Bounds on multiplicities of spherical spaces over finite fields

A. Aizenbud

Weizmann Institute of Science
joint with Nir Avni

> http://aizenbud.org

Main conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any geometric point of $\operatorname{spec}(\mathbb{Z})$, the Borel acts with finitely may orbits on X).

Main conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any geometric point of spec(\mathbb{Z}), the Borel acts with finitely may orbits on X). Then

$$
\sup _{F \text { is a tinite or local field }}\left(\sup _{\rho \in \operatorname{irr}(\mathcal{G}(F))} \operatorname{dim} \operatorname{Hom}(\mathcal{S}(X(F)), \rho)\right)<\infty .
$$

previews results

F is a finite or local field $\left(\sup _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\mathcal{S}(X(F)), \rho)\right)$.

previews results

$$
\sup _{F \text { is a finite or local field }}\left(\sup _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\mathcal{S}(X(F)), \rho)\right) .
$$

- Delorme, Sakellaridis-Venkatesh - finite multiplicity for non-Archemedian fields for wide class of spherical spaces.

previews results

$$
\sup _{F \text { is a finite or local field }}\left(\sup _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\mathcal{S}(X(F)), \rho)\right) .
$$

- Delorme, Sakellaridis-Venkatesh - finite multiplicity for non-Archemedian fields for wide class of spherical spaces.
- Kobayashi-Oshima, Krötz-Schlichtkrull - bounds on multiplicity for Archemedian fields for wide class of spherical spaces.

previews results

$$
\sup _{F \text { is a finite or local field }}\left(\sup _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\mathcal{S}(X(F)), \rho)\right) .
$$

- Delorme, Sakellaridis-Venkatesh - finite multiplicity for non-Archemedian fields for wide class of spherical spaces.
- Kobayashi-Oshima, Krötz-Schlichtkrull - bounds on multiplicity for Archemedian fields for wide class of spherical spaces.
- Gelfand pairs:

previews results

$$
\sup _{F \text { is a tinite or local field }}\left(\sup _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\mathcal{S}(X(F)), \rho)\right) .
$$

- Delorme, Sakellaridis-Venkatesh - finite multiplicity for non-Archemedian fields for wide class of spherical spaces.
- Kobayashi-Oshima, Krötz-Schlichtkrull - bounds on multiplicity for Archemedian fields for wide class of spherical spaces.
- Gelfand pairs: Gelfand-Kazhdan, Shalika, Jacquet-Rallis, A.-Gourevitch-Rallis-Schiffman,...

previews results

$$
\sup _{F \text { is a tinite or local field }}\left(\sup _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\mathcal{S}(X(F)), \rho)\right) .
$$

- Delorme, Sakellaridis-Venkatesh - finite multiplicity for non-Archemedian fields for wide class of spherical spaces.
- Kobayashi-Oshima, Krötz-Schlichtkrull - bounds on multiplicity for Archemedian fields for wide class of spherical spaces.
- Gelfand pairs: Gelfand-Kazhdan, Shalika, Jacquet-Rallis, A.-Gourevitch-Rallis-Schiffman,...
- Cuspidal Gelfand pairs: Hakim,...

Main result

We proved the conjecture if the group is of type A and the fields are finite:

Main result

We proved the conjecture if the group is of type A and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space.

Main result

We proved the conjecture if the group is of type A and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space. Then
$\sup _{F \text { is a finite field }}\left(\max _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])\right)<\infty$.

Main result

We proved the conjecture if the group is of type A and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space. Then

$$
\sup _{F \text { is a finite field }}\left(\max _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])\right)<\infty .
$$

Idea of the proof:

Main result

We proved the conjecture if the group is of type A and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space. Then

$$
\sup _{F \text { is a tinite field }}\left(\max _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])\right)<\infty .
$$

Idea of the proof:

- Use Lusztig's character sheaves in order to categorify the computation of multiplicity of principal series representations.

Main result

We proved the conjecture if the group is of type A and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space. Then

$$
\sup _{F \text { is a tinite field }}\left(\max _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])\right)<\infty .
$$

Idea of the proof:

- Use Lusztig's character sheaves in order to categorify the computation of multiplicity of principal series representations.
- The multiplicities are of geometric nature and \lim sup $\operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}\left[X\left(\mathbb{F}_{p^{n}}\right)\right]\right)$ is bounded.
$n \rightarrow \infty$

Main result

We proved the conjecture if the group is of type A and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space. Then

$$
\sup _{F \text { is a finite field }}\left(\max _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])\right)<\infty .
$$

Idea of the proof:

- Use Lusztig's character sheaves in order to categorify the computation of multiplicity of principal series representations.
- The multiplicities are of geometric nature and lim sup $\operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}\left[X\left(\mathbb{F}_{p^{n}}\right)\right]\right)$ is bounded.

$$
n \rightarrow \infty
$$

- Deduce the result.

