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Abstract

We show that any stack X of finite type over a Noetherian scheme has a presentation
X → X by a scheme of finite type such that X(F ) → X(F ) is onto, for every finite or real
closed field F . Under some additional conditions on X, we show the same for all perfect fields.
We prove similar results for (some) Henselian rings.

We give two applications of the main result. One is to counting isomorphism classes of
stacks over the rings Z/pn; the other is about the relation between real algebraic and Nash
stacks.
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1 Introduction

Let X be an algebraic stack. By definition, there exist a scheme X0 and a submersive smooth map
X → X; such a map is called a presentation of X. Let X1 = X0 ×X X0 be the fiber product. Note
that, in general, X1 is an algebraic space. The two projections s, t : X1 → X0, together with the
diagonal ∆ : X0 → X1 and the composition map c : X1 ×s,X0,t X1 → X1 give a structure of a
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groupoid object (X0, X1, s, t,∆, c) in algebraic spaces: here X0 is the space of objects, X1 is the
space of morphisms, s and t are the source and target maps, ∆ is the identity map, and c is the
composition map.

The groupoid object (X0, X1, s, t,∆, c) is closely related to X. In particular, for any field F ,
there is a natural and fully faithful functor from (X0(F ), X1(F ), s, t,∆, c) to X(F ). For alge-
braically closed fields, this functor is an equivalence of groupoids. However, this is false in general:
taking X to be the classifying space of the group C2 and X0 to be a point, we have that X1 is a
pair of points and, for every field F , the groupoid (X0(F ), X1(F ), s, t,∆, c) has only one object,
whereas the isomorphism classes in X(F ) are in bijection with the square class group of F .

In this paper we show that every algebraic stack has a presentation such that the above functor
is an equivalence of groupoids, for any finite or real-closed field F . We also show that, under some
condition on the stack X, there is a presentation such that the above functor is an equivalence of
groupoids, for any perfect field F . The results also extend to Henselian rings with residue fields
of the above form.

We give two applications of the main result. The first is to the study of the sequence |π0(X(Z/n))|,
where X is a stack defined over Z and π0(X(Z/n)) is the set of isomorphism classes of X(Z/n).
The second is to show that, for any algebraic stack X defined over R, the groupoid X(R) has a
structure of a Nash groupoid.

1.1 Formulation of the main results

We fix a Noetherian scheme S. All the schemes/group schemes/algebraic spaces/algebraic stacks
we will consider will be of finite type over S unless stated otherwise.

Definition 1.1. Let π : X → X be presentation of an algebraic stack and let T ∈ Sch/S be a
scheme.

1. A T -point T → X is π-liftable if it factors through some map T → X (up to isomorphism).

2. We say that π is T -onto if every T point of X is π-liftable.

3. Let S ⊂ Sch/S be a full subcategory of the overcategory of S. We say that π is S-onto if it
is T -onto, for every object of S.

Definition 1.2. We denote:

• by F ⊂ Sch/S the category of spectra of fields,

• by Fperf ⊂ F the category of spectra of perfect fields,

• by Ff ⊂ F the category of spectra of finite fields,

• by Fr ⊂ F the category of spectra of real closed fileds,

• by H ⊂ Sch/S the category of Henselian schemes (i.e. spectra of Henselian local rings),

• and byHperf ,Hf ,Hr the categories of Henselian schemes whose closed points are in Fperf ,Ff ,Fr
respectively.

Definition 1.3 (cf. [DG13, Definition 1.1.8]).
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• Let X be a stack, let T be a scheme, and let x ∈ X(T ) be a T -point. For any T -scheme
R→ T , define Aut(x)(R) := Aut(y) where y is the R-point of X defined by the composition
R→ T → X.

• We say that X is QCA if for any separably closed field F and for any F -point x of X, the
functor Aut(x) is represented by a linear algebraic group

The main result in this paper is the following:

Theorem A (See §3). Suppose X is a finite type stack over S. Then

1. There is a presentation X → X which is Hf -onto and Hr-onto.

2. If X is QCA, then there is a presentation X → X which is Hperf-onto.

We will deduce this theorem from a statment that any surjective presentation of a stack satisfies
some weaker condition that we define now:

Definition 1.4. Let S ⊂ F and let φ : X → Y be a morphism of stacks. We say that φ is
(n,S)-almost onto if, for every SpecF ∈ S and any F -point u : SpecF → Y, there is a separable
field extension E/F of degree at most n such that the composition SpecE → SpecF → Y factors
through φ (up to isomorphism).

Theorem B (See §2). Let π : X → X be a surjective map of finite type between a scheme X and
a stack X. Then there exists n such that

1. π is (n,Ff )-almost onto.

2. If X is QCA, then π is (n,F)-almost onto.

1.2 Applications

Theorem A implies:

Corollary C. Let X be a stack of finite type over SpecZ. Then

1. For every p, the power series
∑
|π0(X(Z/pn))|tn is a rational function of t.

2. The Dirichlet series
∑

n |π0(X(Z/n)|n−s has a rational abscissa of convergence.

Proof. By Theorem A, there is a presentation X → X such that, for every finite ring R, the map
X(R) → π0(X(R)) is onto. Again, by Theorem A, there is a presentations Y → X ×X X such
that, for every finite ring R, the map Y (R) → (X ×X X)(R) is onto. Denote the composition
Y → X ×X X → X × X by f . Then f(Y (R)) is an equivalence relation on the set X(R) and
|π0(X(R))| = |X(R)/f(Y (R))|, for every finite ring R. [HMRC18, Theorems 1.3 and 1.4] imply
the corollary.

Let X be a smooth algebraic stack of finite type defined over SpecR. In [Sa16, Appendix A],
Sakellaridis defines a stack XNash on the site of Nash manifolds and asks whether it is always a
Nash stack (i.e., is there a smooth presentation of XNash by a Nash manifold). A criterion for
XNash being a Nash stack is given in [Sa16, Proposition A.1.4]. Using this criterion and Theorem
A, we get
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Corollary D. Let X be a smooth algebraic stack of finite type defined over SpecR in the sense
of [Sa16, §2.3]1 and assume that the diagonal map X→ X× X is schematic and separated. Then
XNash is a Nash stack.

