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Example (Density of orbital regular integrals)

Often: 3° ¢ grxn-reg S*(HgH)H*H = S*(G)H*H

Example (Freeness of the Hecke module)

Let K < G be a compact open subgroup. Sometimes S(G/H) is
free over the center of the Hecke algebra H(G, K).
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Definition
In this case M is called a Cohen-Macaulay module over A.
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The Main Conjecture

Let X be a (symmetric) G-space. Then
S(X) is a Cohen-Macaulay object in the category of smooth
G-modules.
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