Bounds on multiplicities of spherical spaces over finite fields

A. Aizenbud

Weizmann Institute of Science

joint with Nir Avni

http://aizenbud.org

э

ヘロア 人間 アメヨア 人口 ア

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any geometric point of $spec(\mathbb{Z})$, the Borel acts with finitely may orbits on X).

프 > - 프 > · ·

< ∰ > <

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any geometric point of $spec(\mathbb{Z})$, the Borel acts with finitely may orbits on X). Then

 $\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\mathcal{S}(X(F)), \rho) \right) < \infty.$

イロト 不得 とくほ とくほ とうほ

<ロ> (四) (四) (三) (三) (三)

$$\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\mathcal{S}(X(F)), \rho) \right).$$

 Delorme, Sakellaridis-Venkatesh – finite multiplicity for non-Archemedian fields for wide class of spherical spaces.

くロト (過) (目) (日)

$$\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\mathcal{S}(X(F)), \rho) \right).$$

- Delorme, Sakellaridis-Venkatesh finite multiplicity for non-Archemedian fields for wide class of spherical spaces.
- Kobayashi-Oshima, Krötz-Schlichtkrull bounds on multiplicity for Archemedian fields for wide class of spherical spaces.

$$\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\mathcal{S}(X(F)), \rho) \right).$$

- Delorme, Sakellaridis-Venkatesh finite multiplicity for non-Archemedian fields for wide class of spherical spaces.
- Kobayashi-Oshima, Krötz-Schlichtkrull bounds on multiplicity for Archemedian fields for wide class of spherical spaces.
- Gelfand pairs:

 $\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\mathcal{S}(X(F)), \rho) \right).$

- Delorme, Sakellaridis-Venkatesh finite multiplicity for non-Archemedian fields for wide class of spherical spaces.
- Kobayashi-Oshima, Krötz-Schlichtkrull bounds on multiplicity for Archemedian fields for wide class of spherical spaces.
- Gelfand pairs: Gelfand-Kazhdan, Shalika, Jacquet-Rallis, A.-Gourevitch-Rallis-Schiffman,...

イロト 不得 とくほ とくほ とうほ

 $\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\mathcal{S}(X(F)), \rho) \right).$

- Delorme, Sakellaridis-Venkatesh finite multiplicity for non-Archemedian fields for wide class of spherical spaces.
- Kobayashi-Oshima, Krötz-Schlichtkrull bounds on multiplicity for Archemedian fields for wide class of spherical spaces.
- Gelfand pairs: Gelfand-Kazhdan, Shalika, Jacquet-Rallis, A.-Gourevitch-Rallis-Schiffman,...
- Cuspidal Gelfand pairs: Hakim,...

▲御 → ▲ 臣 → ▲ 臣 → 二 臣

We proved the conjecture if the group is of type *A* and the fields are finite:

ъ

ヘロト ヘアト ヘビト ヘビト

We proved the conjecture if the group is of type *A* and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space.

< 🗇 🕨 🔸

We proved the conjecture if the group is of type *A* and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space. Then

$$\sup_{\textit{F is a finite field}} \left(\max_{\rho \in \operatorname{irr}(\textit{G}(\textit{F}))} \dim \textit{Hom}(\rho, \mathbb{C}[\textit{X}(\textit{F})]) \right) < \infty$$

< 🗇 🕨 🔸

We proved the conjecture if the group is of type *A* and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space. Then

$$\sup_{\textit{F is a finite field}} \left(\max_{\rho \in \operatorname{irr}(G(F))} \dim \textit{Hom}(\rho, \mathbb{C}[\textit{X}(F)]) \right) < \infty$$

Idea of the proof:

< 🗇 🕨 🔸

We proved the conjecture if the group is of type *A* and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space. Then

$$\sup_{F \text{ is a finite field}} \left(\max_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) \right) < \infty$$

Idea of the proof:

• Use Lusztig's character sheaves in order to categorify the computation of multiplicity of principal series representations.

くロト (過) (目) (日)

We proved the conjecture if the group is of type *A* and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space. Then

$$\sup_{F \text{ is a finite field}} \left(\max_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) \right) < \infty$$

Idea of the proof:

- Use Lusztig's character sheaves in order to categorify the computation of multiplicity of principal series representations.
- The multiplicities are of geometric nature and lim sup dim Hom(ρ, ℂ[X(𝔽_{pⁿ})]) is bounded.

ヘロト 人間 ト ヘヨト ヘヨト

We proved the conjecture if the group is of type *A* and the fields are finite:

Theorem (A.-Avni)

Let G be a reductive algebraic group scheme of type A and X be a spherical G space. Then

$$\sup_{F \text{ is a finite field}} \left(\max_{\rho \in \operatorname{irr}(G(F))} \dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) \right) < \infty$$

Idea of the proof:

- Use Lusztig's character sheaves in order to categorify the computation of multiplicity of principal series representations.
- The multiplicities are of geometric nature and lim sup dim Hom(ρ, ℂ[X(𝔽pⁿ)]) is bounded.
- Deduce the result.

