Holonomicity of spherical characters and applications to multiplicity bounds

A. Aizenbud

Weizmann Institute of Science

Joint with: Dmitry Gourevitch and Andrey Minchenko
http://www.wisdom.weizmann.ac.il/~aizenr/

Holonomic D-modules and distributions

Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring of differential operators $D(X)$ on X.

A D-module over a smooth affine algebraic variety X is a module over the ring of differential operators $D(X)$ on X. A D-module M given by generators and relations can be thought of as a system of PDE.

A D-module over a smooth affine algebraic variety X is a module over the ring of differential operators $D(X)$ on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-modules homomorphism of M to an appropriate space of functions.

Holonomic D－modules and distributions

A D－module over a smooth affine algebraic variety X is a module over the ring of differential operators $D(X)$ on X ．A D－module M given by generators and relations can be thought of as a system of PDE．A solution of M is a D－modules homomorphism of M to an appropriate space of functions．

Definition

Let M be a D－module over X with generators $m_{1} \ldots m_{k}$ ．

Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring of differential operators $D(X)$ on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-modules homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_{1} \ldots m_{k}$. Define $F_{i}(D(X))$ to be the space of differential operators of degree i and $F_{i}(M):=F_{i}(D(X))\left(m_{1} \ldots m_{k}\right)$.

Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring of differential operators $D(X)$ on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-modules homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_{1} \ldots m_{k}$. Define $F_{i}(D(X))$ to be the space of differential operators of degree i and $F_{i}(M):=F_{i}(D(X))\left(m_{1} \ldots m_{k}\right)$. Define

$$
S S(M)=\operatorname{supp}\left(g r_{F}(M)\right) \subset T^{*}(X)
$$

Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring of differential operators $D(X)$ on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-modules homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_{1} \ldots m_{k}$. Define $F_{i}(D(X))$ to be the space of differential operators of degree i and $F_{i}(M):=F_{i}(D(X))\left(m_{1} \ldots m_{k}\right)$. Define

$$
S S(M)=\operatorname{supp}\left(g r_{F}(M)\right) \subset T^{*}(X)
$$

For a distribution ξ on $X(\mathbb{R})$ define

$$
S S(\xi)=S S(D(X) \xi)
$$

Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring of differential operators $D(X)$ on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-modules homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_{1} \ldots m_{k}$. Define $F_{i}(D(X))$ to be the space of differential operators of degree i and $F_{i}(M):=F_{i}(D(X))\left(m_{1} \ldots m_{k}\right)$. Define

$$
S S(M)=\operatorname{supp}\left(g r_{F}(M)\right) \subset T^{*}(X)
$$

For a distribution ξ on $X(\mathbb{R})$ define

$$
S S(\xi)=S S(D(X) \xi)=\bigcap_{d \xi=0} \operatorname{Zeros}(\operatorname{symbol}(d))
$$

Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring of differential operators $D(X)$ on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-modules homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_{1} \ldots m_{k}$. Define $F_{i}(D(X))$ to be the space of differential operators of degree i and $F_{i}(M):=F_{i}(D(X))\left(m_{1} \ldots m_{k}\right)$. Define

$$
S S(M)=\operatorname{supp}\left(g r_{F}(M)\right) \subset T^{*}(X)
$$

For a distribution ξ on $X(\mathbb{R})$ define

$$
S S(\xi)=S S(D(X) \xi)=\bigcap_{d \xi=0} \operatorname{Zeros}(\text { symbol }(d))
$$

A distribution (or a D-module) ξ is called holonomic if

$$
\operatorname{dim}(S S(\xi))=\operatorname{dim} X
$$

Main results

Main results

Theorem (A., Gourevitch, Minchenko 2015)

Let G be an algebraic reductive group $H_{i} \subset G$ be spherical subgroups (i.e. $H_{i} B$ is open). The following system of equations on a distribution ξ on G is holonomic:

Main results

Theorem (A., Gourevitch, Minchenko 2015)

Let G be an algebraic reductive group $H_{i} \subset G$ be spherical subgroups (i.e. $H_{i} B$ is open). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_{1} invariant

Main results

Theorem (A., Gourevitch, Minchenko 2015)

Let G be an algebraic reductive group $H_{i} \subset G$ be spherical subgroups (i.e. $H_{i} B$ is open). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_{1} invariant
- ξ is right H_{2} invariant

Main results

Theorem (A., Gourevitch, Minchenko 2015)

Let G be an algebraic reductive group $H_{i} \subset G$ be spherical subgroups (i.e. $H_{i} B$ is open). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_{1} invariant
- ξ is right H_{2} invariant
- ξ is eigen w.r.t. the center $\mathfrak{z}(u(\mathfrak{g}))$ of the universal enveloping algebra of the Lie algebra of G.

Main results

Theorem (A., Gourevitch, Minchenko 2015)

Let G be an algebraic reductive group $H_{i} \subset G$ be spherical subgroups (i.e. $H_{i} B$ is open). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_{1} invariant
- ξ is right H_{2} invariant
- ξ is eigen w.r.t. the center $\mathfrak{z}(u(\mathfrak{g}))$ of the universal enveloping algebra of the Lie algebra of G.

