Representation theory and the Group algebra

A. Aizenbud

Weizmann Institute of Science

http://www.wisdom.weizmann.ac.il/~aizenr

A. Aizenbud Representation theory and the Group algebra

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Definition

Let G be a (finite) group.

A. Aizenbud Representation theory and the Group algebra

ヘロト 人間 とくほとくほとう

= 990

Definition

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

・ロト ・ 理 ト ・ ヨ ト ・

Definition

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

• $\mathbb{C}[G]$ have a basis:

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Definition

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

• $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$

・ロト ・ 理 ト ・ ヨ ト ・

Definition

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

- $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$
- $\mathbb{C}[G]$ is an algebra w.r.t. convolution:

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

- $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$
- $\mathbb{C}[G]$ is an algebra w.r.t. convolution: $\delta_g * \delta_h := \delta_{gh}$.

ヘロン 人間 とくほ とくほ とう

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

- $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$
- C[G] is an algebra w.r.t. convolution: δ_g * δ_h := δ_{gh}. More explicitly a * b(x) = Σ_{y∈G} f(y)g(y⁻¹x).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

- $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$
- C[G] is an algebra w.r.t. convolution: δ_g * δ_h := δ_{gh}. More explicitly a * b(x) = Σ_{y∈G} f(y)g(y⁻¹x).

• $\mathbb{C}[G]$ has 2 structures of representation of G:

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

- $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$
- C[G] is an algebra w.r.t. convolution: δ_g * δ_h := δ_{gh}. More explicitly a * b(x) = Σ_{y∈G} f(y)g(y⁻¹x).
- $\mathbb{C}[G]$ has 2 structures of representation of G:
 - one given by the left action of G on G:

< 回 > < 回 > < 回 > -

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

- $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$
- C[G] is an algebra w.r.t. convolution: δ_g * δ_h := δ_{gh}. More explicitly a * b(x) = Σ_{y∈G} f(y)g(y⁻¹x).
- $\mathbb{C}[G]$ has 2 structures of representation of G:
 - one given by the left action of G on G: L(g)(h) := gh

< 回 > < 回 > < 回 > -

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

- $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$
- C[G] is an algebra w.r.t. convolution: δ_g * δ_h := δ_{gh}. More explicitly a * b(x) = Σ_{y∈G} f(y)g(y⁻¹x).
- $\mathbb{C}[G]$ has 2 structures of representation of G:
 - one given by the left action of G on G: L(g)(h) := gh
 - one given by the right action of G on G:

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

- $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$
- C[G] is an algebra w.r.t. convolution: δ_g * δ_h := δ_{gh}. More explicitly a * b(x) = Σ_{y∈G} f(y)g(y⁻¹x).
- $\mathbb{C}[G]$ has 2 structures of representation of G:
 - one given by the left action of G on G: L(g)(h) := gh
 - one given by the right action of G on G: $R(g)(h) := hg^{-1}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

- $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$
- C[G] is an algebra w.r.t. convolution: δ_g * δ_h := δ_{gh}. More explicitly a * b(x) = Σ_{y∈G} f(y)g(y⁻¹x).

• $\mathbb{C}[G]$ has 2 structures of representation of G:

- one given by the left action of G on G: L(g)(h) := gh
- one given by the right action of G on G: $R(g)(h) := hg^{-1}$
- In other words $\mathbb{C}[G]$ is a $G \times G$ representation.

ヘロン 人間 とくほ とくほ とう

Let *G* be a (finite) group. Define $\mathbb{C}[G]$ to be the space of (complex valued) functions on *G*.

- $\mathbb{C}[G]$ have a basis: $\{\delta_g\}_{g\in G}$
- C[G] is an algebra w.r.t. convolution: δ_g * δ_h := δ_{gh}. More explicitly a * b(x) = Σ_{y∈G} f(y)g(y⁻¹x).

• $\mathbb{C}[G]$ has 2 structures of representation of G:

- one given by the left action of G on G: L(g)(h) := gh
- one given by the right action of G on G: $R(g)(h) := hg^{-1}$
- In other words $\mathbb{C}[G]$ is a $G \times G$ representation.

Theorem

G-representations $\iff \mathbb{C}[G]$ -modules

くロト (過) (目) (日)

A. Aizenbud Representation theory and the Group algebra

▶ ★ 臣 ▶ ...

э

Let (π, V) be a representation of *G*.

★ Ξ → ★ Ξ →

э

Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:

通り くほり くほり

- Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:
 - $End_{\mathbb{C}}(V)$ is an algebra.