Main tool - Lusztig's character sheaves

Theorem (Lusztig, Shoji)

Let G be an algebraic group of type GL defined over \mathbb{F}_{q}. For every irreducible representation ρ of $G\left(\mathbb{F}_{q}\right)$, there is an induced character sheaf \mathcal{M} together with a Weil structure $\alpha: \operatorname{Frob}_{q}^{*} \mathcal{M} \rightarrow \mathcal{M}$ which is pure of weight zero, such that $\chi_{M, \alpha}=\chi_{\rho}$.

Main tool - Lusztig's character sheaves

Theorem (Lusztig, Shoji)

Let G be an algebraic group of type GL defined over \mathbb{F}_{q}. For every irreducible representation ρ of $G\left(\mathbb{F}_{q}\right)$, there is an induced character sheaf \mathcal{M} together with a Weil structure $\alpha: \operatorname{Frob}_{q}^{*} \mathcal{M} \rightarrow \mathcal{M}$ which is pure of weight zero, such that $\chi_{M, \alpha}=\chi_{\rho}$.

$$
\tilde{G}=\{B \in \mathcal{B}, g \in B\} \xrightarrow{\pi} G .
$$

Main tool - Lusztig's character sheaves

Theorem (Lusztig, Shoji)

Let G be an algebraic group of type GL defined over \mathbb{F}_{q}. For every irreducible representation ρ of $G\left(\mathbb{F}_{q}\right)$, there is an induced character sheaf \mathcal{M} together with a Weil structure $\alpha: \operatorname{Frob}_{q}^{*} \mathcal{M} \rightarrow \mathcal{M}$ which is pure of weight zero, such that $\chi_{M, \alpha}=\chi_{\rho}$.

$$
\tilde{G}=\{B \in \mathcal{B}, g \in B\} \xrightarrow{\pi} G .
$$

\mathcal{M} is a (perversed) direct summand of $\pi_{*}(\mathcal{K})$, for some line bundle \mathcal{K} on \tilde{G}.

Dimension of the orbit space

Notation
Let algebraic group H act on a variety Y. Denote $Y_{H}:=\{(y, h) \in Y \times H \mid h y=y\}$.

Dimension of the orbit space

Notation
Let algebraic group H act on a variety Y. Denote $Y_{H}:=\{(y, h) \in Y \times H \mid h y=y\}$.

Examples

Dimension of the orbit space

Notation

Let algebraic group H act on a variety Y. Denote $Y_{H}:=\{(y, h) \in Y \times H \mid h y=y\}$.

Examples

- If Y is transitive then Y_{H} is smooth and $\operatorname{dim} Y_{H}=\operatorname{dim} H$.

Dimension of the orbit space

Notation
Let algebraic group H act on a variety Y. Denote $Y_{H}:=\{(y, h) \in Y \times H \mid h y=y\}$.

Examples

- If Y is transitive then Y_{H} is smooth and $\operatorname{dim} Y_{H}=\operatorname{dim} H$.
- $\mathcal{B}_{G}=\tilde{G}$.

Dimension of the orbit space

Notation

Let algebraic group H act on a variety Y. Denote $Y_{H}:=\{(y, h) \in Y \times H \mid h y=y\}$.

Examples

- If Y is transitive then Y_{H} is smooth and $\operatorname{dim} Y_{H}=\operatorname{dim} H$.
- $\mathcal{B}_{G}=\tilde{G}$.
- Y has finitely many orbits iff $\operatorname{dim} Y_{H}=\operatorname{dim} H$.

Dimension of the orbit space

Notation

Let algebraic group H act on a variety Y. Denote $Y_{H}:=\{(y, h) \in Y \times H \mid h y=y\}$.

Examples

- If Y is transitive then Y_{H} is smooth and $\operatorname{dim} Y_{H}=\operatorname{dim} H$.
- $\mathcal{B}_{G}=\tilde{G}$.
- Y has finitely many orbits iff $\operatorname{dim} Y_{H}=\operatorname{dim} H$.
- $\operatorname{dim}(X \times \mathcal{B})_{G}=\operatorname{dim} G$ iff X is spherical.

