard facts about equivariant distributions.
Proposition D.3. Let a Nash group G act on a Nash manifold X. Let $Z \subset X$ be a closed G-invariant subset with a G-invariant stratification $Z=\bigcup_{i=0}^{l} Z_{i}$. Let χ be a character of G. Then

$$
\operatorname{dim}\left(\mathcal{S}_{X}^{*}(Z)^{G, \chi}\right) \leq \sum_{i=0}^{l} \sum_{k=0}^{\infty} \operatorname{dim}\left(\mathcal{S}^{*}\left(Z_{i}, \operatorname{Sym}^{k}\left(C N_{Z_{i}}^{X}\right)\right)^{G, \chi}\right)
$$

The proof is the same as in [AGS, corollary B.2.4].
Let $\phi: M \rightarrow N$ be a Nash submersion of Nash manifolds. Let E be a bundle on N. We denote by $\phi^{*}: \mathcal{G}(N, E) \rightarrow \mathcal{G}\left(M, \phi^{*}(E)\right)$ the pull back of generalized functions ([AG3, Notation B.2.5]).
Proposition D.4. Let M be a Nash manifold. Let K be a Nash group. Let $E \rightarrow M$ be a Nash bundle. Consider the standard projection $p: K \times M \rightarrow M$. Then the map $p^{*}: \mathcal{G}(M, E) \rightarrow \mathcal{G}\left(M \times K, p^{*} E\right)^{K}$ is an isomorphism.

For a proof see [AG3, Proposition B.3.1].
Corollary D.5. Let G be real algebraic group and $H \subset G$ be its closed subgroup. Then $\mathcal{G}(G)^{H} \cong \mathcal{G}(G / H)$.
Proof. By [AG2, Proposition 4.0.6] the map $G \rightarrow G / H$ is a Nash locally trivial fibration ([AG2, Definition 2.4.1]). The assertion follows from Proposition D.4 by a partition of unity argument (cf. [AG1, Theorem 5.2.1]).

The following version of Frobenius reciprocity is a slight generalization of [AG3, Theorem 2.5.7]. For the convenience of the reader we sketch a proof.
Theorem D. 6 (Frobenius reciprocity). Let a Nash group G act transitively on a Nash manifold Z. Let $\varphi: X \rightarrow Z$ be a G-equivariant Nash map. Let $z \in Z$ and let X_{z} be the fiber of z. Let χ be a tempered character of G (AG1, Definition 5.1.1]). Then $\mathcal{S}^{*}(X)^{G, \chi}$ is canonically isomorphic to $\mathcal{S}^{*}\left(X_{z}\right)^{G_{z}, \chi \delta_{H}^{-1} \delta_{G}}$.

Moreover, for any G-equivariant bundle E on X, the space $\mathcal{S}^{*}(X, E)^{G, \chi}$ is canonically isomorphic to $\mathcal{S}^{*}\left(X_{z},\left.E\right|_{X_{z}}\right)^{G_{z}, \chi \delta_{H}^{-1} \delta_{G}}$. Here δ_{G} and δ_{H} are the modulus characters of the groups G and H.
Proof. As in AG3, Theorem 2.5.7] we will prove an equivalent statement for generalized functions. Namely we will construct canonical isomorphisms $H C: \mathcal{G}(X, E)^{G, \chi} \rightarrow \mathcal{G}\left(X_{z},\left.E\right|_{X_{z}}\right)^{G_{z}, \chi}$ and $F r$: $\mathcal{G}\left(X_{z},\left.E\right|_{X_{z}}\right)^{G_{z}, \chi} \rightarrow \mathcal{G}(X, E)^{G, \chi}$. Consider the natural submersion $a: G \times X_{z} \rightarrow X$ and the projection $p: G \times X_{z} \rightarrow X_{z}$. Note that the equivariant structure of E gives us an identification $\phi: a^{*}(E) \rightarrow p^{*}\left(\left.E\right|_{X_{z}}\right)$. consider the tempered function f on $G \times X_{z}$ given by $f(g, x)=\chi^{-1}(g)$. Consider
the map $a^{*, \chi}: H C: \mathcal{G}(X, E)^{G, \chi} \rightarrow \mathcal{G}\left(G \times X_{z}, p^{*}\left(\left.E\right|_{X_{z}}\right)\right)^{G}$ given by $a^{*, \chi}(\xi)=f \phi\left(a^{*}(\xi)\right)$. Here the action of G on $G \times X_{z}$ is on the first coordinate. By Proposition D.4 $\mathcal{G}\left(G \times X_{z}, p^{*}\left(\left.E\right|_{X_{z}}\right)\right)^{G} \cong \mathcal{G}\left(X_{z},\left.E\right|_{X_{z}}\right)$. This gives us the map $H C$. A similar modification to the construction of Fr in [AG3, Theorem 2.5.7] gives rise to $F r$ in our context.

