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Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a
module over the ring D(X ) of differential operators on X .
A D-module M given by generators and relations can be
thought of as a system of PDE. A solution of M is a D-module
homomorphism of M to an appropriate space of functions.

Definition
Let M be a D-module over X with generators m1 . . .mk . Define
Fi(D(X )) to be the space of differential operators of degree i
and Fi(M) := Fi(D(X ))(m1 . . .mk ). Define

SS(M) := supp(grF (M)) ⊂ T ∗X .

For a distribution ξ on X (R) define

SS(ξ) := SS(D(X )ξ) =
⋂

dξ=0

Zeros(symbol(d)).

A D-module (or a distribution) ξ is called holonomic if

dim(SS(ξ)) = dim X .
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Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ∼1974)

Let X be a real algebraic manifold. Let M be a holonomic right
DX -module. Then dim Hom(M,S∗(X )) <∞.

Theorem (Bernstein, Kashiwara, Aizenbud, Gourevitch, Minchenko)

Let X ,Y be smooth algebraic varieties andM be a family of
holonomic DX -modules parameterized by Y . Then
dim Hom(My ,S∗(X )) is bounded when y ranges over Y .

Corollary (Aizenbud, Gourevitch, Minchenko)

Let a real algebraic group G act on a real algebraic manifold X with
finitely many orbits. Let E be an algebraic G-equivariant bundle on X
and χ be a character of g. Then,

dimS∗(X , E)g,χ <∞.

Moreover, it remains bounded when we change χ or tensor E with a
representation of g of a fixed dimension.
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Applications for co-invariants

Theorem (Aizenbud, Gourevitch, Krötz, Liu)
Let a real algebraic group G act on a real algebraic manifold X
with finitely many orbits. Let E be an algebraic G-equivariant
bundle on X and χ be a tempered character of G. Then,

g(S(X , E)⊗ χ) ⊂ S(X , E)⊗ χ

is closed and has finite codimension.

Corollary
Let G be a real reductive group, H be a real spherical subgroup,
and h be the Lie algebra of H. Let χ be a tempered character of
H. Then for any admissible representation π of G, H0(h, π ⊗ χ)
is separated and is non-degenerately paired with (π∗)h,−χ. In
particular, the following conj. of Casselman are equivalent

Automatic continuity: ((πhc)∗)h ∼= (π∗)h

Comparison: H0(h, π
hc) ∼= H0(h, π)
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Applications to multiplicities

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)
Let G be a real reductive group, H be a Zariski closed
subgroup, and h be the Lie algebra of H.

1 If H is a spherical subgroup (i.e. HB is open for some Borel
subgroup B) then there exists C ∈ N such that
dim(π∗)h,χ ≤ C for any π ∈ Irr(G) and any character χ of h.

2 If H is a real spherical subgroup (i.e. HP is open for some
minimal parabolic subgroup P) then, for every irreducible
admissible representation π ∈ Irr(G), and natural number
n ∈ N there exists Cn ∈ N such that for every
n-dimensional representation τ of h we have

dim Homh(π, τ) ≤ Cn.

Avraham Aizenbud Applications of the Bernstein-Kashiwara Theorem 5 / 1
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Sketch of the proof of Bernstein-Kashiwara theorem

Enough to prove for the case X is a vector space.
Stone von-Neumann: The group Sp(T ∗(X )) acts on the
category of D-modules on X stabilizing S∗(X ).
dim SSb = dim SSg

For g ∈ Sp(T ∗(X )) we have, g(SSb(M)) = SSb(gM)

∃g ∈ Sp(T ∗(X )) s.t. g(SSb(M)) ∩ X ∗ = 0
This implies that p : g(SSb(M))→ X is finite.
This implies that gM is smooth.
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This implies that gM is smooth.
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Relation with multiplicity

Theorem (Aizenbud, Gourevitch, Minchenko 2015)
Let G be an algebraic reductive group, H1,H2 ⊂ G be spherical
subgroups. The following system of equations on a distribution
ξ on G is holonomic:

ξ is left H1 invariant
ξ is right H2 invariant
ξ is eigen w.r.t. the center z(u(g)) of the universal
enveloping algebra of the Lie algebra of G.
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The spherical character

Definition
Let (π,V ) be an admissible representation of G(R) and
v1 ∈ (V ∗)H1 , v2 ∈ (Ṽ ∗)H2 . Define the spherical character of π
w.r.t. v1 and v2 by:

〈ξ, f 〉 := 〈π∗(f )v1, v2〉.

Corollary
A spherical character of admissible representation w.r.t. pair of
spherical groups is holonomic distribution. In particular

Corollary (Aizenbud, Gourevitch, Minchenko, Sayag)

For any local field F , any spherical character of an admissible
representation of G(F ) is smooth in a Zariski open dense set.
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v1 ∈ (V ∗)H1 , v2 ∈ (Ṽ ∗)H2 . Define the spherical character of π
w.r.t. v1 and v2 by:

〈ξ, f 〉 := 〈π∗(f )v1, v2〉.

Corollary
A spherical character of admissible representation w.r.t. pair of
spherical groups is holonomic distribution. In particular

Corollary (Aizenbud, Gourevitch, Minchenko, Sayag)

For any local field F , any spherical character of an admissible
representation of G(F ) is smooth in a Zariski open dense set.

Avraham Aizenbud Applications of the Bernstein-Kashiwara Theorem 8 / 1



The spherical character

Definition
Let (π,V ) be an admissible representation of G(R) and
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Relation with Hausdorffness

Theorem: If #X/G <∞ then gS(X ) ⊂ S(X ) is closed and has
finite codimension.

Proof:

Lemma (Aizenbud, Gourevitch, Krötz, Liu)

H∗(g,S(G/H)) are finite dimensional (and Hausdorff).

Assume that X = U ∪Z is a union of an open orbit and a closed
one. It is enough to prove that g(S(X )/S(Z )) ⊂ S(X )/S(Z ) is
closed and of finite co-dimension. Let V := (S(X )/S(Z )). The
Borel’s lemma and the lemma above implies that V is an
inverse limit (with epimorphisms) of representations with finite
dimensional co-homologies.

Lemma
Such inverse limit commutes with homologies.

On the other hand Bernstein-Kashiwara theorem implies that
dim(V ∗)g ≤ S∗(X )g <∞.
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