Applications of the Bernstein-Kashiwara Theorem

Avraham Aizenbud

Weizmann Institute of Science

J. w. Dmitry Gourevitch, Bernhad Krötz, Andrey Minchenko, Gang Liu, Eitan Sayag

http://www.wisdom.weizmann.ac.il/~aizenr/

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

A *D*-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A *D*-module over a smooth affine algebraic variety *X* is a module over the ring D(X) of differential operators on *X*. A *D*-module *M* given by generators and relations can be thought of as a system of PDE. A solution of *M* is a *D*-module homomorphism of *M* to an appropriate space of functions.

《曰》 《聞》 《臣》 《臣》 三臣 …

A *D*-module over a smooth affine algebraic variety *X* is a module over the ring D(X) of differential operators on *X*. A *D*-module *M* given by generators and relations can be thought of as a system of PDE. A solution of *M* is a *D*-module homomorphism of *M* to an appropriate space of functions.

Definition

Let *M* be a *D*-module over *X* with generators $m_1 \dots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree *i* and $F_i(M) := F_i(D(X))(m_1 \dots m_k)$. Define

 $SS(M) := supp(gr_F(M)) \subset T^*X.$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

A *D*-module over a smooth affine algebraic variety *X* is a module over the ring D(X) of differential operators on *X*. A *D*-module *M* given by generators and relations can be thought of as a system of PDE. A solution of *M* is a *D*-module homomorphism of *M* to an appropriate space of functions.

Definition

Let *M* be a *D*-module over *X* with generators $m_1 \dots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree *i* and $F_i(M) := F_i(D(X))(m_1 \dots m_k)$. Define

 $SS(M) := supp(gr_F(M)) \subset T^*X.$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

For a distribution ξ on $X(\mathbb{R})$ define

 $SS(\xi) := SS(D(X)\xi)$

A *D*-module over a smooth affine algebraic variety *X* is a module over the ring D(X) of differential operators on *X*. A *D*-module *M* given by generators and relations can be thought of as a system of PDE. A solution of *M* is a *D*-module homomorphism of *M* to an appropriate space of functions.

Definition

Let *M* be a *D*-module over *X* with generators $m_1 \dots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree *i* and $F_i(M) := F_i(D(X))(m_1 \dots m_k)$. Define

 $SS(M) := supp(gr_F(M)) \subset T^*X.$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} Zeros(symbol(d)).$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

A *D*-module over a smooth affine algebraic variety *X* is a module over the ring D(X) of differential operators on *X*. A *D*-module *M* given by generators and relations can be thought of as a system of PDE. A solution of *M* is a *D*-module homomorphism of *M* to an appropriate space of functions.

Definition

Let *M* be a *D*-module over *X* with generators $m_1 \dots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree *i* and $F_i(M) := F_i(D(X))(m_1 \dots m_k)$. Define

 $SS(M) := supp(gr_F(M)) \subset T^*X.$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} Zeros(symbol(d)).$$

A *D*-module (or a distribution) ξ is called holonomic if

Bernstein-Kashiwara theorem

э

э

Theorem (Bernstein, Kashiwara ~1974)

Let *X* be a real algebraic manifold. Let *M* be a holonomic right D_X -module. Then dim $Hom(M, S^*(X)) < \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)

Let *X* be a real algebraic manifold. Let *M* be a holonomic right D_X -module. Then dim $Hom(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud, Gourevitch, Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of holonomic D_X -modules parameterized by Y. Then dim $Hom(\mathcal{M}_y, \mathcal{S}^*(X))$ is bounded when y ranges over Y.

Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)

Let *X* be a real algebraic manifold. Let *M* be a holonomic right D_X -module. Then dim $Hom(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud, Gourevitch, Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of holonomic D_X -modules parameterized by Y. Then dim $Hom(\mathcal{M}_y, \mathcal{S}^*(X))$ is bounded when y ranges over Y.

Corollary (Aizenbud, Gourevitch, Minchenko)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a character of g. Then,

 $\dim \mathcal{S}^*(X,\mathcal{E})^{\mathfrak{g},\chi} < \infty.$

Moreover, it remains bounded when we change χ or tensor \mathcal{E} with a representation of g of a fixed dimension.

Applications for co-invariants

- ◆ □ ▶ → 個 ▶ → 画 ▶ → 画 ■ → ○ ○

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

 $\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$

<ロト <四ト <注入 <注下 <注下 <

is closed and has finite codimension.

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

 $\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and \mathfrak{h} be the Lie algebra of H. Let χ be a tempered character of H.

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

 $\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and \mathfrak{h} be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, H₀($\mathfrak{h}, \pi \otimes \chi$) is separated and is non-degenerately paired with (π^*)^{$\mathfrak{h}, -\chi$}.