Proof of proposition D.2. Let $G=\mathrm{GL}_{n}(\mathbb{C})$ and $H=U(p, q)$. Note that after identifying D_{G} and $D_{G / H}$ with the trivial bundle (in a G-equivariant way) we have

$$
I(\chi)^{*}=\mathcal{G}(G)^{P_{0}, \chi \delta_{0}^{-1 / 2}}=\mathcal{S}^{*}(G)^{P_{0}, \chi \delta_{0}^{-\frac{1}{2}}}
$$

where P_{0} acts on generalized functions on the left. Therefore

$$
\operatorname{Hom}_{H}(I(\chi), \mathbb{C})=\mathcal{G}(G / H)^{P_{0}, \chi \delta_{0}^{-1 / 2}}=\mathcal{S}^{*}(G / H)^{P_{0}, \chi \delta_{0}^{-\frac{1}{2}}}
$$

We can stratify G / H by P_{0}-orbits. By FLO, Remark 2] any such orbit contains a unique element x of the form $x=w a$ where $w \in W_{2}$ and $a \in M_{0}$ is such that $a_{i}=1$ if $w(i) \neq i$ and $a_{i}= \pm 1$ otherwise. The number of P_{0}-orbits on G / H above a given $w \in W_{2}$ is precisely $\mathfrak{m}(w)$ and moreover,

$$
\begin{equation*}
M_{0}^{x}=M_{0}^{w}=\left\{t \in M_{0}: t w t^{\tau} w=1\right\}=\left\{t w\left(t^{-1}\right)^{\tau} w: t \in M_{0}\right\} \tag{2}
\end{equation*}
$$

Using Proposition D. 3 it suffices to show that for any w and a as above we have

$$
\sum_{k=0}^{\infty} \operatorname{dim}\left(\mathcal{S}^{*}\left(P_{0}(x), \operatorname{Sym}^{k}\left(C N_{P_{0}(x)}^{X}\right)\right)^{P_{0}, \chi \delta_{0}^{-1 / 2}}\right) \leq\left|S_{w}(\chi)\right|
$$

By Theorem D. 6 and the relation $\left.\delta_{0}^{1 / 2}\right|_{P_{0}^{x}}=\delta_{P_{0}^{x}}$ (LR03, Proposition 4.3.2]) we get

$$
\begin{aligned}
\mathcal{S}^{*}\left(P_{0}(x), \operatorname{Sym}^{k}\left(C N_{P_{0}(x)}^{X}\right)\right)^{P_{0}, \chi \delta_{0}^{-1 / 2}}= & \mathcal{S}^{*}\left(\{x\}, \operatorname{Sym}^{k}\left(C N_{P_{0}(x), x}^{X}\right)\right)^{P_{0}, \chi \delta_{0}^{-1 / 2} \delta_{P_{0}^{x}}^{-1} \delta_{0}} \\
& =\mathcal{S}^{*}\left(\{x\}, \operatorname{Sym}^{k}\left(C N_{P_{0}(x), x}^{X}\right)\right)^{P_{0}, \chi}=\left(\operatorname{Sym}^{k}\left(N_{P_{0}(x), x}^{X}\right) \otimes_{\mathbb{R}} \mathbb{C}\right)^{P_{0}, \chi}
\end{aligned}
$$

