
Appendix D. Distinguished representations in the Archimedean case, by Avraham
Aizenbud and Erez Lapid

In this appendix we consider representations of G = GL(n,C) and a unitary group Gx = U(p, q) ⊂
G defined with respect to a Hermitian form x with signature (p, q). Recall that we denote complex
conjugation by τ , the diagonal torus of G by M0 and the upper-triangular Borel subgroup by P0. For a
character χ of M0 we denote by I(χ) the representation induced from the character χ on P0.

Let W2 be the set of involutions in W . Any w ∈ W2 can be written as a product of gw disjoint
transpositions where the number of fixed points of w is fw = n− 2gw. Set m(w) =

(
fw
q−gw

)
=
(
fw
p−gw

)
(= 0

if gw > w(x) = min(p, q)).
In this appendix we will prove the following result.

Theorem D.1. Suppose that π is the Langlands quotient of I(χ) where χ = (χ1, ..., χn) is a character
of M0 such that |χ(t)| = |t1|λ1 · · · |tn|λn with λ1 ≥ · · · ≥ λn. Then

(1) dim HomGx(π,C) ≤ dim HomGx(I(χ),C) ≤
∑

w∈W2:wχ=χτ

m(w).

In particular, if π is Gx-distinguished then there exists w ∈ W2 with gw ≤ w(x) such that wχ = χτ .
Hence π is τ -invariant and w(π) ≤ w(x).

For w ∈ W2 set Iw = {(i, j) : i > j, w(i) < w(j)} and define for any κ : Iw → Z≥0 a character of M0

by
ακ(diag(t1, ..., tn)) =

∏
(i,j)∈Iw

(
(ti/tj)κ(i,j)

)
.

Let
Sw(χ) = {κ : Iw → Z≥0 | χτw(χ)−1 = ατκw(ακ)−1}.

Note that if χ satisfies the assumption of Theorem D.1 then

Sw(χ) =

{
{κ ≡ 0} if wχ = χτ ,

∅ otherwise.

Thus, Theorem D.1 would follow from the following Proposition which will be proved at the end of
the appendix.

Proposition D.2. Let χ be a character of M0. Then

dim HomGx(I(χ),C) ≤
∑
w∈W2

m(w)|Sw(χ)|.

We will prove the Proposition by representing the Gx-invariant linear forms on I(χ) as equivariant
distributions on the Schwartz space of G/Gx and using the analysis of equivariant distributions developed
in [AG1].

Henceforth, we will use the following notational conventions. For now, G is an arbitrary group.
• For any G-set X and a point x ∈ X we denote by G(x) the G-orbit of x and by Gx the stabilizer

of x.
• For any representation of G on a vector space V we denote by V G the subspace of G-invariant

vectors in V . For a character χ of G we denote by V G,χ the subspace of (G,χ)-equivariant vectors
in V .

• Given manifolds L ⊂ M we denote by NM
L := (TM

∣∣
L

)/TL the normal bundle to L in M and by
CNM

L := (NM
L )∗ the conormal bundle. For any point y ∈ L we denote by NM

L,y the normal space
to L in M at the point y and by CNM

L,y the conormal space.
• The symmetric algebra of a vector space V will be denoted by Sym(V ) = ⊕k≥0 Symk(V ).

We will use the theory of Schwartz functions and distributions on Nash manifolds as developed in
[AG1] generalizing the usual notions for Rn.1

1In the present context we will only apply it to smooth real algebraic manifolds.
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We denote the Fréchet space of Schwartz functions on a Nash manifold X by S(X) and the dual
space of Schwartz distributions by S∗(X) := S(X)∗. For a closed subset Z of a smooth manifold X we
set S∗X(Z) := {ξ ∈ S∗(X) : Supp(ξ) ⊂ Z}. More generally, for a locally closed subset Y ⊂ X we set
S∗X(Y ) := S∗

X\(Y \Y )
(Y ).

If U is an open Nash submanifold of X then we have the following exact sequence

0→ S∗X(X \ U)→ S∗(X)→ S∗(U)→ 0.

For any Nash vector bundle E over X we denote by S(X,E) the space of Schwartz sections of E and
by S∗(X,E) its dual space.

We denote by DX the bundle of densities over X ([AG1, A.1.1]) and by G(X) := S∗(X,DX) the space
of generalized functions on X. More generally we set G(X,E) := S∗(X,E∗ ⊗DX) for any Nash vector
bundle E over X. Note that S(X,E) is naturally imbedded into G(X,E) but not into S∗(X,E). For any
locally closed subset Y of X the spaces S∗X(Y,E),GX(Y,E) and GX(Y ) are similarly defined.