Theorem (Lusztig, Shoji)

Let G be an algebraic group of type GL defined over \mathbb{F}_q . For every irreducible representation ρ of $G(\mathbb{F}_q)$, there is an induced character sheaf \mathcal{M} together with a Weil structure $\alpha : \operatorname{Frob}_q^* \mathcal{M} \to \mathcal{M}$ which is pure of weight zero, such that $\chi_{M,\alpha} = \chi_{\rho}$.

Theorem (Lusztig, Shoji)

Let G be an algebraic group of type GL defined over \mathbb{F}_q . For every irreducible representation ρ of $G(\mathbb{F}_q)$, there is an induced character sheaf \mathcal{M} together with a Weil structure $\alpha : \operatorname{Frob}_q^* \mathcal{M} \to \mathcal{M}$ which is pure of weight zero, such that $\chi_{M,\alpha} = \chi_{\rho}$.

$$ilde{G} = \{ \pmb{B} \in \mathcal{B}, \pmb{g} \in \pmb{B} \} \stackrel{\pi}{
ightarrow} \pmb{G}.$$

Theorem (Lusztig, Shoji)

Let G be an algebraic group of type GL defined over \mathbb{F}_q . For every irreducible representation ρ of $G(\mathbb{F}_q)$, there is an induced character sheaf \mathcal{M} together with a Weil structure $\alpha : \operatorname{Frob}_q^* \mathcal{M} \to \mathcal{M}$ which is pure of weight zero, such that $\chi_{M,\alpha} = \chi_{\rho}$.

$$ilde{G} = \{ B \in \mathcal{B}, g \in B \} \stackrel{\pi}{
ightarrow} G.$$

 \mathcal{M} is a (perversed) direct summand of $\pi_*(\mathcal{K})$, for some line bundle \mathcal{K} on \tilde{G} .

ヘロン 人間 とくほ とくほ とう

Let algebraic group H act on a variety Y. Denote $Y_H := \{(y, h) \in Y \times H | hy = y\}.$

3

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Let algebraic group H act on a variety Y. Denote $Y_H := \{(y, h) \in Y \times H | hy = y\}.$

Examples

3

イロト 不得 とくほ とくほ とう

Let algebraic group H act on a variety Y. Denote $Y_H := \{(y, h) \in Y \times H | hy = y\}.$

Examples

• If Y is transitive then Y_H is smooth and dim $Y_H = \dim H$.

ヘロト ヘアト ヘビト ヘビト

Let algebraic group H act on a variety Y. Denote $Y_H := \{(y, h) \in Y \times H | hy = y\}.$

Examples

If Y is transitive then Y_H is smooth and dim Y_H = dim H.
B_G = G̃.

ヘロン 人間 とくほ とくほ とう

Let algebraic group H act on a variety Y. Denote $Y_H := \{(y, h) \in Y \times H | hy = y\}.$

Examples

- If Y is transitive then Y_H is smooth and dim Y_H = dim H.
 B_G = G̃.
- *Y* has finitely many orbits iff dim $Y_H = \dim H$.

ヘロト 人間 ト ヘヨト ヘヨト

Let algebraic group H act on a variety Y. Denote $Y_H := \{(y, h) \in Y \times H | hy = y\}.$

Examples

- If Y is transitive then Y_H is smooth and dim Y_H = dim H.
 B_G = G̃.
- *Y* has finitely many orbits iff dim $Y_H = \dim H$.
- dim $(X \times B)_G$ = dim *G* iff *X* is spherical.

ヘロト ヘ戸ト ヘヨト ヘヨト

dim Hom $(\rho, \mathbb{C}[X(F)])$

 $\dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) = \langle \chi_{\rho}, \chi_{\mathbb{C}[X(F)]} \rangle$

 $\dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) = \langle \chi_{\rho}, \chi_{\mathbb{C}[X(F)]} \rangle = \langle \chi_{\mathcal{M}}, f_{!}(\mathbf{1}_{X_{G}}) \rangle$

 $\dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) = \langle \chi_{\rho}, \chi_{\mathbb{C}[X(F)]} \rangle = \langle \chi_{\mathcal{M}}, f_{!}(\mathbf{1}_{X_{G}}) \rangle = \langle \chi_{\mathcal{M}}, f_{!}(\chi_{\mathbb{C}_{X_{G}}}) \rangle$

