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Main conjecture

Conjecture
Let G be a reductive algebraic group scheme and X be a
spherical G space (i.e. over any geometric point of spec(Z), the
Borel acts with finitely may orbits on X).

Then

sup
F is a finite or local field

(
sup

ρ∈irr(G(F ))

dim Hom(S(X (F )), ρ)

)
<∞.
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Main result

We proved the conjecture if the group is of type A and the fields
are finite:

Theorem (A.-Avni)
Let G be a reductive algebraic group scheme of type A and X
be a spherical G space. Then

sup
F is a finite field

(
max

ρ∈irr(G(F ))
dim Hom(ρ,C[X (F )])

)
<∞.

Idea of the proof:
Use Lusztig’s character sheaves in order to categorify the
computation of multiplicity of principal series
representations.
The multiplicities are of geometric nature and
lim sup

n→∞
dim Hom(ρ,C[X (Fpn)]) is bounded.

Deduce the result.
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Main tool – Lusztig’s character sheaves

Theorem (Lusztig, Shoji)

Let G be an algebraic group of type GL defined over Fq. For
every irreducible representation ρ of G(Fq), there is an induced
character sheafM together with a Weil structure
α : Frob∗qM→M which is pure of weight zero, such that
χM,α = χρ.

G̃ = {B ∈ B,g ∈ B} π→ G.

M is a (perversed) direct summand of π∗(K), for some line
bundle K on G̃.
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Dimension of the orbit space

Notation
Let algebraic group H act on a variety Y . Denote
YH := {(y ,h) ∈ Y × H|hy = y}.

Examples
If Y is transitive then YH is smooth and dim YH = dim H.
BG = G̃.
Y has finitely many orbits iff dim YH = dim H.
dim(X × B)G = dim G iff X is spherical.
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Categorification of the computation of multiplicity of
principal series representations

(X ×G/B)G

f̃

((
π̃

yy
p

��

XG

f
%%

G̃ = (G/B)G

π

uuG

q
��

pt

dim Hom(ρ,C[X (F )]) = 〈χρ, χC[X(F )]〉 = 〈χM, f!(1XG)〉 =
〈χM, f!(χCXG

)〉 = 〈χM, χf!(CXG
)〉 ≤ 〈χπ∗(K), χf!(CXG

)〉 =
1

|G(F )|χq!(π!(K)
L
⊗f!(CXG

))
= 1
|G(F )|χ(q◦p)!(f̃∗(K)⊗π̃∗(CXG

))
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The proof for fixed characteristic

Conclusion
We constructed a variety Z := (X × B)G of dimension dim G
such that for any irreducible representation ρ ∈ irr(G(Fq)), there
exist a representation ρ′ ⊃ ρ, a line bundle F on Z and wight
≤ 0 Weil structure β on H∗(Z ,F) s.t.

dim Hom(ρ′,C[X (Fq)]) =
tr(β)
|G(Fq)|

Notation

M(n) := tr(βn|H∗(Z ,F))

|G(Fqn )| .

We have
lim sup

n→∞
M(n) ≤ #IrrComp(Z ).

M(n) = Q(vn), where Q is a rational function on Cd and
v ∈ (C×)d .
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End of the proof for groups of type GL

Lemma

Suppose Q is a rational function on Cd . Let v ∈ (C×)d such that
Q is regular at vn, for all n ∈ Z>0, and the set {Q(vn)|n ∈ Z>0}
is finite.

Then the function n 7→ Q(vn) is periodic on Z.

dim Hom(ρ,C[X (Fq)]) ≤ M(1) ≤ lim sup
n→∞

M(n) ≤ #IrrComp(Z )
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