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The group algebra

Let G be a (finite) group. Define C[G] to be the space of
(complex valued) functions on G.

@ C[G] have a basis:{dg}gcq

@ C[(] is an algebra w.r.t. convolution: dg * dp := dgn. More
explicitly ax b(x) = -, f(¥)g(y~"x).

@ C[G] has 2 structures of representation of G:

@ one given by the left action of Gon G: L(g)(h) := gh
@ one given by the right action of G on G: R(g)(h) := hg™"

@ In other words C[G] is a G x G representation.

G-representations < C[G]-modules
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Let (7, V) be a representation of G. Consider Endc(V):

@ Endc(V) is an algebra.
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Endomorphism algebra and spectral decomposition

Let (7, V) be a representation of G. Consider Endc(V):

@ Endc(V) is an algebra.

@ Endc(V) has 2 structures of representation of G:
e one given by (gA)v = w(g)(A(v))
e one given by (gA)v = A(m(g~")v)

clGl @  Ende(V)
(m,V)eirr(G)

® a: C[G] = D v)cir(c) Endc(V)
a(f)r = 2. gec f(9)7(9)

® m: D, vycinc) ENdc(V) — C[G]
m(A)(g) = Tr(n(g~")A)/ dim V
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| A\

Corollary

#irr(G) = #G//G
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Zeta function and spectral equivalence
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(a(s) = ¥ (dmm)~

weirr(G)

Proposition
The following are equivalent:
e C[G] =~ C[H]
® (c=CH
@ (g(S) = CH(s), for infinitely many s.

| \

Definition
In this case we say
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Frobenius Formula

Theorem (Frobenius 1896)

#{(g1,h1,...gn, hn) € G®"|[91, M]- - [gn, hn) = 1}

CG(zn_z) = #ng71
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