
Invariant Distributions and Gelfand Pairs

A. Aizenbud and D. Gourevitch

http : //www .wisdom.weizmann.ac.il/ ∼ aizenr/

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs

http://www.wisdom.weizmann.ac.il/~aizenr/
http://www.wisdom.weizmann.ac.il/~aizenr/
http://www.wisdom.weizmann.ac.il/~aizenr/


Gelfand Pairs and distributional criterion

Definition
A pair of groups (G ⊃ H) is called a Gelfand pair if for any
irreducible "admissible" representation ρ of G

dimHomH(ρ,C) ≤ 1.

Theorem (Gelfand-Kazhdan,...)
Let σ be an involutive anti-automorphism of G (i.e.
σ(g1g2) = σ(g2)σ(g1)) and σ2 = Id and assume σ(H) = H.
Suppose that σ(ξ) = ξ for all bi H-invariant distributions ξ on G.
Then (G,H) is a Gelfand pair.
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Strong Gelfand Pairs

Definition
A pair of groups (G,H) is called a strong Gelfand pair if for
any irreducible "admissible" representations ρ of G and τ of H

dimHomH(ρ|H , τ) ≤ 1.

Proposition

The pair (G,H) is a strong Gelfand pair if and only if the pair
(G × H,∆H) is a Gelfand pair.

Corollary

Let σ be an involutive anti-automorphism of G s.t. σ(H) = H.
Suppose σ(ξ) = ξ for all distributions ξ on G invariant with
respect to conjugation by H. Then (G,H) is a strong Gelfand
pair.
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Results

Local fields of characteristic zero:
Archimedean: R and C
Non-archimedean(p-adic): Qp and its finite extensions.

Pair Field By
(GLn+1,GLn) A.-G.-Sayag, van-Dijk

(O(V ⊕ F ),O(V )) van-Dijk-Bossmann-Aparicio,
any A.-G.-Sayag

(GLn(E),GLn(F )) Flicker, A.-G.
(GLn+k ,GLn ×GLk ) Jacquet-Rallis, A.-G.

(On+k ,On ×Ok ) C A.-G.
(GLn,On)

(GL2n,Sp2n) F 6= R Heumos - Rallis, Sayag
(GLn+1,GLn) strong R,C Aizenbud-Gourevitch

Aizenbud-Gourevitch-
(O(V ⊕ F ),O(V )) strong p-adic -Rallis-Schiffmann
(U(V ⊕ F ),U(V )) strong
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Distributions on smooth manifolds and `-spaces

Notation
Let M be a smooth manifold. We denote by C∞c (M) the space
of smooth compactly supported functions on M. We denote by
D(M) := (C∞c (M))∗ the space of distributions on M.
Sometimes we will also consider the space S∗(M) of Schwartz
distributions on M.

Definition
An `-space is a Hausdorff locally compact totally disconnected
topological space. For an `-space X we denote by S(X ) the
space of compactly supported locally constant functions on X .
We let S∗(X ) := D(X ) := S(X )∗ be the space of distributions on
X .
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Distributions supported in a closed subset

For a closed subset Z ⊂ X we denote by DX (Z ) the space of
distributions on X supported in Z .

Proposition
Let Z ⊂ X be a closed subset and U := X − Z. Then we have
the exact sequence

0→ DX (Z )→ D(X )→ D(U).

For `-spaces, DX (Z ) ∼= D(Z ).
For smooth manifolds, DX (Z ) has an infinite filtration whose
factors are D(Z ,Symk (CNX

Z )), where Symk (CNX
Z ) denote

symmetric powers of the conormal bundle to Z .
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Geometric conditions

Setting

Let G be an algebraic group over a local field F . Let H be a
closed algebraic subgroup. Let σ : G→ G be an antiinvolution.
We want to show that every H × H invariant distribution on G is
σ-invariant.

A necessary condition for that is :
"σ preserves every closed double coset (which carries H × H
invariant distribution)".

Over p-adic fields, it is sufficient (but not necessary) to prove
that σ preserves every double coset.
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Reformulation of the problem

Notation

Let σ act on H × H by σ(h1,h2) := (σ(h−1
2 ), σ(h−1

1 )). Denote

H̃ × H := (H × H) o {1, σ}.