1.3 Sketch of the proof of the main results

We prove Theorem A using Theorem B. Unlike Theorem A, Theorem B can be proved by stratifying
X and proving the theorem for each stratum.

We prove Theorem B by analyzing a sequence of special cases:

Case 1. X is a scheme and π : X → X is quasi-finite. In this case the number n is obtained from the
degree of the fibers of π.

Case 2. X is a scheme. This case follows from the previous one. This case allow us, for a fixed
stack X, to deduce the theorem for arbitrary surjection π : X → X from knowing it for one
surjection π : X → X

Case 3. X is an algebraic space. We may assume that π is an etale presentation of X. Then X can
be viewed as a quotient of X by an etale equivalence relation. The number n comes from
the size of the equivalence clases.

Case 4. X = BG for an algebraic group G. The statement can be reformulated as a statement about
Galois cohomology. In the case of a finite field we use Lang’s theorem, and the number n
comes from the number of components of G. In the case of a QCA stack, the group G is
linear and thus can be embedded into GLn. Here the proof is based on Hilbert 90 and on
Case Case 2. applied to the map GLn → GLn/G

Case 5. X = BG, for a group scheme G over a base scheme Y . Over the generic point it looks like the
previous case. From this we deduce the theorem for an open dense subset in X and proceed
by Noetherian induction.

Case 6. X is a gerbe over an algebraic space. This follows from the previous case and Case Case 3..

Case 7. The general case. This follows from the previous case using the fact that any stack can be
stratified into gerbes.

In order to deduce Theorem A, we introduce a construction that starts with an almost onto
presentation π : X → X and gives an onto one. This is done in the following steps:

Step 1. Given two S-schemes X and Y , one can define the internal hom XY over S as a pre-sheaf
on the category of S-schemes. This pre-sheaf is often not representable, but under some
restrictive conditions on X, Y it is representable by an algebraic space and, under more
restrictive conditions, by a scheme.

Step 2. More generally given two diagrams of S-schemes D1 and D2 of the same shape, we define
internal hom D1

D2 over S as a pre-sheaf on the category of S-schemes. Again it will be
representable under some conditions

1The definition in [Sa16, §2.3] is slightly more restrictive, though we believe the result is true without the
restriction.
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Step 3. Given a presentation π : X → X one can construct a simplicial scheme [π]• called the Cech
nerve of π by taking the fiber powers of X over X. The diagram [π]• is an infinite diagram,
but, since [π]• is coskeletal, its behavior is determined by a finite sub-diagram (the first three
levels).

Step 4. Given a presentation π : X → X and an etale covering τ : S ′ → S, we construct a new
presentation

fπ,τ : [π]•
[τ ]• → X.

This presentation tends to be more onto than π. For example if τ : Spec(E)→ Spec(F ) is a
finite field extension, then if a composition Spec(E) → Spec(F ) → X is π- liftable then the
map Spec(F )→ X is fπ,τ -liftable.

Step 5. For an integer n we construct an etale map τn : U′n → Un that packages all separable field
extensions of degree ≤ n. Namely, for any separable field extension E/F of degree ≤ n, there
is an F point of Un whose fiber is SpecE.

Step 6. We combine the last two steps. Namely, given an n-onto presentation π : X → X we consider
the presentation πn : X × Un → X and then the presentation

fπn,τn : [πn]•
[τn]• → X.

Step 7. Denote Xn := [πn]•
[τn]• . The obtained presentation Xn → X is an onto one, however it might

be that Xn is not a scheme, but an algebraic space. In order to complete the construction we
present Xn by an affine scheme Y and repeat the construction for the presentation Y → Xn.
The composition of the obtained presentation with fπn,τn is an onto presentation by a scheme.
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2 Almost onto presentations of stacks (Proof of Theorem

B)

In some stages of the proof we will stratify of the stack X and prove the claims for the strarta.
The following allows us to do that.

Lemma 2.1. Let X :=
⋃

Xi be a finite stratification of an algebraic stack (See [SP, 97.28]).
Then for any field F , any F -point x : Spec(F ) → X factors through one of the Xi (up to an
isomorphism).

Proof. Consider the base-change of x to
⊔
Xi. This is a non-trivial closed immersion SpecF ×X

tXi → SpecF , so it is invertible. This implies that x factors through SpecF → Xi, for some i.

The following will allow us to replace an arbitrary surjective morphism by a quasi-finite one:
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Lemma 2.2. Let π : X → Y be a surjective morphism of finite type between Noetherian schemes.
Then there is a morphism ϕ : Z → X such that π ◦ ϕ : Z → Y is surjective and quasi-finite.

Proof. By Noetherian induction on Y , it is enough to find a map ϕ : Z → X such that the map
π ◦ ϕ is quasi-finite and its image contains a non-empty open set. We can assume that Y is affine
and irreducible. Since the claim depends only on the underlying topological space, we can assume
that Y is reduced. Let η be the generic point of Y and let Xη = π−1(η). By the assumption
that π is surjective, Xη is non-empty. Since π is locally of finite type, there are affine open sets
SpecA ⊂ Y , and SpecB ⊂ X×Y SpecA such that B is a finitely generated A-algebra, η ∈ SpecA,
and Spec(B ⊗A k(η)) 6= ∅.

It follows that there is a finite extension L of k(η) and a non-trivial map ν : B⊗Ak(η)→ L. Fix
generators b1, . . . , bn of B over A. Let a ∈ A be the product of the denominators of the coefficients
of the minimal polynomials of ν(bi ⊗ 1) over k(η) = Frac(A). We obtain that ν(B⊗1)[a−1] is
an integral extension of A[a−1]. Taking Z = Spec ν(B⊗1)[a−1], we get a map ϕ : Z → X that
π ◦ ϕ : Z → SpecA[a−1] is finite (and hence quasi-finite) and surjective.

The proof of Theorem B is based on subsequent analysis of its special cases:

Lemma 2.3. Theorem B holds if X is a scheme.