(日本) (日本) (日本)

- Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:
 - $End_{\mathbb{C}}(V)$ is an algebra.
 - $End_{\mathbb{C}}(V)$ has 2 structures of representation of G:

通 と く ヨ と く ヨ と

- Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:
 - $End_{\mathbb{C}}(V)$ is an algebra.
 - $End_{\mathbb{C}}(V)$ has 2 structures of representation of G:
 - one given by $(gA)v = \pi(g)(A(v))$

(雪) (ヨ) (ヨ)

- Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:
 - $End_{\mathbb{C}}(V)$ is an algebra.
 - $End_{\mathbb{C}}(V)$ has 2 structures of representation of G:
 - one given by $(gA)v = \pi(g)(A(v))$
 - one given by $(gA)v = A(\pi(g^{-1})v)$

< 回 > < 回 > < 回 > -

- Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:
 - $End_{\mathbb{C}}(V)$ is an algebra.
 - $End_{\mathbb{C}}(V)$ has 2 structures of representation of G:
 - one given by $(gA)v = \pi(g)(A(v))$
 - one given by $(gA)v = A(\pi(g^{-1})v)$

Theorem

$$\mathbb{C}[G]\cong igoplus_{(\pi,V)\in \textit{irr}(G)}\textit{End}_{\mathbb{C}}(V)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:
 - $End_{\mathbb{C}}(V)$ is an algebra.
 - $End_{\mathbb{C}}(V)$ has 2 structures of representation of G:
 - one given by $(gA)v = \pi(g)(A(v))$
 - one given by $(gA)v = A(\pi(g^{-1})v)$

Theorem

$$\mathbb{C}[G] \cong igoplus_{(\pi,V)\in \mathit{irr}(G)} \mathit{End}_{\mathbb{C}}(V)$$

- Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:
 - $End_{\mathbb{C}}(V)$ is an algebra.
 - $End_{\mathbb{C}}(V)$ has 2 structures of representation of G:
 - one given by $(gA)v = \pi(g)(A(v))$
 - one given by $(gA)v = A(\pi(g^{-1})v)$

Theorem

$$\mathbb{C}[G] \cong igoplus_{(\pi,V)\in \mathit{irr}(G)} \mathit{End}_{\mathbb{C}}(V)$$

•
$$a: \mathbb{C}[G] \to \bigoplus_{(\pi, V) \in irr(G)} End_{\mathbb{C}}(V)$$

- Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:
 - $End_{\mathbb{C}}(V)$ is an algebra.
 - $End_{\mathbb{C}}(V)$ has 2 structures of representation of G:
 - one given by $(gA)v = \pi(g)(A(v))$
 - one given by $(gA)v = A(\pi(g^{-1})v)$

Theorem

$$\mathbb{C}[G] \cong igoplus_{(\pi,V)\in \mathit{irr}(G)} \mathit{End}_{\mathbb{C}}(V)$$

•
$$a : \mathbb{C}[G] \to \bigoplus_{(\pi, V) \in irr(G)} End_{\mathbb{C}}(V)$$

 $a(f)_{\pi} = \sum_{g \in G} f(g)\pi(g)$

- Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:
 - $End_{\mathbb{C}}(V)$ is an algebra.
 - $End_{\mathbb{C}}(V)$ has 2 structures of representation of G:
 - one given by $(gA)v = \pi(g)(A(v))$
 - one given by $(gA)v = A(\pi(g^{-1})v)$

Theorem

$$\mathbb{C}[G] \cong igoplus_{(\pi,V)\in \mathit{irr}(G)} \mathit{End}_{\mathbb{C}}(V)$$

•
$$a : \mathbb{C}[G] \to \bigoplus_{(\pi, V) \in irr(G)} End_{\mathbb{C}}(V)$$

 $a(f)_{\pi} = \sum_{g \in G} f(g)\pi(g)$
• $m : \bigoplus_{(\pi, V) \in irr(G)} End_{\mathbb{C}}(V) \to \mathbb{C}[G]$

- Let (π, V) be a representation of *G*. Consider $End_{\mathbb{C}}(V)$:
 - $End_{\mathbb{C}}(V)$ is an algebra.
 - $End_{\mathbb{C}}(V)$ has 2 structures of representation of G:
 - one given by $(gA)v = \pi(g)(A(v))$
 - one given by $(gA)v = A(\pi(g^{-1})v)$

Theorem

$$\mathbb{C}[G] \cong igoplus_{(\pi,V)\in \mathit{irr}(G)} \mathit{End}_{\mathbb{C}}(V)$$

"Proof".