Suppose that a group G acts on a Nash manifold X. Then G naturally acts on S(X) and S∗(X) and
TX has a natural G-equivariant structure. Therefore all the standard bundles constructed from TX , such
as DX , also have G-equivariant structure. This gives rise to an action of G on S(X,DX) and the dual
action on G(X). Note that the G-action on G(X) extends the action on S(X) and similarly the action
on S∗(X) extends the action on S(X,DX).

We will use some standard facts about equivariant distributions.

Proposition D.3. Let a Nash group G act on a Nash manifold X. Let Z ⊂ X be a closed G-invariant
subset with a G-invariant stratification Z =

⋃l
i=0 Zi. Let χ be a character of G. Then

dim(S∗X(Z)G,χ) ≤
l∑
i=0

∞∑
k=0

dim(S∗(Zi,Symk(CNX
Zi))

G,χ).

The proof is the same as in [AGS, corollary B.2.4].
Let φ : M → N be a Nash submersion of Nash manifolds. Let E be a bundle on N . We denote by

φ∗ : G(N,E)→ G(M,φ∗(E)) the pull back of generalized functions ([AG3, Notation B.2.5]).

Proposition D.4. Let M be a Nash manifold. Let K be a Nash group. Let E → M be a Nash bundle.
Consider the standard projection p : K ×M → M . Then the map p∗ : G(M,E) → G(M ×K, p∗E)K is
an isomorphism.

For a proof see [AG3, Proposition B.3.1].

Corollary D.5. Let G be real algebraic group and H ⊂ G be its closed subgroup. Then G(G)H ∼= G(G/H).

Proof. By [AG2, Proposition 4.0.6] the map G→ G/H is a Nash locally trivial fibration ([AG2, Definition
2.4.1]). The assertion follows from Proposition D.4 by a partition of unity argument (cf. [AG1, Theorem
5.2.1]). �

The following version of Frobenius reciprocity is a slight generalization of [AG3, Theorem 2.5.7]. For
the convenience of the reader we sketch a proof.

Theorem D.6 (Frobenius reciprocity). Let a Nash group G act transitively on a Nash manifold Z. Let
ϕ : X → Z be a G-equivariant Nash map. Let z ∈ Z and let Xz be the fiber of z. Let χ be a tempered
character of G ([AG1, Definition 5.1.1 ]). Then S∗(X)G,χ is canonically isomorphic to S∗(Xz)Gz,χδ

−1
H δG .

Moreover, for any G-equivariant bundle E on X, the space S∗(X,E)G,χ is canonically isomorphic to
S∗(Xz, E

∣∣
Xz

)Gz,χδ
−1
H δG . Here δG and δH are the modulus characters of the groups G and H.

Proof. As in [AG3, Theorem 2.5.7] we will prove an equivalent statement for generalized functions.
Namely we will construct canonical isomorphisms HC : G(X,E)G,χ → G(Xz, E

∣∣
Xz

)Gz,χ and Fr :
G(Xz, E

∣∣
Xz

)Gz,χ → G(X,E)G,χ. Consider the natural submersion a : G × Xz → X and the pro-
jection p : G × Xz → Xz. Note that the equivariant structure of E gives us an identification
φ : a∗(E)→ p∗(E

∣∣
Xz

). consider the tempered function f on G×Xz given by f(g, x) = χ−1(g). Consider
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the map a∗,χ : HC : G(X,E)G,χ → G(G×Xz, p
∗(E

∣∣
Xz

))G given by a∗,χ(ξ) = fφ(a∗(ξ)). Here the action
of G on G × Xz is on the first coordinate. By Proposition D.4 G(G × Xz, p

∗(E
∣∣
Xz

))G ∼= G(Xz, E
∣∣
Xz

).
This gives us the map HC. A similar modification to the construction of Fr in [AG3, Theorem 2.5.7]
gives rise to Fr in our context. �

Proof of proposition D.2. Let G = GLn(C) and H = U(p, q). Note that after identifying DG and DG/H

with the trivial bundle (in a G-equivariant way) we have

I(χ)∗ = G(G)P0,χδ
−1/2
0 = S∗(G)P0,χδ

− 1
2

0

where P0 acts on generalized functions on the left. Therefore

HomH(I(χ),C) = G(G/H)P0,χδ
−1/2
0 = S∗(G/H)P0,χδ

− 1
2

0 .