Proof. By Lemma 2.2, there is a morphism ϕ : Z → X such that ζ := π ◦ϕ is surjective and quasi-
finite. It is well known that, for quasi-finite maps, there exists m such that [k(z) : k(ζ(z))] < m,
for every schematic point z ∈ Z. It is easy to see that π is (m,F)-almost onto.

Corollary 2.4. Let X be a (Noetherian) stack and let S ⊂ F . Suppose that s : Y → X is a
surjective (n,S)-almost onto map, and let π : X → X be surjective map. Then there is N such
that π is (N,S)-almost onto.

Proof. Consider the diagram

X ×X Y
π∗ //

s∗
��

Y

s
��

X π // X

Since π is surjective, by definition, the map π∗ is surjective. Let p : Z → X ×X Y be an etale
cover of the algebraic space X ×X Y by a scheme Z. We get that π∗ ◦ p is surjective so, by Lemma
2.3, π∗◦p is (m,F)-almost onto, for some m and, therefore, so is π∗. It follows that the composition
s ◦ π∗ = π ◦ s∗ is (nm,S)-almost onto, which implies that π is (nm,S)-almost onto.

Lemma 2.5. Theorem B holds if X is an algebraic space and π : X → X is etale.

Proof. [LMB00, Proposition 1.2] states that the following are true:

1. The two projections p1,2 : X ×X X → X are etale and the subscheme X ×X X ⊂ X ×X is
an equivalence relation.

2. X is the coequalizer of X ×XX
p1
⇒
p2

X (as sheaves on the big etale site of S). In particular, for

any field F , X(F sep) = X(F sep)/X ×X X(F sep).
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Note also that, for any Galois extension F ⊂ L, there is an injective map iF,L : X(F )→ X(L)
and the image is the collection of Gal(L/F )-invariants.

Statement (1) and the assumption that X is Noetherian imply that there is N such that, for
any field F , the sizes of the equivalence classes of X×XX(F sep) are at most N . We will show that
π is (N,F)-almost onto.

Suppose that F is a field and x ∈ X(F ). By (2), there is y ∈ X(F sep) such that iF,F sep(x) is
the equivalence class [y] of y. Since GalF preserves [y], it follows that there is a closed subgroup
H ⊂ GalF of index at most N such that H fixes y. Let L = (F sep)H . Then [L : F ] ≤ N
and y ∈ X(L). Finally, since iL,F sep(π(y)) = [y] = iF,F sep(x) = iL,F sep(iF,L(x)), it follows that
π(y) = iF,L(x).

Lemma 2.5 and Corollary 2.4 give the following:

Corollary 2.6. Theorem B holds if X is an algebraic space.

Lemma 2.7. Let F be a field, let i : C → X, f : X → Y be morphisms of F -schemes, and denote
the structure map of C by κ : C → SpecF . Suppose that f is surjective and that, for some finite
extension F ⊂ L, there is η : SpecL→ Y making the diagram

CL
iL //

κL
��

X

f
��

SpecL
η // Y

a pullback diagram (here, iL and κL are the base-changes of i and κ respectively). Then there is
ζ : SpecF → Y such that ζL = η and such that the diagram

C
i //

κ
��

X

f
��

SpecF
ζ // Y

is a pullback diagram.
In other words, if the fiber under a surjective morphism f : X → Y of an L point η is defined

over F then it is in fact a fiber of an F -point.

Proof. Let α : SpecL → SpecF be the map corresponding to the inclusion F ⊂ L. Taking the
base change of α and κ, we get αC : CL → C. Define αX : XL → X and αY : YL → Y similarly.

Let R = L ⊗F L. We have two maps a, b : SpecR → SpecL such that α ◦ a = α ◦ b. Let
κR : CR → SpecR be the base change of κ. Consider the diagram

Spec(R)

η◦a

::

η◦b

BB

a --

b
11 Spec(L)

η // Y

We will show that η ◦a = η ◦b. By faithfully flat descent this would imply that η factor through an
F -point ζ : Spec(F ) → Y . This will give a morphism C → f−1(ζ) that becomes an isomorphism
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after extending scalars to L. Since SpecL → SpecF is faithfully flat this implies C = f−1(ζ) as
required.

Consider the following Cartesian squares

Ca
R

aC //

κR
��

CL
iL //

κL
��

X

f

��
Spec(R) a // Spec(L)

η // Y

.

We obviously have Ca
R
∼= CR := C ×Spec(F ) Spec(R). Applying the same argument to b we get:

CR

iL◦bC

%%

iL◦aC

��aC
++

bC

33

κR
��

CL
iL //

κL
��

X

f

��
Spec(R)

η◦a

::

η◦b

BB

a --

b
11 Spec(L)

η // Y

.

Since iL factor through i : C → X, we obtain that the upper two arrows coinside (namely
iL ◦ aC = iL ◦ bC). The surjectivity of f implies that κR is surjective. Thus we obtain that the
lower two arrows coincide (namely η ◦ a = η ◦ b), as required.

Lemma 2.8. Let G be a flat group algebraic space over a scheme X, let X = [X/G] be the
classifying space of G (see [SP, 89.13]), and let π : X → X be the neutralizing map. Then
Theorem B holds for π : X → X.

Proof. By Proposition A.6 and Lemma 2.1 we can assume that G is a group scheme. Let F be a
field. By [SP, Lemma 89.15.4], a point u : SpecF → [X/G] is a pair (x, P ), where x ∈ X(F ) and
P is a Gx-torsor in the fppf topology, i.e., a Gx-space that becomes trivial after base-change to
the algebraic closure of F . The point u factors through X iff P is a trivial Gx-torsor. Therefore,
it is enough to show that there is a constant N such that, for any finite field F (in case X is QCA
F can be taken to be arbitrary), any x ∈ X(F ) and any Gx-torsor P , there is a field extension
E ⊃ F of degree at most N such that P ×SpecF SpecE is trivial. We show this holds for the two
cases of the theorem.

