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Conjecture

Let G be a reductive algebraic group scheme and X be a
spherical G space (i.e. over any geometric point of spec(Z), the
Borel acts with finitely may orbits on X).
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Idea of the proof:
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representations.
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@ Deduce the result.
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Main tool — Lusztig’s character sheaves

Theorem (Lusztig, Shoiji)

Let G be an algebraic group of type GL defined over Fq. For
every irreducible representation p of G(Fy), there is an induced
character sheaf M together with a Weil structure

a : Frobg M — M which is pure of weight zero, such that

XM,a = Xp-
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Main tool — Lusztig’s character sheaves

Theorem (Lusztig, Shoiji)

Let G be an algebraic group of type GL defined over Fq. For
every irreducible representation p of G(Fy), there is an induced
character sheaf M together with a Weil structure

a : Frobg M — M which is pure of weight zero, such that

XM,a = Xp-

G={BeB,geB} =G

M is a (perversed) direct summand of . (K), for some line
bundle £ on G.
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Dimension of the orbit space

Let algebraic group H act on a variety Y. Denote
Yo :={(y,h) € Y x Hlhy = y}.
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Dimension of the orbit space

Let algebraic group H act on a variety Y. Denote
Yo :={(y,h) € Y x Hlhy = y}.

Examples

@ If Y is transitive then Yy is smooth and dim Y, = dim H.
@ Bg= G.

@ Y has finitely many orbits iff dim Yy = dim H.

@ dim(X x B)g = dim G iff X is spherical.
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The proof for fixed characteristic

Conclusion

We constructed a variety Z := (X x B)g of dimension dim G
such that for any irreducible representation p < irr(G(Fy)), there
exist a representation p' O p, a line bundle F on Z and wight

< 0 Weil structure g on H*(Z, F) s.t.

dim Hom(', CIX(Fq)]) = —-B)
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The proof for fixed characteristic

Conclusion

We constructed a variety Z := (X x B)g of dimension dim G
such that for any irreducible representation p < irr(G(Fy)), there
exist a representation p' O p, a line bundle F on Z and wight

< 0 Weil structure g on H*(Z, F) s.t.

dim Hom(', CIX(Fq)]) = —-B)
q

Notation

_ r(B"hrz.7)
M(n) = Wﬁ.

We have
@ limsup M(n) < #IrrComp(Z).
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@ M(n) = Q(v"), where Q is a rational function on C¢ and
v € (C¥)“.



End of the proof for groups of type GL

Suppose Q is a rational function on CY. Let v € (C*)? such that
Q is regular at v", for all n € Z~q, and the set {Q(v")|n € Z~o}
is finite.
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End of the proof for groups of type GL

Suppose Q is a rational function on CY. Let v € (C*)? such that
Q is regular at v", for all n € Z~q, and the set {Q(v")|n € Z~o}
is finite. Then the function n— Q(v") is periodic on Z.

dimHom(p, C[X(Fg)]) < M(1) < limsup M(n) < #lrrComp(Z2)
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