We reduce to showing that

$$
\operatorname{dim}\left(\operatorname{Sym}\left(N_{P_{0}(x), x}^{G / H}\right) \otimes_{\mathbb{R}} \mathbb{C}\right)^{P_{0}^{x}, \chi} \leq\left|S_{w}(\chi)\right|
$$

To that end it suffices to show that

$$
\begin{equation*}
\operatorname{Sym}\left(N_{P_{0}(x), x}^{G / H}\right) \otimes_{\mathbb{R}} \mathbb{C}=\bigoplus_{\kappa: I_{w} \rightarrow \mathbb{Z} \geq 0} \alpha_{\kappa} \tag{3}
\end{equation*}
$$

as a representation of M_{0}^{x}. Indeed, by (2) we have

$$
\left.\alpha_{\kappa}\right|_{M_{0}^{x}}=\left.\chi\right|_{M_{0}^{x}} \Longleftrightarrow \kappa \in S_{w}(\chi)
$$

and hence it would follow that

$$
\operatorname{dim}\left(\operatorname{Sym}\left(N_{P_{0}(x), x}^{G / H}\right) \otimes_{\mathbb{R}} \mathbb{C}\right)^{P_{0}^{x}, \chi} \leq \operatorname{dim}\left(\operatorname{Sym}\left(N_{P_{0}(x), x}^{G / H}\right) \otimes_{\mathbb{R}} \mathbb{C}\right)^{M_{0}^{x}, \chi} \leq\left|S_{w}(\chi)\right|
$$

as required.
It remains to show (3). We will deduce it by showing that

$$
N_{P_{0}(x), x}^{G / H} \otimes_{\mathbb{R}} \mathbb{C} \cong \bigoplus_{\imath \in I_{w}} \alpha_{\delta_{\imath}}
$$

as a representation of M_{0}^{x} where δ_{\imath} is defined by $\delta_{\imath}(\jmath)=\delta_{\imath, \jmath}$.
We have

$$
N_{P_{0}(x), x}=\operatorname{Herm} / \operatorname{Im}(\phi)
$$

where Herm is the space of $n \times n$ hermitian matrices and $\phi: \operatorname{Lie}\left(P_{0}\right) \rightarrow \operatorname{Herm}$ is defined by $\phi(b)=$ $b w a+w a^{t} b^{\tau}$.

It is easy to see that

$$
\begin{aligned}
& \operatorname{Im}(\phi)=\operatorname{Span}_{\mathbb{C}}\left(\left\{e_{i, w(j)}, e_{w(j), i}: j \geq i\right\}\right) \cap \operatorname{Herm}=\operatorname{Span}_{\mathbb{C}}\left(\left\{e_{i, j}, e_{j, i}: w(j) \geq i\right\}\right) \cap \operatorname{Herm} \\
&=\operatorname{Span}_{\mathbb{C}}\left(\left\{e_{i, j}: w(j) \geq i \text { or } w(i) \geq j\right\}\right) \cap \operatorname{Herm}
\end{aligned}
$$

where $e_{i, j}$ is the standard basis for $n \times n$ matrices. Therefore

$$
\begin{aligned}
& N_{P_{0}(x), x} \cong \operatorname{Span}_{\mathbb{C}}\left(\left\{e_{i, j}: i>w(j), j>w(i)\right\}\right) \cap \operatorname{Herm}= \\
& \quad=\operatorname{Span}_{\mathbb{C}}\left(\left\{e_{i, w(j)}: i>j, w(j)>w(i)\right\}\right) \cap \operatorname{Herm}=\operatorname{Span}_{\mathbb{C}}\left(\left\{e_{i, w(j)}:(i, j) \in I_{w}\right\}\right) \cap \text { Herm } \\
& \quad \cong \bigoplus_{\left\{(i, j) \in I_{w}: i=w(j)\right\}} \operatorname{Span}_{\mathbb{R}}\left(e_{i, w(j)}\right) \oplus \bigoplus_{\left\{(i, j) \in I_{w}: i<w(j)\right\}} \operatorname{Span}_{\mathbb{R}}\left(e_{i, w(j)}+e_{w(j), i}, \sqrt{-1}\left(e_{i, w(j)}-e_{w(j), i}\right)\right) .
\end{aligned}
$$