1. Finite field case:
Let n := max #π0(Gs) where s ranges over all geometric points of X (this maximum exists
because s 7→ #π0(Gs) is constructible, see [Gro67, Proposition 9.7.8]). We will show that,
for any finite field F = Fq and any algebraic group H over F with at most n connected
components, any H-torsor has a trivialization over Fq(n!)2 . Since finite fields are perfect, any

fppf torsor is an etale one. Hence, we need to show that the map H1(Fq, H)→ H1(Fq(n!)2 , H)

is trivial. By Lang’s theorem, it is enough to show that H1(Fq, π0H) → H1(Fq(n!)2 , π0H) is

trivial. This map is the composition of H1(Fq, π0H)→ H1(Fqn! , π0H) and H1(Fqn! , π0H)→
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H1(Fq(n!)2 , π0H), so it is enough to show that the second map is trivial. Note that the action

of Gal(Fq/Fqn!) on π0H is trivial, so any 1-cocycle is a homomorphism Gal(Fq/Fqn!)→ π0H,

but any such becomes trivial when restricted to Gal(Fq/Fq(n!)2 ).

2. QCA stack case:
Assume now that X = [X/G] is QCA. By Proposition A.7, there is a stratification X = ∪Xi

such that G|Xred
i

can be embedded as a closed subgroup in GLn×Xred
i , for some n. Hence,

by Lemma 2.1, we can assume that X is reduced and G is a closed subgroup of GLn×X.
Similarly, using Proposition A.10, we can assume that the quotient Z := GLn×X/G exists.
Since the quotient map π : GLn×X → Z is onto, Lemma 2.3 implies that there is a natural
number N such that, for every field F and every p ∈ Z(F ), there is an extension E ⊃ F

of degree at most N such that the composition SpecE → SpecF
p→ Z factors through

GLn×X. We will show that, for any field F , and x ∈ X(F ) and every Gx-torsor P defined
over F , there is a field extension E ⊃ F of degree at most N such that P × SpecE is trivial.

Let F be a field, let x ∈ X(F ), and let P be a Gx-torsor defined over F . The quotient
P ×GLn /Gx (where Gx acts diagonally on P ×GLn) is a GLn-torsor over F . By Hilbert 90,
this torsor is trivial. This means that there is a GLn-equivariant isomorphism P×GLn /Gx →
GLn. Composing this isomorphism with the map P → P ×GLn /Gx that sends p to (p, 1)Gx,
we get a morphism i : P → GLn which is Gx-equivariant. Since P is a torsor, for some
finite extension L ⊃ F , the base change P × SpecL is trivial, so by Lemma A.9 we have
i(P × SpecL) = π−1(w), for some w ∈ Z(L). Applying Lemma 2.7, i(P ) = π−1(z), for some
z ∈ Z(F ). By the definition of N , there is a field extension E ⊃ F of degree at most N and
a point g ∈ i(P )(E). It follows that P is trivial over E, which is what we wanted to prove.

Lemma 2.8 and Corollary 2.4 give the following:

Corollary 2.9. Theorem B holds if X = [X/G], where X is a scheme and G is a flat group scheme
over X.

In the following, by a gerbe, we mean a gerbe in the fppf topology, see [SP, Definition 95.27.1].

Lemma 2.10. Theorem B holds if X is a gerbe over an algebraic space [X].

Proof. Let S be F if X is QCA and Ff otherwise. Let τ : X→ [X] be the structure map. Consider
the following diagram:

X ×[X] X
ρ //

��

X

π

��
X×[X] X //

��

X

τ

��
X

τ◦π // [X]

The following hold:

1. The map τ ◦ π : X → [X] is surjective. By Corollary 2.6, it is (N1,F)-almost onto, for some
N1.
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2. τ : X → [X] is a gerbe, and so X ×[X] X → X is a gerbe by [SP, Lemma 95.27.3]. The map
(π, id) : X → X×[X] X is a section, so X×[X] X is isomorphic to the classifying stack [G/X],
for some flat group algebraic space G over X, by [SP, Lemma 95.27.6]. If X is QCA, then
so is X×[X] X.

3. The map X ×[X] X → X ×[X] X is surjective. By the previous claim and Lemma 2.9, it is
(N2,S)-almost onto, for some N2.

We will prove that the map X ×[X] X → X is (N1N2,S)-almost onto. This is enough by Corollary
2.4 Let F be a field and let pt : SpecF → X be an F -point. There is a field extension K ⊃ F of
degree at most N1 such that the composition SpecK → SpecF → X→ [X] factors through a map
q : SpecK → X. The map (pt, q) defines a map pt′ : SpecK → X ×[X] X. By 3, there is a field
extension E ⊃ K of degree at most N2 such that the composition SpecE → SpecK → X ×[X] X
factors through a map r : SpecE → X×[X]X. It follows that the composition SpecE → SpecF →
X factors through ρ ◦ r : SpecE → X.

Proof of Theorem B. By [SP, 95.28], there is a stratification of X by locally closed substacks Xi

such that Xi are fppf gerbes over some algebraic spaces. Since X is Noetherian, there are only
finitely many Xi. The assertion now follows from Lemmas 2.10 and 2.1.

3 Onto presentations of stacks (Proof of Theorem A)

The proof of Theorem A is based on Theorem B and the following proposition:

Proposition 3.1. Let S ⊂ Fperf and let X be a stack.

1. If there is an (n,S)-almost onto presentation of X by a scheme, then there is an S-onto
presentation of X by an algebraic space.

2. If X is an algebraic space and there is an (n,S)-almost onto presentation of X by a scheme,
then there is an S-onto presentation by a scheme.

The proof of Proposition 3.1 will be given in §3.3; the proof uses several auxiliary results which
we prove in §3.3 and §3.2. We now show how to deduce Theorem A from Proposition 3.1.

We will need the following:

Lemma 3.2. Let A be a local ring, I an ideal in A such that (A, I) is a Henselian pair (see [SP,
15.11]). Then the embedding Spec(A/I) → Spec(A) has the left lifting property with respect to
smooth maps of schemes, i.e., for any commutative diagram

Spec(A/I) //

��

X

��
Spec(A) // Y
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such that X, Y are schemes and the map X → Y is smooth, there is a map Spec(A) → X such
that the diagram

Spec(A/I) //

��

X

��
Spec(A) //

::

Y

is commutative.