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

 $\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and \mathfrak{h} be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, H₀($\mathfrak{h}, \pi \otimes \chi$) is separated and is non-degenerately paired with (π^*)^{$\mathfrak{h}, -\chi$}. In particular, the following conj. of Casselman are equivalent

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

 $\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and \mathfrak{h} be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, H₀($\mathfrak{h}, \pi \otimes \chi$) is separated and is non-degenerately paired with (π^*)^{$\mathfrak{h}, -\chi$}. In particular, the following conj. of Casselman are equivalent

Automatic continuity:

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

 $\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and \mathfrak{h} be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, H₀($\mathfrak{h}, \pi \otimes \chi$) is separated and is non-degenerately paired with (π^*)^{$\mathfrak{h}, -\chi$}. In particular, the following conj. of Casselman are equivalent

• Automatic continuity: $((\pi^{hc})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}}$

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

 $\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and \mathfrak{h} be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, H₀($\mathfrak{h}, \pi \otimes \chi$) is separated and is non-degenerately paired with (π^*)^{$\mathfrak{h}, -\chi$}. In particular, the following conj. of Casselman are equivalent

• Automatic continuity: $((\pi^{hc})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}}$

Comparison:

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

 $\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and \mathfrak{h} be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, H₀($\mathfrak{h}, \pi \otimes \chi$) is separated and is non-degenerately paired with (π^*)^{$\mathfrak{h}, -\chi$}. In particular, the following conj. of Casselman are equivalent

- Automatic continuity: $((\pi^{hc})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}}$
- Comparison: $H_0(\mathfrak{h}, \pi^{hc}) \cong H_0(\mathfrak{h}, \pi)$

We reprove the following theorem

・ 回 ト ・ ヨ ト ・ ヨ ト

э

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

If H is a spherical subgroup

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

 If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B)

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists C ∈ N such that dim(π*)^{𝔥,χ} ≤ C for any π ∈ Irr(G) and any character χ of 𝔥.

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

- If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists C ∈ N such that dim(π*)^{ħ,χ} ≤ C for any π ∈ Irr(G) and any character χ of ħ.
- If H is a real spherical subgroup

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

- If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists C ∈ N such that dim(π*)^{ħ,χ} ≤ C for any π ∈ Irr(G) and any character χ of ħ.
- If H is a real spherical subgroup (i.e. HP is open for some minimal parabolic subgroup P)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

- If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists C ∈ N such that dim(π*)^{ħ,χ} ≤ C for any π ∈ Irr(G) and any character χ of ħ.
- If H is a real spherical subgroup (i.e. HP is open for some minimal parabolic subgroup P) then, for every irreducible admissible representation π ∈ Irr(G), and natural number n ∈ N there exists C_n ∈ N such that for every n-dimensional representation τ of h we have

dim $Hom_{\mathfrak{h}}(\pi, \tau) \leq C_n$.

ヘロト ヘアト ヘビト ヘビト

-

프 🕨 🗉 프

• Enough to prove for the case *X* is a vector space.

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group Sp(T*(X)) acts on the category of D-modules on X stabilizing S*(X).

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group Sp(T*(X)) acts on the category of D-modules on X stabilizing S*(X).
- dim $SS_b = \dim SS_g$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group Sp(T*(X)) acts on the category of D-modules on X stabilizing S*(X).
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

- Enough to prove for the case X is a vector space.
- Stone von-Neumann: The group Sp(T*(X)) acts on the category of D-modules on X stabilizing S*(X).
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X)) \text{ s.t. } g(SS_b(M)) \cap X^* = 0$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Enough to prove for the case X is a vector space.
- Stone von-Neumann: The group Sp(T*(X)) acts on the category of D-modules on X stabilizing S*(X).
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X)) \text{ s.t. } g(SS_b(M)) \cap X^* = 0$
- This implies that $p: g(SS_b(M)) \rightarrow X$ is finite.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group Sp(T*(X)) acts on the category of D-modules on X stabilizing S*(X).

• dim
$$SS_b = \dim SS_g$$

- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X)) \text{ s.t. } g(SS_b(M)) \cap X^* = 0$
- This implies that $p: g(SS_b(M)) \rightarrow X$ is finite.
- This implies that *gM* is smooth.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日

Relation with multiplicity

< 🗇 ▶

ъ

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

▲ @ ▶ ▲ 三 ▶ ▲

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

• ξ is left H_1 invariant

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant

▲ @ ▶ ▲ 三 ▶ ▲

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center
 ₃(u(g)) of the universal enveloping algebra of the Lie algebra of G.

・ 同 ト ・ ヨ ト ・ ヨ ト

< 🗇 ▶

> < ≣ >

ъ

Definition

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Define the spherical character of π w.r.t. v_1 and v_2 by:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Definition

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Define the spherical character of π w.r.t. v_1 and v_2 by:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Corollary

A spherical character of admissible representation w.r.t. pair of spherical groups is holonomic distribution. In particular

< 🗇 > < 🖻 >

Definition

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Define the spherical character of π w.r.t. v_1 and v_2 by:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Corollary

A spherical character of admissible representation w.r.t. pair of spherical groups is holonomic distribution. In particular

Corollary (Aizenbud, Gourevitch, Minchenko, Sayag)

For any local field F, any spherical character of an admissible representation of G(F) is smooth in a Zariski open dense set.

イロト イポト イヨト イヨト

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension. **Proof:**

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g}, \mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g}, \mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one.

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension. **Proof:**

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g}, \mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension.

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension. **Proof:**

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g}, \mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$.

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension. **Proof:**

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g}, \mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension. **Proof:**

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g}, \mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that *V* is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Lemma

Such inverse limit commutes with homologies.

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension. **Proof:**

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g}, \mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that *V* is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Lemma

Such inverse limit commutes with homologies.

On the other hand Bernstein-Kashiwara theorem implies that $\dim(V^*)^{\mathfrak{g}} \leq \mathcal{S}^*(X)^{\mathfrak{g}} < \infty$.

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension. **Proof:**

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

 $H_*(\mathfrak{g}, \mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that *V* is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Lemma

Such inverse limit commutes with homologies.

On the other hand Bernstein-Kashiwara theorem implies that $\dim(V^*)^{\mathfrak{g}} \leq \mathcal{S}^*(X)^{\mathfrak{g}} < \infty$.