 $\dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) = \langle \chi_{\rho}, \chi_{\mathbb{C}[X(F)]} \rangle = \langle \chi_{\mathcal{M}}, f_{!}(1_{X_{G}}) \rangle = \langle \chi_{\mathcal{M}}, f_{!}(\chi_{\mathbb{C}_{X_{G}}}) \rangle = \langle \chi_{\mathcal{M}}, \chi_{f_{!}(\mathbb{C}_{X_{G}})} \rangle$

$$\dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) = \langle \chi_{\rho}, \chi_{\mathbb{C}[X(F)]} \rangle = \langle \chi_{\mathcal{M}}, f_{!}(1_{X_{G}}) \rangle = \langle \chi_{\mathcal{M}}, f_{!}(\chi_{\mathbb{C}_{X_{G}}}) \rangle = \langle \chi_{\mathcal{M}}, \chi_{f_{!}(\mathbb{C}_{X_{G}})} \rangle \leq \langle \chi_{\pi_{*}(\mathcal{K})}, \chi_{f_{!}(\mathbb{C}_{X_{G}})} \rangle$$

$$\dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) = \langle \chi_{\rho}, \chi_{\mathbb{C}[X(F)]} \rangle = \langle \chi_{\mathcal{M}}, f_{!}(1_{X_{G}}) \rangle = \langle \chi_{\mathcal{M}}, f_{!}(\chi_{\mathbb{C}_{X_{G}}}) \rangle = \langle \chi_{\mathcal{M}}, \chi_{f_{!}(\mathbb{C}_{X_{G}})} \rangle \leq \langle \chi_{\pi_{*}(\mathcal{K})}, \chi_{f_{!}(\mathbb{C}_{X_{G}})} \rangle = \frac{1}{|G(F)|} \chi_{q_{!}(\pi_{!}(\mathcal{K}) \otimes f_{!}(\mathbb{C}_{X_{G}}))}$$

$$\dim \operatorname{Hom}(\rho, \mathbb{C}[X(F)]) = \langle \chi_{\rho}, \chi_{\mathbb{C}[X(F)]} \rangle = \langle \chi_{\mathcal{M}}, f_{!}(1_{X_{G}}) \rangle = \langle \chi_{\mathcal{M}}, f_{!}(\chi_{\mathbb{C}_{X_{G}}}) \rangle = \langle \chi_{\mathcal{M}}, \chi_{f_{!}(\mathbb{C}_{X_{G}})} \rangle \leq \langle \chi_{\pi_{*}(\mathcal{K})}, \chi_{f_{!}(\mathbb{C}_{X_{G}})} \rangle = \frac{1}{|G(F)|} \chi_{q \circ p)_{!}(\tilde{f}^{*}(\mathcal{K}) \otimes \tilde{\pi}^{*}(\mathbb{C}_{X_{G}}))}$$

Conclusion

We constructed a variety $Z := (X \times B)_G$ of dimension dim Gsuch that for any irreducible representation $\rho \in \operatorname{irr}(G(\mathbb{F}_q))$, there exist a representation $\rho' \supset \rho$, a line bundle \mathcal{F} on Z and wight ≤ 0 Weil structure β on $H^*(Z, \mathcal{F})$ s.t.

$$\dim \mathit{Hom}(
ho',\mathbb{C}[X(\mathbb{F}_q)])=rac{\mathit{tr}(eta)}{|\mathcal{G}(\mathbb{F}_q)|}$$

・ロト ・部ト ・ヨト ・ヨト 三日

Conclusion

We constructed a variety $Z := (X \times B)_G$ of dimension dim Gsuch that for any irreducible representation $\rho \in \operatorname{irr}(G(\mathbb{F}_q))$, there exist a representation $\rho' \supset \rho$, a line bundle \mathcal{F} on Z and wight ≤ 0 Weil structure β on $H^*(Z, \mathcal{F})$ s.t.

$$\dim \mathit{Hom}(
ho',\mathbb{C}[X(\mathbb{F}_q)])=rac{\mathit{tr}(eta)}{|\mathcal{G}(\mathbb{F}_q)|}$$

Notation

$$M(n) := \frac{tr(\beta^n|_{H^*(Z,\mathcal{F})})}{|G(\mathbb{F}_{q^n})|}$$

Conclusion

We constructed a variety $Z := (X \times B)_G$ of dimension dim Gsuch that for any irreducible representation $\rho \in \operatorname{irr}(G(\mathbb{F}_q))$, there exist a representation $\rho' \supset \rho$, a line bundle \mathcal{F} on Z and wight ≤ 0 Weil structure β on $H^*(Z, \mathcal{F})$ s.t.

$$\dim \mathit{Hom}(
ho',\mathbb{C}[X(\mathbb{F}_q)])=rac{\mathit{tr}(eta)}{|\mathcal{G}(\mathbb{F}_q)|}$$