Proof. Denote the map X → Y by φ. There is a Zariski open cover X =
⋃
Ui such that φ|Ui

factors as the composition of an etale map ψi : Ui → Y × An and the projection Y × An → Y .
Since A/I is local, we can replace X by some Ui, so it is enough to prove the claim in the following
cases:

1. φ is the projection Y × An → Y . The claim follows since the map A→ A/I is onto.

2. φ is etale. The claim follows from the definition of Henselian pair.

Corollary 3.3. Let A be a local ring and let I be an ideal in A such that (A, I) is a Henselian
pair. Let φ : X → X be a {Spec(A/I)}-onto presentation. Assume that, for any algebraic space B
and any A/I-point r : Spec(A/I)→ B, there is a presentation ψ : B → B such that r is ψ-liftable.
Then φ is {Spec(A)}-onto.

Proof. Suppose that q : Spec(A) → X be an A-point. Since φ is {Spec(A/I)}-onto, we can

lift the composition Spec(A/I) → Spec(A)
q→ X to a map Spec(A/I) → X. This gives a map

r : Spec(A/I)→ X ×X Spec(A). By assumption, there is a scheme B and a presentation ψ : B →
X ×X Spec(A) such that r is ψ-liftable. Let r′ : Spec(A/I) → B be a lift of r. Applying Lemma
3.2 to the diagram

Spec(A/I) r′ //

��

B

��
Spec(A) // Spec(A)

we get a map s : Spec(A)→ B. The composition of s and the projection to X is a lift of q.

We can now prove Theorem A:

Proof of Theorem A. We first show the claim replacing Hf ,Hr,Hperf by Ff ,Fr,Fperf . Let φ :
X → X be a presentation of X by a scheme X. By Theorem B, there exists an integer n such that
φ is (n,Ff )-almost onto (or (n,F)-almost onto if X is QCA). By definition, φ is also (2,Fr)-almost
onto. By Proposition 3.1(1), there exists an algebraic space X ′ and a presentation ψ : X ′ → X
which is (Fr∪Ff )-onto (Fperf-onto if X is QCA). Let X ′′ → X ′ be a presentation of X ′ by a scheme
X ′′. Since X ′ is QCA, applying Theorem B and Proposition 3.1(2), we obtain a scheme X ′′′ and
an Fperf-onto presentation ψ : X ′′′ → X ′. The composition φ◦ψ : X ′′′ → X is a presentation which
is (Fr ∪ Ff )-onto (Fperf-onto if X is QCA).

The claim of the theorem for Hf ,Hr,Hperf follows now by Corollary 3.3.

11



3.1 Internal Hom

Definition 3.4. Let X, Y be S-schemes. Let X∧SY be the contravariant functor from the category
of S-schemes to the category of sets defined by

(X∧SY )(T ) := Mor(Y ×S T,X).

If the base scheme S is clear from the context we will omit it from the notation or simply denote
this functor by XY

Lemma 3.5.

1. If Y → S is finite and etale, then X∧SY is representable by an algebraic space (of finite type).

2. If Y → S is finite and etale, and X is quasi-projective, then X∧SY is representable by a
scheme (of finite type).

Although the statement is standard, we did not find a complete proof in the literature, so we
deduce it from a similar statement appearing in [DG70, I §1 6.6]. For another version, see [Ols06].
For the proof we will need the following simple lemmas:

Lemma 3.6. Let S be a connected scheme and let S ′ → S be a finite etale map. Then there exists
an etale cover η : T → S such that

T ×S S ′ ∼= T t · · · t T,

as T -schemes.

Proof. The proof is by induction on the degree d of the map S ′ → S. Without loss of generality,
we may assume that S ′ is connected. the base d = 0 is obvious. Without loss of generality we can
assume that S ′ → S is a cover. Consider the diagram

∆S ′ // S ′ ×S S ′ //

��

S ′

��
S ′ // S

Let U := S ′ ×S S ′ r ∆S ′. The map U → S ′ is finite etale map of degree d − 1. Thus by
induction assumption there is an etale cover T → S ′ such that

T ×′S U ∼= T t · · · t T.

Composing T → S ′ → S we obtain the required cover.

Lemma 3.7 (See e.g. [SP, Lemma 34.20.10]). The property of being of finite type is local in the
fppf topology on the target. Namely, let X → S be a (not necessarily finite type) S-scheme and
φ : T → S be a faithfully flat morphism of finite type. Assume that X ×S T is of finite type over
T . Then, X → S is of finite type.

Proof of Lemma 3.5.
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1. By faithfully flat descent, X∧Y is a sheaf in the fpqc topology and in particular in the etale
topology. Thus, we need to find a scheme A together with an etale cover A→ X∧Y . Without
loss of generality we can assume that S is connected. By Lemma 3.6 there exists an etale
cover T → S such that T ×S Y ∼= T t · · · t T︸ ︷︷ ︸

n copies

as T -schemes. Since T → S is an etale cover,

the map X∧SY ×S T → X∧SY is an etale cover. Since

X∧SY ×S T = (X ×S T )∧T (Y ×S T ) = (X ×S T )∧T (T t · · · t T ),

we have that X∧SY ×S T is representable by (X ×S T )n.

2. By [DG70, I §1 6.6] X∧SY is representable by a scheme which is not a-priori of finite type.
Let T → S be the etale cover from the previous part and consider the Cartesian square

(X ×S T )n //

��

X∧SY

��
T // S

The horizontal arrows are etale covers, and the morphism (X ×S T )n → T is of finite type.
Therefore, by Lemma 3.7, so is the morphism X∧SY → S.

Corollary 3.8. Let C be a finite category and let D1, D2 : C → RamiASch/S be two functors. Let
D1
∧
SD2 be the contravariant functor from the category of S-schemes to the category of sets defined

by
(D1

∧
SD2)(T ) := Mor(D2 × T,D1),

where D2× T is the composition of product with T and D2. Assume that the image of D2 consists
of schemes which are finite and etale over S. Then

1. D1
∧
SD2 is representable by an algebraic space.

2. If the image of D1 consist of quasi-projective schemes then D1
∧
SD2 is representable by a

scheme.