It has a natural action on G. Define a character χ of H̃ × H by

χ(H × H) = {1}, χ(H̃ × H − (H × H)) = {−1}.

Now our problem becomes equivalent to D(G)H̃×H,χ = 0.
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First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We
want to show D(X )G,χ = 0.

Proposition
Let U ⊂ X be an open G-invariant subset and Z := X − U.
Suppose that D(U)G,χ = 0 and DX (Z )G,χ = 0. Then
D(X )G,χ = 0.

Proof.

0→ DX (Z )G,χ → D(X )G,χ → D(U)G,χ.

For `-spaces, DX (Z )G,χ ∼= D(Z )G,χ.
For smooth manifolds, to show DX (Z )G,χ it is enough to show
that D(Z ,Symk (CNX

Z ))G,χ = 0 for any k .
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Frobenius reciprocity

Xz

��

// X

��
z // Z

Theorem (Bernstein, Baruch, ...)

Let ψ : X → Z be a map.
Let a G act on X and Z such that ψ(gx) = gψ(x).
Suppose that the action of G on Z is transitive.
Suppose that both G and StabG(z) are unimodular. Then

D(X )G,χ ∼= D(Xz)StabG(z),χ.
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Reductive groups

Example
GLn, semisimple groups, On, Un, Sp2n,...

Fact
Any algebraic representation of a reductive group decomposes
to a direct sum of irreducible representations.

Fact
Reductive groups are unimodular.
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Luna’s slice theorem

We say that x ∈ X is G-semisimple if its orbit is closed.

Theorem (Luna’s slice theorem)

Let a reductive group G act on a smooth affine algebraic variety
X. Let x ∈ X be G-semisimple. Then there exist
(i) an open G-invariant neighborhood U of Gx in X with a
G-equivariant retract p : U → Gx and
(ii) a Gx -equivariant embedding ψ : p−1(x) ↪→ NX

Gx ,x with open
image such that ψ(x) = 0.



Generalized Harish-Chandra descent

Theorem
Let a reductive group G act on a smooth affine algebraic variety
X. Let χ be a character of G. Suppose that for any
G-semisimple x ∈ X we have

D(NX
Gx ,x )Gx ,χ = 0.

Then D(X )G,χ = 0.
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A stronger version

Let V be an algebraic finite dimensional representation over F
of a reductive group G.

Q(V ) := (V/V G). Since G is reductive, there is a canonical
splitting V = Q(V )⊕ V G.
Γ(V ) := {v ∈ Q(V )|Gv 3 0}.
R(V ) := Q(V )− Γ(V ).

Theorem

Let a reductive group G act on a smooth affine variety X. Let χ
be a character of G. Suppose that for any G-semisimple x ∈ X
such that

D(R(NX
Gx ,x ))Gx ,χ = 0

we have
D(Q(NX

Gx ,x ))Gx ,χ = 0.

Then D(X )G,χ = 0.
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Fourier transform

Let V be a finite dimensional vector space over F and B be a
non-degenerate quadratic form on V . Let ξ̂ denote the Fourier
transform of ξ defined using B.

Proposition

Let G act on V linearly and preserving B. Let ξ ∈ S∗(V )G,χ.
Then ξ̂ ∈ S∗(V )G,χ.
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Fourier transform and homogeneity

We call a distribution ξ ∈ S∗(V ) abs-homogeneous of
degree d if for any t ∈ F×,

ht (ξ) = u(t)|t |dξ,
where ht denotes the homothety action on distributions
and u is some unitary character of F×.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let ξ ∈ S∗V (Z (B)) be s. t.
ξ̂ ∈ S∗V (Z (B)). Then ξ is abs-homogeneous of degree 1

2dimV.

Theorem (archimedean homogeneity)

Let F be any local field. Let L ⊂ S∗V (Z (B)) be a non-zero linear
subspace s. t. ∀ξ ∈ L we have ξ̂ ∈ L and Bξ ∈ L.
Then there exists a non-zero distribution ξ ∈ L which is
abs-homogeneous of degree 1

2dimV or of degree 1
2dimV + 1.
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Localization principle

Xy

��

// X

��
y // Y

Theorem (Aizenbud-Gourevitch-Sayag)

Let a reductive group G act on a smooth affine variety X. Let Y
be an algebraic variety and φ : X → Y be an algebraic
G-invariant map. Let χ be a character of G. Suppose that for
any y ∈ Y we have DX (Xy )G,χ = 0. Then D(X )G,χ = 0.