Corollary

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_{1} \in\left(V^{*}\right)^{H_{1}}, v_{2} \in\left(\tilde{V}^{*}\right)^{H_{2}}$. Let ξ be the corresponding spherical character:

$$
\langle\xi, f\rangle:=\left\langle\pi^{*}(f) v_{1}, v_{2}\right\rangle .
$$

Then ξ is a holonomic distribution.

applications to the spherical character

Corollary (A., Gourevitch, Minchenko, Sayag)

Let F be a local field. Then the wave front set of the spherical character of an admissible representation of $G(F)$ is included in a conic Lagrangian subvariety.

applications to the spherical character

Corollary (A., Gourevitch, Minchenko, Sayag)

Let F be a local field. Then the wave front set of the spherical character of an admissible representation of $G(F)$ is included in a conic Lagrangian subvariety.

Corollary

The spherical character of an admissible representation of $G(F)$ is smooth in a (Zariski) open dens set.

Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)
Let X be a real algebraic manifold. Let M be a holonomic right D-module. Then $\operatorname{dim} \operatorname{Hom}\left(M, \mathcal{S}^{*}(X)\right)<\infty$.

Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)

Let X be a real algebraic manifold. Let M be a holonomic right D-module. Then $\operatorname{dim} \operatorname{Hom}\left(M, \mathcal{S}^{*}(X)\right)<\infty$.

Theorem (Bernstein, Kashiwara, A., Gourevitch, Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of D_{X}-modules parameterized by Y. Suppose that \mathcal{M}_{y} is holonomic. Then $\operatorname{dim} \operatorname{Hom}\left(\mathcal{M}_{y}, \mathcal{S}^{*}(X)\right)$ is bounded when y ranges over Y.

Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)

Let X be a real algebraic manifold. Let M be a holonomic right D-module. Then $\operatorname{dim} \operatorname{Hom}\left(M, \mathcal{S}^{*}(X)\right)<\infty$.

Theorem (Bernstein, Kashiwara, A., Gourevitch, Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of D_{X}-modules parameterized by Y. Suppose that \mathcal{M}_{y} is holonomic. Then $\operatorname{dim} \operatorname{Hom}\left(\mathcal{M}_{y}, \mathcal{S}^{*}(X)\right)$ is bounded when y ranges over Y.

Corollary (A., Gourevitch, Minchenko)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X. Then,

$$
\operatorname{dim} \mathcal{S}^{*}(X, \mathcal{E})^{\mathfrak{g}, \chi}<\infty
$$

Moreover, it is bounded when we tensor \mathcal{E} with a representation of \mathfrak{g} of a fixed dimension.

Applications to multiplicities

We reprove the following theorem

Applications to multiplicities

We reprove the following theorem
Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)
G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

Applications to multiplicities

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.
(1) If H is a spherical subgroup then there exists $C \in \mathbb{N}$ such that $\operatorname{dim}\left(\pi^{*}\right)^{\mathfrak{h}, \chi} \leq C$ for any $\pi \in \operatorname{Irr}(G)$ and any character χ of \mathfrak{h}.

Applications to multiplicities

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.
(1) If H is a spherical subgroup then there exists $C \in \mathbb{N}$ such that $\operatorname{dim}\left(\pi^{*}\right)^{\mathfrak{h}, \chi} \leq C$ for any $\pi \in \operatorname{Irr}(G)$ and any character χ of \mathfrak{h}.
(2) If H is a real spherical subgroup then, for every irreducible admissible representation $\pi \in \operatorname{Irr}(G)$, and natural number $n \in \mathbb{N}$ there exists $C_{n} \in \mathbb{N}$ such that for every n-dimensional representation τ of \mathfrak{h} we have

$$
\operatorname{dim} \operatorname{Hom}_{\mathfrak{h}}(\pi, \tau) \leq C_{n} .
$$

Geometric formulation

$$
\begin{aligned}
& \text { Theorem (A., Gourevitch, Minchenko 2015) } \\
& \qquad \begin{array}{r}
\text { Let } \\
\qquad\left\{g \in G, x \in \mathfrak{g}^{*} \mid x \in \mathfrak{h}_{1}^{\perp}, \operatorname{ad}(g)(x) \in \mathfrak{h}_{2}^{\perp}, x \text { is nilpotent }\right\}= \\
\\
=G \times \mathcal{N} \cap \bigcup_{g \in G} C N_{H_{1} g H_{2}, g}^{G}
\end{array}
\end{aligned}
$$

Then $\operatorname{dim} S=\operatorname{dim} G$

The group case

Assume $H_{1}=H_{2}=H$, diagonally embedded in $G=H \times H$.