Proof. We first prove (1). D1
∧
SD2 is a limit of a finite diagram of functors, each represented by

an algebraic space. By the Yoneda Lemma, any morphism between such functors comes from a
morphism of algebraic spases. The asertion follows now from the fact that the category of algebraic
spaces is closed under finite limits. Part (2) is proved in a similar way.

In the rest of the section, we will not distinguish between representable functors and their
representing objects.

3.2 Improving a presentation

Notation 3.9. Let φ : X → X be a presentation of an algebraic stack defined over a scheme S.
Denote by [φ]• the simplicial scheme given by [φ]1 := X, [φ]n := X ×X Xn−1 with the standard
boundary and degeneration maps. Denote by [φ]•≤3 be the full subdiagram of [φ]• with vertices
[φ]1, [φ]2, [φ]3.

13



Note that for two maps φ and φ′ as above we have a canonical isomorphism [φ]
[φ′]•
• ∼= [φ]

[φ′]•≤3

•≤3 .
The goal of this subsection is to prove the following:

Lemma 3.10. Let X be an algebraic stack defined over a scheme S, let X be a scheme over S, let
φ : X → X be a presentation and let ψ : S ′ → S be a finite etale and onto map. Then the functor
[φ]

[ψ]•
• is representeble by algebraic space and there is a presentation fφ,ψ : [φ]

[ψ]•
• → X such that, if

T is an S-scheme and x : T → X is such that the natural map T ×S S ′ → X is φ-liftable, then x
is fφ,ψ-liftable.

Moreover, if X is an algebraic space and X quasi-affine, then [φ]
[ψ]•
• is a scheme.

In order to build fφ,ψ we need to discuss the notion of descent data.

Definition 3.11. Let X be an algebraic stack defined over a scheme S. Let ψ : Y ′ → Y be an
etale map of S-schemes. A descent datum for X with respect to ψ (or a ψ-descent datum for X) is
a map s : Y ′ → X and an isomorphism F between s ◦ d1 and s ◦ d2 (where di : [ψ]2 → [ψ]1 are the
boundary maps) satisfying the cocycle condition (F ◦ d12)(F ◦ d23) = F ◦ d13 (see [SP, 8.3, 8.4]).

The collection of all ψ-descent data forms a groupoid. We have a natural functor from X(Y )
to this groupoid. X being a stack implies that this functor is an equivalence.

Notation 3.12. Let X be an algebraic stack defined over a scheme S. Let ψ : S ′ → S be a finite
etale map. Define a functor XS′/S from S-schemes to groupoids by

XS′/S(Y ) = { descent data for X with respect to Y ×S S ′ → Y }.

By the discussion above, there is a natural equivalence of functors X → XS′/S. In particular,
XS′/S is a stack naturally identified with X, for any such S ′.

Definition 3.13. Let φ : X → X be a presentation of an algebraic stack defined over a scheme S.
Let η : Y ′ → Y be an etale map of S-schemes. An explicit descent datum for a map from Y to X
with respect to φ and η is a morphism of diagrams [η]•≤3 → [φ]•≤3.

Any explicit descent datum for a map from Y to X with respect to φ and η gives a descent
datum for a map from Y to X with respect to φ. We are now ready to define fφ,ψ.

Definition 3.14. Let φ : X → X be a presentation of an algebraic stack defined over a scheme S
and let ψ : S ′ → S be a finite etale and onto map. In view of the discussion above we obtain a

natural map [φ]
[ψ]•≤3

•≤3 → XS′/S. This gives us the map fφ,ψ : [φ]
[ψ]•
• → X

In order to prove that fφ,ψ is a presentation, we will use the following

Lemma 3.15. Let φ : X → Y be a morphism of S-schemes and T be an S-scheme.

1. If φ×S T : X ×S T → Y ×S T and T → S are surjective morphisms, then so is φ

2. If φ ×S T : X ×S T → Y ×S T is smooth and T → S is surjective and smooth, then φ is
smooth.

3. Suppose that X is a stack over S, ψ : X → X is an S-morphism, and T → S is a surjective
and smooth morphism. If ψ ×S T is a presentation, then so is ψ.

Proof.
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1. We denote the underlying topological space of a scheme A by |A|. By definition, a map
A→ B is surjective iff |A| → |B| is surjective.

Consider the commutative diagram

X ×S T
φ×ST //

prX
��

Y ×S T
prY
��

X
φ // Y

.

It gives rise to a commutative diagram

|Y | ×|S| |T |

��
pr|Y |

ww

|X ×S T |
|φ×ST | //

|prX |
��

|Y ×S T |
|prY |
��

|X| |φ| // |Y |

Since the map T → S is surjective, so is |T | → |S| and thus so is pr|Y |. This implies that |prY |
is surjective. Together with the fact that |φ×S T | is surjective this implies that |φ| ◦ |prX | is
surjective, which implies the assertion.

2. As before prX is surjective. Also, since T → S is smooth so is prX . Thus by [SP, Lemma
34.11.4] it is left to show that φ ◦ prX is smooth. This follows from the fact that φ×S T and
prY are smooth.

3. This follows from the previous claims.

Corollary 3.16. Let φ : X → X be a morphism of an S-scheme to an S-stack and let T → S be a
surjective smooth morphism of schemes. Assume that φ×S T : X×S T → X×S T is a presentation.
then so is φ.

We will also need the following:

Lemma 3.17. Let φ : X → Y be a morphism of schemes such that for any scheme T , the map
φ(T ) : X(T )→ Y (T ) is 1-1. Then φ is quasi-affine.

Proof. We may assume Y is separated. The assumption implies that the diagram

∆X //

��

X ×X

��
∆Y // Y × Y

is cartesian, and, therefore,
∆(X) = (φ× φ)−1(∆Y ).

This implies that X is separated. The assumption also implies that φ is quasi finite. Thus by [SP,
Lemma 36.38.2], X is quasi-affine.
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Corollary 3.18. Let φ : X → Y be a presentation of an algebraic space by a quasi-affine scheme.
Then [φ]i are quasi-affine.