For `-spaces, a stronger version of this principle was proven by
J. Bernstein 30 years ago.
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Symmetric pairs

A symmetric pair is a triple (G,H, θ) where H ⊂ G are
reductive groups, and θ is an involution of G such that
H = Gθ.
We call (G,H, θ) connected if G/H is Zariski connected.
Define an antiinvolution σ : G→ G by σ(g) := θ(g−1).
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Symmetric Gelfand pairs

A symmetric pair (G,H, θ) is called good if σ preserves all
closed H × H double cosets.

Proposition

Any connected symmetric pair over C is good.

Conjecture
Any good symmetric pair is a Gelfand pair.

To check that a symmetric pair is Gelfand
1 Prove that it is good
2 Prove that there are no equivariant distributions supported

on the singular set in the Lie algebra g.
3 Compute all the "descendants" of the pair and prove (2) for

them.
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Results for GL and U

(U(V⊕W ),U(V )×U(W ))

��uujjjjjjjjjjjjjjj

(GL(V ),U(V )) (GLn+k ,GLn ×GLk )

��

(GLn(E),GLn(F ))

Corollary

The pairs (GLn(E),GLn(F )) and (GLn+k ,GLn ×GLk ) are
Gelfand pairs.
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Results for O

(O(V⊕W ),O(V )×O(W ))

��

(U(VE ),O(V ))

��

(GL(V ),O(V ))

Corollary

For F = C, the pairs (O(V ⊕W ),O(V )×O(W )) and
(GL(V ),O(V )) are Gelfand pairs.
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Results for non-symmetric pairs

Let F be a p-adic field. Then the following pairs are strong
Gelfand pairs

(O(V ⊕F ),O(V ))

��

(U(V ⊕F ),U(V ))

��

(GLn+1,GLn)
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Formulation

Let F be a p-adic field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every GLn(F )-invariant distribution on GLn+1(F ) is
transposition invariant.

G := Gn := GLn(F )

G̃ := G o {1, σ}
Define a character χ of G̃ by χ(G) = {1},
χ(G̃ −G) = {−1}.

Equivalent formulation:

Theorem

S∗(GLn+1(F ))G̃,χ = 0.
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χ(G̃ −G) = {−1}.

Equivalent formulation:

Theorem

S∗(GLn+1(F ))G̃,χ = 0.
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Harish-Chandra descent

Let N ⊂ sln be the cone of nilpotent elements
Γ := {v ∈ V , φ ∈ V ∗ |φ(v) = 0}

By Harish-Chandra descent we can assume that any
ξ ∈ S∗(X )G̃,χ is supported in N × Γ.

Ni := {a ∈ N|dim Ga ≤ i} ⊂ N
We prove by descending induction on i that
S∗(X )G̃,χ = S∗(Ni × Γ)G̃,χ.
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Reduction

We assume S∗(X )G̃,χ = S∗(Ni × Γ)G̃,χ.
We want to prove that S∗(X )G̃,χ = S∗(Ni−1 × Γ)G̃,χ.

νλ(A, v , φ) := (A + λv ⊗ φ− λ
nφ(v)Id , v , φ)

Let ξ ∈ S∗(X )G̃,χ. We know that for any λ,
ξ ∈ S∗(νλ(Ni × Γ))G̃,χ.

Ñi :=
⋂
λ∈F

νλ(Ni × Γ)

We know that ξ ∈ S∗(Ñi)
G̃,χ.

Let O ⊂ Ni −Ni−1 be an open orbit.
Õ := (O × V × V ∗) ∩ Ñi
η := ξ|O×V×V∗ .

We have to show η = 0.
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η := ξ|O×V×V∗ .

We have to show η = 0.

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs



Reduction

We assume S∗(X )G̃,χ = S∗(Ni × Γ)G̃,χ.
We want to prove that S∗(X )G̃,χ = S∗(Ni−1 × Γ)G̃,χ.

νλ(A, v , φ) := (A + λv ⊗ φ− λ
nφ(v)Id , v , φ)

Let ξ ∈ S∗(X )G̃,χ. We know that for any λ,
ξ ∈ S∗(νλ(Ni × Γ))G̃,χ.
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G̃,χ.