•
$$a : \mathbb{C}[G] \to \bigoplus_{(\pi,V) \in irr(G)} End_{\mathbb{C}}(V)$$

 $a(f)_{\pi} = \sum_{g \in G} f(g)\pi(g)$
• $m : \bigoplus_{(\pi,V) \in irr(G)} End_{\mathbb{C}}(V) \to \mathbb{C}[G]$

 $m(A)(g) = \operatorname{Tr}(\pi(g^{-1})A) / \dim V$

Applications

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ のへで

$$\sum_{\pi,V)\in irr(G)} (\dim V)^2 = \#G$$

$$\sum_{\pi,V)\in irr(G)} (\dim V)^2 = \#G$$

Corollary (Non commutative Fourier transform)

 $\mathbb{C}[G/Ad(G)] \cong \mathbb{C}[irr(G)]$

$$\sum_{\pi,V)\in irr(G)} (\dim V)^2 = \#G$$

Corollary (Non commutative Fourier transform)

 $\mathbb{C}[G/Ad(G)] \cong \mathbb{C}[irr(G)]$

$$\sum_{\pi,V)\in irr(G)} (\dim V)^2 = \#G$$

Corollary (Non commutative Fourier transform)

 $\mathbb{C}[G/Ad(G)] \cong \mathbb{C}[irr(G)]$

Corollary

$$\#irr(G) = \#G//G$$

▲ロト ▲母ト ▲ヨト ▲ヨト 三日 - のへで

A. Aizenbud Representation theory and the Group algebra

▶ ★ 臣 ▶ ...

э

Definition

$$\zeta_{G}(s) := \sum_{\pi \in irr(G)} (\dim \pi)^{-s}$$

A. Aizenbud Representation theory and the Group algebra

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

$$\zeta_G(s) := \sum_{\pi \in irr(G)} (\dim \pi)^{-s}$$

Proposition

The following are equivalent:

A. Aizenbud Representation theory and the Group algebra

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

$$\zeta_G(s) := \sum_{\pi \in \mathit{irr}(G)} (\dim \pi)^{-s}$$

Proposition

The following are equivalent:

•
$$\mathbb{C}[G] \simeq \mathbb{C}[H]$$

A. Aizenbud Representation theory and the Group algebra

ヘロア 人間 アメヨア 人口 ア

Definition

$$\zeta_G(s) := \sum_{\pi \in \mathit{irr}(G)} (\dim \pi)^{-s}$$

Proposition

The following are equivalent:

•
$$\mathbb{C}[G] \simeq \mathbb{C}[H]$$

•
$$\zeta_G = \zeta_H$$

A. Aizenbud Representation theory and the Group algebra

ヘロア 人間 アメヨア 人口 ア

Definition

$$\zeta_G(s) := \sum_{\pi \in \mathit{irr}(G)} (\dim \pi)^{-s}$$

Proposition

The following are equivalent:

- $\mathbb{C}[G] \simeq \mathbb{C}[H]$
- $\zeta_G = \zeta_H$
- $\zeta_G(s) = \zeta_H(s)$, for infinitely many s.

ヘロン 人間 とくほ とくほ とう

Definition

$$\zeta_G(s) := \sum_{\pi \in \mathit{irr}(G)} (\dim \pi)^{-s}$$

Proposition

The following are equivalent:

- $\mathbb{C}[G] \simeq \mathbb{C}[H]$
- $\zeta_G = \zeta_H$
- $\zeta_G(s) = \zeta_H(s)$, for infinitely many s.

Definition

In this case we say

$$G \sim H$$

ヘロト 人間 ト ヘヨト ヘヨト

э

Examples

A. Aizenbud Representation theory and the Group algebra

ヘロト 人間 とくほとくほとう

■ のへで

Example

If G, H abelian, then

$G \sim H \Longleftrightarrow \#G = \#H$

A. Aizenbud Representation theory and the Group algebra

ヘロト 人間 とくほとくほとう

Example

If G, H abelian, then

$$G \sim H \iff \#G = \#H$$

Conjecture

$$GL_d(\mathbb{Z}/p^k\mathbb{Z}) \sim GL_d(\mathbb{F}_p[t]/t^k\mathbb{F}_p[t])$$

A. Aizenbud Representation theory and the Group algebra

ヘロト 人間 とくほとくほとう

= 990

Example

If G, H abelian, then

$$G \sim H \iff \#G = \#H$$

Conjecture

$$GL_d(\mathbb{Z}/p^k\mathbb{Z}) \sim GL_d(\mathbb{F}_p[t]/t^k\mathbb{F}_p[t])$$

A. Aizenbud Representation theory and the Group algebra

ヘロト 人間 とくほとくほとう

= 990

Frobenius Formula

A. Aizenbud Representation theory and the Group algebra

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Theorem (Frobenius 1896)

$$\zeta_G(2n-2) = \frac{\#\{(g_1, h_1, \dots, g_n, h_n) \in G^{2n} | [g_1, h_1] \cdots [g_n, h_n] = 1\}}{\#G^{2n-1}}$$

A. Aizenbud Representation theory and the Group algebra

イロト 不得 とくほと くほとう

₹ 990