Proof. The two restriction maps give a morphism [φ]2 → [φ]1 × [φ]1 = X × X. This morphism
satisfies the conditions of Lemma 3.17 and, thus, it is quasi-affine. This implies that [φ]2 is quasi-
affine. Since, for i > 2, we have [φ]i = [φ]i−1 ×X [φ]2, we obtain by induction that [φ]i is also
quasi-affine.

Proof of Lemma 3.10. Since [φ]
[ψ]•
• ∼= [φ]

[ψ]•≤3

•≤3 , Corollary 3.8 implies that [φ]
[ψ]•
• is representeble by

an algebraic space. It follows from the definitions that, if T is an S-scheme and x : T → X is such
that the natural map T ×S S ′ → X is φ-liftable, then x is fφ,ψ-liftable.

If X is an algebraic space and X is quasi-affine, then φi are quasi-affine, and, by Corollary 3.8,
[φ]

[ψ]•
• is a scheme of finite type.
It remains to prove that fφ,ψ is a presentation.

Case 1: S ′ = S t · · · t S and ψ is the projection.
In this case it is easy to see that [φ]

[ψ]•
• ∼= X×X [φ]2×X · · ·×X [φ]2 where the maps [φ]2 → X

are the first boundary maps, and the number of appearances of ×Y and t is the same.
It is also easy to see that under this identification the map fφ,ψ is the composition of the
projection to X and the φ. This proves the assertion.

Case 2: The general case
By Lemma 3.6 there exists an etale cover η : T → S such that T ×S S ′ ∼= T t · · · t T as an
S ′ scheme. By Lemma 3.15 it is enough to show that fφ,ψ ×S T : [φ]

[ψ]•
• ×S T → X×S T is a

presentation. Equvivalently we have to show that

fφ×T,ψ×T : ([φ× T ]•)
∧
T ([ψ × T ]•)→ X× T

is a presentation. This follows from the previous case.

3.3 Proof of Proposition 3.1

Notation 3.19. Let n be a positive integer. Let Un ⊂ A1 t · · · tAn be the Z-scheme of separable
monic polynomials of degree at most n and let U′n = {(f, a) ∈ U× A1 | f(a) = 0}. Note that there
is an obvious finite etale and onto map U′n → Un.

Proof of Proposition 3.1. Let X → X be an (n,S)-almost onto presentation of a stack by a scheme.
Without loss of generality, we may assume that X is affine.

Let Sn = S×SpecZUn, S ′n = S×SpecZU′n, Xn := X×SpecZUn, and Xn := X×SpecZUn. Applying
Lemma 3.10 to (Sn, S

′
n,Xn, Xn) instead of (S, S ′,X, X), we get a presentation

([φn]•)
∧
Sn ([ψn]•)→ Xn

of Sn-stacks. The composition
([φn]•)

∧
Sn ([ψn]•)→ Xn → X

is an S-onto presentation by an algebraic space. This proves part 1. Since Un is quasi-affine so is
Xn. Thus if X is an algebraic space then ([φn]•)

∧
Sn

([ψn]•) is a scheme. This proves part 2.
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A Group schemes and their classifying spaces

In this appendix we will deduce some statements about group algebraic spaces from the correspond-
ing statements for algebraic groups. The statements are about existence of some stratification of
the base, so the transition between algebraic groups and group algebraic spaces is standard. We
included it for completeness, since we could not find them in the literature for the generality of
group schemes.

A.1 The generic point

Notation A.1. For any scheme X denote by Alg(X) the category of algebraic spaces of finite type
over U . We consider the assignment X 7→ Alg(X) as a contravariant 2-functor to the 2-category
of categories.

Proposition A.2. Assume that S is irreducible and reduced, and let η be its generic point. Then
the natural functor

lim
−→
U⊂S

Alg(U)→ Alg(η)

is an equivalence of categories.

The affine case follows from a standard argument:

Lemma A.3. For a scheme X, let Aff(X) be the category of schemes affine over X. If S is a
reduced and irreducible scheme with generic point η, then the natural functor

lim
−→
U⊂S

Aff(U)→ Aff(η)

is an equivalence of categories.

Lemma A.4. Let X, Y be algebraic spaces and let ϕ1, ϕ2 : X → Y be two morphisms. Then there
are affine schemes X̃, Ỹ , etale covers πX : X̃ → X, πY : Ỹ → Y , and morphisms ϕ̃1, ϕ̃2 : X̃ → Ỹ
such that the diagrams

X̃
ϕ̃1 //

πX
��

Ỹ

πY
��

X
ϕ1 // Y

X̃
ϕ̃2 //

πX
��

Ỹ

πY
��

X
ϕ2 // Y

commute.

Proof. Let πY : Ỹ → Y be an etale cover of Y by an affine scheme. For i = 1, 2, let Xi = Ỹ ×Y X,
where the map X → Y is ϕi. Let X3 = X1 ×X X2, let X̃ → X3 be an etale cover of X3 by an
affine scheme, and let πX : X̃ → X be the composition X̃ → X3 → X. It is easy to see that πX is
etale and that there are ϕ̃i as requested by the lemma.

The following is standard.

Lemma A.5. If a morphism X → Y between schemes is an etale (respectively, Zariski) cover
over the generic point, then it is an etale (respectively, Zariski) cover over an open set.

Proof of Proposition A.2.
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Faithful: Let U ⊂ S be an open set, X, Y ∈ Alg(U), and ϕ1, ϕ2 : X → Y be morphisms such
that ϕ1|η : Xη → Yη is equal to ϕ2|η : Xη → Yη. We need to show that there is an open
U ′ ⊂ U such that ϕ1|U ′ = ϕ2|U ′ . Apply Lemma A.4 to get the diagrams

X̃
ϕ̃1 //

πX
��

Ỹ

πY
��

X
ϕ1 // Y

X̃
ϕ̃2 //

πX
��

Ỹ

πY
��

X
ϕ2 // Y

.