By (2) the action of M_{0}^{x} on $e_{i, w(j)}$ is given by $\alpha_{\delta_{(i, j)}}=t_{i} / t_{j}$. Thus as a representation of M_{0}^{x} we have

$$
\begin{aligned}
N_{P_{0}(x), x} \otimes_{\mathbb{R}} \mathbb{C} \cong & \bigoplus_{\left\{(i, j) \in I_{w}, i=w(j)\right\}} \alpha_{\delta_{(i, j)}} \oplus \bigoplus_{\left\{(i, j) \in I_{w}, i<w(j)\right\}}\left(\alpha_{\delta_{(i, j)}} \oplus \alpha_{\delta_{(i, j)}}^{\tau}\right) \\
& =\bigoplus_{\left\{(i, j) \in I_{w}, i=w(j)\right\}} \alpha_{\delta_{(i, j)}} \oplus \bigoplus_{\left\{(i, j) \in I_{w}, i<w(j)\right\}}\left(\alpha_{\delta_{(i, j)}} \oplus \alpha_{\left.\delta_{(w(j), w(i))}\right)}\right) \\
& =\bigoplus_{\left\{(i, j) \in I_{w}, i=w(j)\right\}} \alpha_{\delta_{(i, j)}} \oplus \bigoplus_{\left\{(i, j) \in I_{w}, i<w(j)\right\}} \alpha_{\delta_{(i, j)}} \oplus \bigoplus_{\left\{(i, j) \in I_{w}, i>w(j)\right\}} \alpha_{\delta_{(i, j)}}=\bigoplus_{\imath \in I_{w}} \alpha_{\delta_{\imath}}
\end{aligned}
$$

as required.
Theorem D.7. For any $\lambda \in \mathfrak{a}_{M_{0}, \mathbb{C}}^{*}$ with $\Re \lambda_{1}>\cdots>\Re \lambda_{n}$ the map $\alpha \mapsto J(\alpha, \lambda)$ defines an isomorphism $\mathcal{E}_{M_{0}}\left(X_{M_{0}}, 1_{M_{0}}^{*}\right) \rightarrow \mathcal{E}_{G}\left(X, I\left(1_{M_{0}}, \lambda\right)^{*}\right)$.
Proof. We showed that only open orbits contribute. Then we continue as in the proof of FLO, Lemma 11.3]

References

AG1 A. Aizenbud, D. Gourevitch, Schwartz functions on Nash Manifolds, International Mathematics Research Notices, Vol. 2008, 2008: rnm155-37 DOI: 10.1093/imrn/rnm155. See also arXiv:0704.2891 [math.AG].
AG2 Aizenbud, A.; Gourevitch, D.: De-Rham theorem and Shapiro lemma for Schwartz functions on Nash manifolds. To appear in the Israel Journal of Mathematics. See also arXiv:0802.3305v2 [math.AG].
AG3 Aizenbud, A.; Gourevitch, D.: Generalized Harish-Chandra descent, Gelfand pairs and an Archimedean analog of Jacquet-Rallis' Theorem. Duke Mathematical Journal, Volume 149, Number 3,509-567 (2009). See also arXiv: 0812.5063[math.RT].

AGS A. Aizenbud, D. Gourevitch, E. Sayag : $\left(\operatorname{GL}_{n+1}(F), \mathrm{GL}_{n}(F)\right)$ is a Gelfand pair for any local field F. arXiv:0709.1273v3 [math.RT], to appear in Compositio Mathematica.
[FLO] B. Feigon, E. Lapid, O. Offen. On representations distinguished by unitary groups, preprint (2010).
[LR03] E. Lapid and J. Rogawski, Periods of Eisenstein series: the Galois case, Duke Math. J. 120 (2003), no. 1, 153-226. MR2010737 (2004m:11077)

[^0]: ${ }^{1}$ In the present context we will only apply it to smooth real algebraic manifolds.