Categorification of the computation of multiplicity of principal series representations

Categorification of the computation of multiplicity of principal series representations

$\operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])$

Categorification of the computation of multiplicity of principal series representations

$\operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])=\left\langle\chi_{\rho}, \chi_{\mathbb{C}}[X(F)]\right\rangle$

Categorification of the computation of multiplicity of principal series representations

$\operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])=\left\langle\chi_{\rho}, \chi_{\mathbb{C}}[X(F)]\right\rangle=\left\langle\chi_{\mathcal{M}}, f_{1}\left(1 \chi_{G}\right)\right\rangle$

Categorification of the computation of multiplicity of principal series representations

$\operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])=\left\langle\chi_{\rho}, \chi_{\mathbb{C}}[X(F)] \quad\right\rangle=\left\langle\chi_{\mathcal{M}}, f_{!}\left(1_{X_{G}}\right)\right\rangle=$
$\left\langle\chi_{\mathcal{M}}, f_{!}\left(\chi_{\mathbb{C}_{\chi_{G}}}\right)\right\rangle$

Categorification of the computation of multiplicity of principal series representations

$\operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])=\left\langle\chi_{\rho}, \chi_{\mathbb{C}}[X(F)]\right\rangle=\left\langle\chi_{\mathcal{M}}, f_{!}\left(1_{X_{G}}\right)\right\rangle=$
$\left\langle\chi_{\mathcal{M}}, f_{!}\left(\chi_{\mathbb{C}_{\chi_{G}}}\right)\right\rangle=\left\langle\chi_{\mathcal{M}}, \chi_{f_{!}}\left(\mathbb{C}_{\chi_{G}}\right)\right\rangle$

Categorification of the computation of multiplicity of principal series representations

$\operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])=\left\langle\chi_{\rho}, \chi_{\mathbb{C}}[X(F)]\right\rangle=\left\langle\chi_{\mathcal{M}}, f_{!}\left(1_{X_{G}}\right)\right\rangle=$
$\left\langle\chi_{\mathcal{M}}, f_{!}\left(\chi_{\mathbb{C}_{\chi_{G}}}\right)\right\rangle=\left\langle\chi_{\mathcal{M}}, \chi_{f_{!}}\left(\mathbb{C}_{\chi_{G}}\right)\right\rangle \leq\left\langle\chi_{\pi_{*}(\mathcal{K})}, \chi_{f_{!}}\left(\mathbb{C}_{\chi_{G}}\right)\right\rangle$

Categorification of the computation of multiplicity of principal series representations

$\operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])=\left\langle\chi_{\rho}, \chi_{\mathbb{C}}[X(F)]\right\rangle=\left\langle\chi_{\mathcal{M}}, f_{!}\left(1_{X_{G}}\right)\right\rangle=$
$\left\langle\chi_{\mathcal{M}}, f_{!}\left(\chi_{\mathbb{C}_{\chi_{G}}}\right)\right\rangle=\left\langle\chi_{\mathcal{M}}, \chi_{f_{!}\left(\mathbb{C}_{\chi_{G}}\right)}\right\rangle \leq\left\langle\chi_{\pi_{*}(\mathcal{K})}, \chi_{f_{!}\left(\mathbb{C}_{\chi_{G}}\right)}\right\rangle=$
$\frac{1}{|G(F)|} \chi_{q_{!}\left(\pi!(\mathcal{K}) \otimes{ }^{\perp} f_{!}\left(\mathbb{C}_{x_{G}}\right)\right)}$

Categorification of the computation of multiplicity of principal series representations

$\operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])=\left\langle\chi_{\rho}, \chi_{\mathbb{C}}[X(F)]\right\rangle=\left\langle\chi_{\mathcal{M}}, f_{!}\left(1_{X_{G}}\right)\right\rangle=$
$\left\langle\chi_{\mathcal{M}}, f_{!}\left(\chi_{\mathbb{C}_{\chi_{G}}}\right)\right\rangle=\left\langle\chi_{\mathcal{M}}, \chi_{f_{!}\left(\mathbb{C}_{\chi_{G}}\right)}\right\rangle \leq\left\langle\chi_{\pi_{*}(\mathcal{K})}, \chi_{f_{!}\left(\mathbb{C}_{\chi_{G}}\right)}\right\rangle=$
$\frac{1}{|G(F)|} \chi_{q!\left(\pi!(\mathcal{K}) \otimes L_{!}\left(\mathbb{C}_{X_{G}}\right)\right)}=\frac{1}{|G(F)|} \chi_{(q \circ p)!\left(\tilde{f}^{*}(\mathcal{K}) \otimes \tilde{\pi}^{*}\left(\mathbb{C}_{X_{G}}\right)\right)}$