By Lemma A.3, there is an open set U ′ ⊂ U such that ϕ̃1|U ′ = ϕ̃2|U ′ . Since πX |U ′ is an etale
cover, it is an epimorphism, and therefore ϕ1|U ′ = ϕ2|U ′ .

Full: Let U ⊂ S be open, X, Y ∈ Alg(U), and ϕ : Xη → Yη. We need to show that there is an

open U ′ ⊂ U and ψ : XU → YU such that ψ|η = ϕ. Let πX : X̃ → X and πY : Ỹ → Y be

etale covers by affine schemes. We have maps X̃η → Xη → Yη. Let pZ : Z → X̃η ×Yη Ỹη
be an etale cover by an affine scheme. By Lemma A.3, there is an open subset U ′ ⊂ U ,
a scheme Z ∈ Aff(U ′), morphisms α : Z → X̃ and β : Z → Ỹ , and an isomorphism

Zη → Z such that α|η is equal to the composition Zη → Z → X̃η ×Yη Ỹη → X̃η and β|η
is equal to the composition Zη → Z → X̃η ×Yη Ỹη → Ỹη. By lemma A.5, there is an

open subset U ′′ ⊂ U ′ such that the restriction α|U ′′ : ZU ′′ → X̃U ′′ is etale. Let γ be the

composition Z → Ỹ → Y , and let p1, p2 : Z ×X Z → Z be the two projections. Since
(γ ◦ p1)|η = (γ ◦ p2)|η, the faithfullness implies that there is an open subset U ′′′ ⊂ U ′′ such
that (γ ◦p1)|U ′′′ = (γ ◦p2)|U ′′′ . By faithfully flat descent, there is a morphism ψ : XU ′′′ → YU ′′′

such that the composition Z → X
ψ→ Y is equal to γ|U ′′′ . Since Zη → Xη is epimorphism,

this implies that ψ|η = ϕ.

Essentially surjective: We divide the proof to the following steps

1. We prove that if X is a separated scheme over η, then there is an open U ⊂ S and a
scheme X over U such that Xη = X :

Let X̃ → X be a Zariski cover by an affine scheme, and let R := X̃ ×X X̃ . Note that R
is an affine scheme, the two projections R → X̃ are Zariski covers, and the embedding
R → X̃ × X̃ makes R into an equivalence relation. By Lemmas A.3 and A.5, there is
an open set U ⊂ S, U -schemes R, X̃, and a monomorphism R→ X̃ × X̃ such that the
two projections R → X̃ are Zariski covers, R is an equivalence relation on X̃, and the
map Rη → X̃η × X̃η is isomorphic to R → X̃ × X̃ . Let X be the gluing of X̃ along R.

Then X̃ is a scheme and Xη is isomorphic to X .

2. We prove that if X is an arbitrary scheme over η, then there is an open U ⊂ S and a
scheme X over U such that Xη = X :
The proof is similar. The only difference is that, in this case, R is separated by not
necessarily affine. Instead of using Lemma A.3, we use the previous step and the fully
faithfulness.

3. We prove that if X is an algebraic space over η, then there is an open U ⊂ S and an
algebraic space X over U such that Xη = X :
The proof is similar to the previous step, replacing Zariski covers by etale covers.
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A.2 Group algebraic spaces

Proposition A.6 ([Beh03, 5.1.1] 2). Let X be a scheme and G be a group algebraic space over it.
Then there exists a stratification X =

⋃
Xi such that G|Xred

i
is a group scheme. Here Xred

i is the
reduction of Xi.

A.2.1 Stratification of QCA stacks

Proposition A.7. Let X be a scheme and G be a group scheme over it. Assume that X :=
(BG)fppf is a QCA stack. Then there exists a stratification X =

⋃
Xi such that G|Xred

i
can be

embedded as a closed subgroup in GLn ×specZ Xred
i for some n.

Proof. Without loss of generality, we may assume that X is reduced, irreducible and affine. By
Noetherian induction, it is enough to prove that there exist open U ⊂ X and an integer n such
that G|U can be embedded as a closed subgroup in GLn×specZ U . Let η be the generic point of X.
Denote the composition η → X → X by x. By definition, the group Aut(x) is Gη. Therefore Gη

is linear. Thus we have a closed embeding morphism Gη → GLn ×specZ η. By Proposition A.2, we
can extend this embeding to an embeding φ : GV → GLn×specZ V for some affine open V ⊂ X, as
required.

A.2.2 Quotients of group schemes

Definition A.8 (Quotient of group schemes). Let H ⊂ G be an embedding of group schemes and
let Y be a scheme. A morphism of schemes G → Y is a quotient iff the map G ×H → G ×Y G
given by (g, h) 7→ (g, gh) is an isomorphism.

Lemma A.9. Let X be a scheme, let H ⊂ G be group schemes over X such that the quotient
p : G → G/H exists, and let f : H → G be an H-equivariant map. Denote the structure map of
H by sH : H → X and the identity map of H by 1H : X → H. Let ν := p ◦ f ◦ 1H : X → G. Then
the diagram

H
f //

sH
��

G

p

��
X ν // G/H

is cartesian.

Proof. Without loss of generality we can assume that f is the group embedding. We get the desired
square by composing the following two:

G×X H
(g,h)7→gh //

(g,h)7→g
��

G

p

��
G

p // G/H

2The proof there uses implicitly [SP, 60.13.2]
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and

H
h7→(1,h) //

(g,h)7→g
��

G×X H
(g,h)7→g
��

X
1G // G

Proposition A.10. Let X be a scheme, let G be a smooth and affine group algebraic space over X,
and let H ⊂ G be a subgroup algebraic space over X. Then there exists a stratification X =

⋃
Xi

such that G|X̄i and H|X̄i are group schemes and the quotients G|X̄i/H|X̄i exist.

Proof. Without loss of generality, we may assume that X is reduced, irreducible and affine. Using
Proposition A.6, we can assume that G is a group scheme. By Noetherian induction, it is enough
to prove that there exists open U ⊂ X such that the quotient G|U/H|U exists. Let η be the generic
point of X. By [Con, Corollary 1.2], the quotient Y := G|η/H|η exists. The assertion now follows
from Proposition A.2.
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