We can stratify G/H by P0-orbits. By [FLO, Remark 2] any such orbit contains a unique element x of
the form x = wa where w ∈ W2 and a ∈ M0 is such that ai = 1 if w(i) 6= i and ai = ±1 otherwise. The
number of P0-orbits on G/H above a given w ∈W2 is precisely m(w) and moreover,

(2) Mx
0 = Mw

0 = {t ∈M0 : twtτw = 1} = {tw(t−1)τw : t ∈M0}.
Using Proposition D.3 it suffices to show that for any w and a as above we have

∞∑
k=0

dim(S∗(P0(x),Symk(CNX
P0(x)

))P0,χδ
−1/2
0 ) ≤ |Sw(χ)|.

By Theorem D.6 and the relation δ
1/2
0

∣∣
Px0

= δPx0 ([LR03, Proposition 4.3.2]) we get

S∗(P0(x),Symk(CNX
P0(x)

))P0,χδ
−1/2
0 = S∗({x},Symk(CNX

P0(x),x
))
P0,χδ

−1/2
0 δ−1

Px0
δ0

= S∗({x},Symk(CNX
P0(x),x

))P0,χ = (Symk(NX
P0(x),x

)⊗R C)P0,χ.

We reduce to showing that
dim(Sym(NG/H

P0(x),x
)⊗R C)P

x
0 ,χ ≤ |Sw(χ)|

To that end it suffices to show that

(3) Sym(NG/H
P0(x),x

)⊗R C =
⊕

κ:Iw→Z≥0

ακ

as a representation of Mx
0 . Indeed, by (2) we have

ακ
∣∣
Mx

0
= χ

∣∣
Mx

0
⇐⇒ κ ∈ Sw(χ)

and hence it would follow that

dim(Sym(NG/H
P0(x),x

)⊗R C)P
x
0 ,χ ≤ dim(Sym(NG/H

P0(x),x
)⊗R C)M

x
0 ,χ ≤ |Sw(χ)|

as required.
It remains to show (3). We will deduce it by showing that

N
G/H
P0(x),x

⊗R C ∼=
⊕
ı∈Iw

αδı

as a representation of Mx
0 where δı is defined by δı() = δı,.

We have
NP0(x),x = Herm / Im(φ)

where Herm is the space of n × n hermitian matrices and φ : Lie(P0) → Herm is defined by φ(b) =
bwa+ watbτ .

It is easy to see that

Im(φ) = SpanC({ei,w(j), ew(j),i : j ≥ i}) ∩Herm = SpanC({ei,j , ej,i : w(j) ≥ i}) ∩Herm

= SpanC({ei,j : w(j) ≥ i or w(i) ≥ j}) ∩Herm,
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where ei,j is the standard basis for n× n matrices. Therefore

NP0(x),x
∼= SpanC({ei,j : i > w(j), j > w(i)}) ∩Herm =

= SpanC({ei,w(j) : i > j, w(j) > w(i)}) ∩Herm = SpanC({ei,w(j) : (i, j) ∈ Iw}) ∩Herm

∼=
⊕

{(i,j)∈Iw:i=w(j)}

SpanR(ei,w(j))⊕
⊕

{(i,j)∈Iw:i<w(j)}

SpanR(ei,w(j) + ew(j),i,
√
−1(ei,w(j) − ew(j),i)).

By (2) the action of Mx
0 on ei,w(j) is given by αδ(i,j) = ti/tj . Thus as a representation of Mx

0 we have

NP0(x),x ⊗R C ∼=
⊕

{(i,j)∈Iw,i=w(j)}

αδ(i,j) ⊕
⊕

{(i,j)∈Iw,i<w(j)}

(αδ(i,j) ⊕ α
τ
δ(i,j)

)

=
⊕

{(i,j)∈Iw,i=w(j)}

αδ(i,j) ⊕
⊕

{(i,j)∈Iw,i<w(j)}

(αδ(i,j) ⊕ αδ(w(j),w(i)))

=
⊕

{(i,j)∈Iw,i=w(j)}

αδ(i,j) ⊕
⊕

{(i,j)∈Iw,i<w(j)}

αδ(i,j) ⊕
⊕

{(i,j)∈Iw,i>w(j)}

αδ(i,j) =
⊕
ı∈Iw

αδı

as required. �

Theorem D.7. For any λ ∈ a∗M0,C with <λ1 > · · · > <λn the map α 7→ J(α, λ) defines an isomorphism
EM0(XM0 , 1

∗
M0

)→ EG(X, I(1M0 , λ)∗).

Proof. We showed that only open orbits contribute. Then we continue as in the proof of [FLO, Lemma
11.3] �
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