The proof for fixed characteristic

Conclusion
We constructed a variety $Z:=(X \times \mathcal{B})_{G}$ of dimension $\operatorname{dim} G$ such that for any irreducible representation $\rho \in \operatorname{irr}\left(G\left(\mathbb{F}_{q}\right)\right)$, there exist a representation $\rho^{\prime} \supset \rho$, a line bundle \mathcal{F} on Z and wight ≤ 0 Weil structure β on $H^{*}(Z, \mathcal{F})$ s.t.

$$
\operatorname{dim} \operatorname{Hom}\left(\rho^{\prime}, \mathbb{C}\left[X\left(\mathbb{F}_{q}\right)\right]\right)=\frac{\operatorname{tr}(\beta)}{\left|G\left(\mathbb{F}_{q}\right)\right|}
$$

The proof for fixed characteristic

Conclusion

We constructed a variety $Z:=(X \times \mathcal{B})_{G}$ of dimension $\operatorname{dim} G$ such that for any irreducible representation $\rho \in \operatorname{irr}\left(G\left(\mathbb{F}_{q}\right)\right)$, there exist a representation $\rho^{\prime} \supset \rho$, a line bundle \mathcal{F} on Z and wight ≤ 0 Weil structure β on $H^{*}(Z, \mathcal{F})$ s.t.

$$
\operatorname{dim} \operatorname{Hom}\left(\rho^{\prime}, \mathbb{C}\left[X\left(\mathbb{F}_{q}\right)\right]\right)=\frac{\operatorname{tr}(\beta)}{\left|G\left(\mathbb{F}_{q}\right)\right|}
$$

Notation
$M(n):=\frac{\operatorname{tr}\left(\beta^{n} \mid \mu^{*}(Z, \mathcal{F})\right)}{\left|G\left(\mathbb{F}_{q^{n}}\right)\right|}$.

The proof for fixed characteristic

Conclusion

We constructed a variety $Z:=(X \times \mathcal{B})_{G}$ of dimension $\operatorname{dim} G$ such that for any irreducible representation $\rho \in \operatorname{irr}\left(G\left(\mathbb{F}_{q}\right)\right)$, there exist a representation $\rho^{\prime} \supset \rho$, a line bundle \mathcal{F} on Z and wight ≤ 0 Weil structure β on $H^{*}(Z, \mathcal{F})$ s.t.

$$
\operatorname{dim} \operatorname{Hom}\left(\rho^{\prime}, \mathbb{C}\left[X\left(\mathbb{F}_{q}\right)\right]\right)=\frac{\operatorname{tr}(\beta)}{\left|G\left(\mathbb{F}_{q}\right)\right|}
$$

Notation
$M(n):=\frac{\operatorname{tr}\left(\left.\beta^{n}\right|_{H^{*}(Z, \mathcal{F})}\right)}{\left|G\left(\mathbb{F}_{q^{n}}\right)\right|}$.
We have

The proof for fixed characteristic

Conclusion

We constructed a variety $Z:=(X \times \mathcal{B})_{G}$ of dimension $\operatorname{dim} G$ such that for any irreducible representation $\rho \in \operatorname{irr}\left(G\left(\mathbb{F}_{q}\right)\right)$, there exist a representation $\rho^{\prime} \supset \rho$, a line bundle \mathcal{F} on Z and wight ≤ 0 Weil structure β on $H^{*}(Z, \mathcal{F})$ s.t.

$$
\operatorname{dim} \operatorname{Hom}\left(\rho^{\prime}, \mathbb{C}\left[X\left(\mathbb{F}_{q}\right)\right]\right)=\frac{\operatorname{tr}(\beta)}{\left|G\left(\mathbb{F}_{q}\right)\right|}
$$

Notation
$M(n):=\frac{\operatorname{tr}\left(\beta^{n} \mid \mu^{*}(Z, \mathcal{F})\right.}{}\left|G\left(\mathbb{F}_{q^{n}}\right)\right|$.
We have

- $\lim \sup M(n) \leq \# \operatorname{IrrComp}(Z)$.
$n \rightarrow \infty$

The proof for fixed characteristic

Conclusion

We constructed a variety $Z:=(X \times \mathcal{B})_{G}$ of dimension $\operatorname{dim} G$ such that for any irreducible representation $\rho \in \operatorname{irr}\left(G\left(\mathbb{F}_{q}\right)\right)$, there exist a representation $\rho^{\prime} \supset \rho$, a line bundle \mathcal{F} on Z and wight ≤ 0 Weil structure β on $H^{*}(Z, \mathcal{F})$ s.t.