Notation

$$M(n) := \frac{tr(\beta^n|_{H^*(Z,\mathcal{F})})}{|G(\mathbb{F}_{q^n})|}$$

We have

Conclusion

We constructed a variety $Z := (X \times B)_G$ of dimension dim Gsuch that for any irreducible representation $\rho \in \operatorname{irr}(G(\mathbb{F}_q))$, there exist a representation $\rho' \supset \rho$, a line bundle \mathcal{F} on Z and wight ≤ 0 Weil structure β on $H^*(Z, \mathcal{F})$ s.t.

$$\dim \mathit{Hom}(
ho',\mathbb{C}[X(\mathbb{F}_q)])=rac{\mathit{tr}(eta)}{|\mathcal{G}(\mathbb{F}_q)|}$$

Notation

$$M(n) := \frac{tr(\beta^n|_{H^*(Z,\mathcal{F})})}{|G(\mathbb{F}_{q^n})|}$$

We have

•
$$\limsup_{n\to\infty} M(n) \le \# IrrComp(Z).$$

Conclusion

We constructed a variety $Z := (X \times B)_G$ of dimension dim Gsuch that for any irreducible representation $\rho \in \operatorname{irr}(G(\mathbb{F}_q))$, there exist a representation $\rho' \supset \rho$, a line bundle \mathcal{F} on Z and wight ≤ 0 Weil structure β on $H^*(Z, \mathcal{F})$ s.t.

$$\dim \mathit{Hom}(
ho',\mathbb{C}[X(\mathbb{F}_q)])=rac{\mathit{tr}(eta)}{|\mathcal{G}(\mathbb{F}_q)|}$$

Notation

$$M(n) := \frac{tr(\beta^n|_{H^*(Z,\mathcal{F})})}{|G(\mathbb{F}_{q^n})|}$$

We have

- $\limsup_{n\to\infty} M(n) \le \# IrrComp(Z).$
- $M(n) = Q(v^n)$, where Q is a rational function on \mathbb{C}^d and $v \in (\mathbb{C}^{\times})^d$.

Suppose Q is a rational function on \mathbb{C}^d . Let $v \in (\mathbb{C}^{\times})^d$ such that Q is regular at v^n , for all $n \in \mathbb{Z}_{>0}$, and the set $\{Q(v^n)|n \in \mathbb{Z}_{>0}\}$ is finite.

Suppose Q is a rational function on \mathbb{C}^d . Let $v \in (\mathbb{C}^{\times})^d$ such that Q is regular at v^n , for all $n \in \mathbb{Z}_{>0}$, and the set $\{Q(v^n) | n \in \mathbb{Z}_{>0}\}$ is finite. Then the function $n \mapsto Q(v^n)$ is periodic on \mathbb{Z} .

Suppose Q is a rational function on \mathbb{C}^d . Let $v \in (\mathbb{C}^{\times})^d$ such that Q is regular at v^n , for all $n \in \mathbb{Z}_{>0}$, and the set $\{Q(v^n) | n \in \mathbb{Z}_{>0}\}$ is finite. Then the function $n \mapsto Q(v^n)$ is periodic on \mathbb{Z} .

dim Hom $(\rho, \mathbb{C}[X(\mathbb{F}_q)])$

Suppose Q is a rational function on \mathbb{C}^d . Let $v \in (\mathbb{C}^{\times})^d$ such that Q is regular at v^n , for all $n \in \mathbb{Z}_{>0}$, and the set $\{Q(v^n) | n \in \mathbb{Z}_{>0}\}$ is finite. Then the function $n \mapsto Q(v^n)$ is periodic on \mathbb{Z} .

 $\dim \operatorname{Hom}(\rho, \mathbb{C}[X(\mathbb{F}_q)]) \leq M(1)$

Suppose Q is a rational function on \mathbb{C}^d . Let $v \in (\mathbb{C}^{\times})^d$ such that Q is regular at v^n , for all $n \in \mathbb{Z}_{>0}$, and the set $\{Q(v^n) | n \in \mathbb{Z}_{>0}\}$ is finite. Then the function $n \mapsto Q(v^n)$ is periodic on \mathbb{Z} .

 $\dim \operatorname{Hom}(\rho, \mathbb{C}[X(\mathbb{F}_q)]) \leq M(1) \leq \limsup_{n \to \infty} M(n)$

Suppose Q is a rational function on \mathbb{C}^d . Let $v \in (\mathbb{C}^{\times})^d$ such that Q is regular at v^n , for all $n \in \mathbb{Z}_{>0}$, and the set $\{Q(v^n) | n \in \mathbb{Z}_{>0}\}$ is finite. Then the function $n \mapsto Q(v^n)$ is periodic on \mathbb{Z} .

$\dim \operatorname{Hom}(\rho, \mathbb{C}[X(\mathbb{F}_q)]) \le M(1) \le \limsup_{n \to \infty} M(n) \le \# \operatorname{IrrComp}(Z)$