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The group algebra

Definition
Let G be a (finite) group.

Define C[G] to be the space of
(complex valued) functions on G.

C[G] have a basis:{δg}g∈G

C[G] is an algebra w.r.t. convolution: δg ∗ δh := δgh. More
explicitly a ∗ b(x) =

∑
y∈G f (y)g(y−1x).

C[G] has 2 structures of representation of G:
one given by the left action of G on G: L(g)(h) := gh
one given by the right action of G on G: R(g)(h) := hg−1

In other words C[G] is a G ×G representation.

Theorem
G-representations⇐⇒ C[G]-modules
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Endomorphism algebra and spectral decomposition

Let (π,V ) be a representation of G. Consider EndC(V ):
EndC(V ) is an algebra.
EndC(V ) has 2 structures of representation of G:

one given by (gA)v = π(g)(A(v))
one given by (gA)v = A(π(g−1)v)

Theorem

C[G] ∼=
⊕

(π,V )∈irr(G)

EndC(V )

“Proof”.
a : C[G]→

⊕
(π,V )∈irr(G) EndC(V )

a(f )π =
∑

g∈G f (g)π(g)
m :

⊕
(π,V )∈irr(G) EndC(V )→ C[G]

m(A)(g) = Tr(π(g−1)A)/dim V
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Applications

Corollary ∑
(π,V )∈irr(G)

(dim V )2 = #G

Corollary (Non commutative Fourier transform)

C[G/Ad(G)] ∼= C[irr(G)]

Corollary

#irr(G) = #G//G
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Zeta function and spectral equivalence

Definition
ζG(s) :=

∑
π∈irr(G)

(dimπ)−s

Proposition
The following are equivalent:

C[G] ' C[H]

ζG = ζH

ζG(s) = ζH(s), for infinitely many s.

Definition
In this case we say

G ∼ H
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Examples

Example
If G,H abelian, then

G ∼ H ⇐⇒ #G = #H

Conjecture

GLd(Z/pkZ) ∼ GLd(Fp[t ]/tkFp[t ])
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Frobenius Formula

Theorem (Frobenius 1896)

ζG(2n−2) =
#{(g1,h1, . . .gn,hn) ∈ G2n|[g1,h1] · · · [gn,hn] = 1}

#G2n−1
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