$$
\operatorname{dim} \operatorname{Hom}\left(\rho^{\prime}, \mathbb{C}\left[X\left(\mathbb{F}_{q}\right)\right]\right)=\frac{\operatorname{tr}(\beta)}{\left|G\left(\mathbb{F}_{q}\right)\right|}
$$

Notation

$M(n):=\frac{\operatorname{tr}\left(\beta^{n} \mid \mu^{*}(Z, \mathcal{F})\right.}{}\left|G\left(\mathbb{F}_{q^{n}}\right)\right|$.
We have

- $\lim \sup M(n) \leq \# \operatorname{lrrComp}(Z)$.
$n \rightarrow \infty$
- $M(n)=Q\left(v^{n}\right)$, where Q is a rational function on \mathbb{C}^{d} and $v \in\left(\mathbb{C}^{\times}\right)^{d}$.

End of the proof for groups of type GL

Lemma

Suppose Q is a rational function on \mathbb{C}^{d}. Let $v \in\left(\mathbb{C}^{\times}\right)^{d}$ such that Q is regular at v^{n}, for all $n \in \mathbb{Z}_{>0}$, and the set $\left\{Q\left(v^{n}\right) \mid n \in \mathbb{Z}>0\right\}$ is finite.

End of the proof for groups of type GL

Lemma

Suppose Q is a rational function on \mathbb{C}^{d}. Let $v \in\left(\mathbb{C}^{\times}\right)^{d}$ such that Q is regular at v^{n}, for all $n \in \mathbb{Z}_{>0}$, and the set $\left\{Q\left(v^{n}\right) \mid n \in \mathbb{Z}_{>0}\right\}$ is finite. Then the function $n \mapsto Q\left(v^{n}\right)$ is periodic on \mathbb{Z}.

End of the proof for groups of type GL

Lemma

Suppose Q is a rational function on \mathbb{C}^{d}. Let $v \in\left(\mathbb{C}^{\times}\right)^{d}$ such that Q is regular at v^{n}, for all $n \in \mathbb{Z}_{>0}$, and the set $\left\{Q\left(v^{n}\right) \mid n \in \mathbb{Z}_{>0}\right\}$ is finite. Then the function $n \mapsto Q\left(v^{n}\right)$ is periodic on \mathbb{Z}.
$\operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}\left[X\left(\mathbb{F}_{q}\right)\right]\right)$

End of the proof for groups of type GL

Lemma

Suppose Q is a rational function on \mathbb{C}^{d}. Let $v \in\left(\mathbb{C}^{\times}\right)^{d}$ such that Q is regular at v^{n}, for all $n \in \mathbb{Z}_{>0}$, and the set $\left\{Q\left(v^{n}\right) \mid n \in \mathbb{Z}_{>0}\right\}$ is finite. Then the function $n \mapsto Q\left(v^{n}\right)$ is periodic on \mathbb{Z}.
$\operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}\left[X\left(\mathbb{F}_{q}\right)\right]\right) \leq M(1)$

End of the proof for groups of type GL

Lemma

Suppose Q is a rational function on \mathbb{C}^{d}. Let $v \in\left(\mathbb{C}^{\times}\right)^{d}$ such that Q is regular at v^{n}, for all $n \in \mathbb{Z}_{>0}$, and the set $\left\{Q\left(v^{n}\right) \mid n \in \mathbb{Z}_{>0}\right\}$ is finite. Then the function $n \mapsto Q\left(v^{n}\right)$ is periodic on \mathbb{Z}.
$\operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}\left[X\left(\mathbb{F}_{q}\right)\right]\right) \leq M(1) \leq \lim \sup M(n)$

$$
n \rightarrow \infty
$$

End of the proof for groups of type GL

Lemma

Suppose Q is a rational function on \mathbb{C}^{d}. Let $v \in\left(\mathbb{C}^{\times}\right)^{d}$ such that Q is regular at v^{n}, for all $n \in \mathbb{Z}_{>0}$, and the set $\left\{Q\left(v^{n}\right) \mid n \in \mathbb{Z}>0\right\}$ is finite. Then the function $n \mapsto Q\left(v^{n}\right)$ is periodic on \mathbb{Z}.
$\operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}\left[X\left(\mathbb{F}_{q}\right)\right]\right) \leq M(1) \leq \lim \sup M(n) \leq \# \operatorname{IrrComp}(Z)$

$$
n \rightarrow \infty
$$