The group case

Assume $H_{1}=H_{2}=H$, diagonally embedded in $G=H \times H$. Translating the problem to $H=G / H$ we obtain:

$$
S^{\prime}=\left\{g \in H, x \in \mathfrak{h}^{*} \mid A d(g)(x)=x, x \in \mathcal{N}_{H}\right\}=H \times \mathcal{N}_{H} \cap \bigcup_{g \in H} C N_{a d(G) g, g}^{H}
$$

The group case

Assume $H_{1}=H_{2}=H$, diagonally embedded in $G=H \times H$. Translating the problem to $H=G / H$ we obtain:
$S^{\prime}=\left\{g \in H, x \in \mathfrak{h}^{*} \mid A d(g)(x)=x, x \in \mathcal{N}_{H}\right\}=H \times \mathcal{N}_{H} \cap \bigcup_{g \in H} C N_{a d(G) g, g}^{H}$
passing to the Lie algebra

$$
S^{\prime}=\{g \in \mathfrak{h}, x \in \mathfrak{h} \mid[x, g]=0, x \text { is nilpotent }\}
$$

The group case

Assume $H_{1}=H_{2}=H$, diagonally embedded in $G=H \times H$.
Translating the problem to $H=G / H$ we obtain:
$S^{\prime}=\left\{g \in H, x \in \mathfrak{h}^{*} \mid A d(g)(x)=x, x \in \mathcal{N}_{H}\right\}=H \times \mathcal{N}_{H} \cap \bigcup_{g \in H} C N_{a d(G) g, g}^{H}$
passing to the Lie algebra

$$
S^{\prime}=\{g \in \mathfrak{h}, x \in \mathfrak{h} \mid[x, g]=0, x \text { is nilpotent }\}
$$

So

$$
S^{\prime} \subset \bigcup_{x \in \mathcal{N}_{H}} C N_{a d(G) x, x}^{\mathfrak{h}}
$$

Springer resolution and Steinberg theorem

Let \mathcal{B} be the flag variety.

Springer resolution and Steinberg theorem

Let \mathcal{B} be the flag variety. $T^{*} \mathcal{B} \cong\left\{B \in \mathcal{B}, x \in \mathfrak{b}^{\perp}\right\}$.

Springer resolution and Steinberg theorem

Let \mathcal{B} be the flag variety. $T^{*} \mathcal{B} \cong\left\{B \in \mathcal{B}, x \in \mathfrak{b}^{\perp}\right\}$. We have a natural map $\mu: T^{*} \mathcal{B} \rightarrow \mathcal{N}$. It is called the Springer resolution.

Springer resolution and Steinberg theorem

Let \mathcal{B} be the flag variety. $T^{*} \mathcal{B} \cong\left\{B \in \mathcal{B}, x \in \mathfrak{b}^{\perp}\right\}$. We have a natural map $\mu: T^{*} \mathcal{B} \rightarrow \mathcal{N}$. It is called the Springer resolution.

Theorem (Steinberg 1976)
$\operatorname{dim} G_{\eta}-2 \operatorname{dim} \mu^{-1}(\eta)=\operatorname{rk} G$.

Idea of the proof

Idea of the proof

Idea of the proof

Passing to the fiber of $0 \in \mathfrak{h}_{1}^{*} \times \mathfrak{h}_{2}^{*}$ we get:

Idea of the proof

Passing to the fiber of $0 \in \mathfrak{h}_{1}^{*} \times \mathfrak{h}_{2}^{*}$ we get:

Where
$\mathcal{N}_{\mathfrak{h}_{i}}:=\mathcal{N} \cap \mathfrak{h}_{i}^{\perp}$ and $L_{i}:=\left\{(B, X) \in T^{*} \mathcal{B} \mid X \in \mathfrak{h}_{i}^{\perp}\right\}$

Idea of the proof

Passing to the fiber of $0 \in \mathfrak{h}_{1}^{*} \times \mathfrak{h}_{2}^{*}$ we get:

Where
$\mathcal{N}_{\mathfrak{h}_{i}}:=\mathcal{N} \cap \mathfrak{h}_{i}^{\perp}$ and $L_{i}:=\left\{(B, X) \in T^{*} \mathcal{B} \mid X \in \mathfrak{h}_{i}^{\perp}\right\}=\bigcup_{x \in \mathcal{B}} C N_{H_{i}, x, x}^{\mathcal{B}}$.

Idea of the proof

Passing to the fiber of $0 \in \mathfrak{h}_{1}^{*} \times \mathfrak{h}_{2}^{*}$ we get:

Where
$\mathcal{N}_{\mathfrak{h}_{i}}:=\mathcal{N} \cap \mathfrak{h}_{i}^{\perp}$ and $L_{i}:=\left\{(B, X) \in T^{*} \mathcal{B} \mid X \in \mathfrak{h}_{i}^{\perp}\right\}=\bigcup_{x \in \mathcal{B}} C N_{H_{i}, x, x}^{\mathcal{B}}$.
The estimate on $\operatorname{dim} S$ follows from the Stenberg theorem and:
$\operatorname{dim} L_{i}=\operatorname{dim} \mathcal{B}$