Let O ⊂ Ni −Ni−1 be an open orbit.
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Key Lemma

It is enough to prove

Lemma (Key)

Any η ∈ S∗(O × V × V ∗)G̃,χ such that both η and η̂ are
supported in Õ is zero.

Apply Frobenius reciprocity:

ÕA

��

// Õ

��
A // O

A ∈ O
ÕA := {(v , φ) ∈ V × V ∗|(A, v , φ) ∈ Õ}
Let GA := StabG(A) denote the centralizer of A.
G̃A := StabG̃(A)
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Reformulation

Equivalent formulation:

Lemma (Key’)

Any ζ ∈ S∗(V ×V ∗)G̃A,χ such that both ζ and ζ̂ are supported in
ÕA is zero.

QA := {(v , φ) ∈ V × V ∗|v ⊗ φ ∈ [A,gln]}

Proposition

ÕA ⊂ QA

Now it is enough to prove

Lemma (Key”)

Any ζ ∈ S∗(V ×V ∗)G̃A,χ such that both ζ and ζ̂ are supported in
QA is zero.
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Reduction to Jordan block

Proposition
QA⊕B ⊂ QA ×QB

Proof.(
v
w

)
⊗
(
φ ψ

)
=

(
v ⊗ φ ∗
∗ w ⊗ ψ

)
[

(
A 0
0 B

)
,

(
X Y
Z W

)
] =

(
[A,X ] ∗
∗ [B,W ]

)
Hence we can assume that A = Jn is one Jordan block.
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Proof for Jordan block

QA = {(v , φ) ∈ V × V ∗|v ⊗ φ ∈ [A,gln]}
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Proof for Jordan block
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where B(v , φ) := φ(v).

Supp(ζ), Supp(ζ̂) ⊂ Z (B)⇒ ζ is abs-homogeneous of degree n.
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Proof for Jordan block

Denote U := (V − KerAn−1)× V ∗

We have
U ∩QA ⊂ V × 0.

Hence ζ|U = 0. So Supp(ζ) ⊂ KerAn−1 × V ∗.
Similarly, Supp(ζ) ⊂ KerAn−1 × Ker(A∗)n−1.
Similarly, Supp(ζ̂) ⊂ KerAn−1 × Ker(A∗)n−1.
Hence ζ is invariant with respect to shifts by
ImAn−1 × Im(A∗)n−1. Therefore

ζ ∈ S∗(KerAn−1/ImAn−1×Ker(A∗)n−1/Im(A∗)n−1) = S∗(Vn−2×V ∗n−2).

By induction ζ = 0. �
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Similarly, Supp(ζ̂) ⊂ KerAn−1 × Ker(A∗)n−1.
Hence ζ is invariant with respect to shifts by
ImAn−1 × Im(A∗)n−1.

Therefore

ζ ∈ S∗(KerAn−1/ImAn−1×Ker(A∗)n−1/Im(A∗)n−1) = S∗(Vn−2×V ∗n−2).

By induction ζ = 0. �
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Summary

Flowchart

sl(V )×V ×V ∗H.Ch.
descent

// N × Γ // Ni × Γ
νλ // Ñi

��
QJn

Fourier transform and homogeneity theorem
��

QA
oo ÕA

oo Õ
Frobenius
reciprocity
oo

QJn +
Homogeneity

// QJn−2
// ... // QED
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Orthogonal and unitary groups

Let D be either F or a quadratic extension of F . Let V be a
vector space over D. Let < , > be a non-degenerate hermitian
form on V . Let W := V ⊕ D. Extend < , > to W in the obvious
way. Consider the embedding of U(V ) into U(W ).
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Orthogonal and unitary groups

Let D be either F or a quadratic extension of F . Let V be a
vector space over D. Let < , > be a non-degenerate hermitian
form on V . Let W := V ⊕ D. Extend < , > to W in the obvious
way. Consider the embedding of U(V ) into U(W ).

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every U(V )- invariant distribution on U(W ) is invariant with
respect to transposition.
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Orthogonal and unitary groups

Let D be either F or a quadratic extension of F . Let V be a
vector space over D. Let < , > be a non-degenerate hermitian
form on V . Let W := V ⊕ D. Extend < , > to W in the obvious
way. Consider the embedding of U(V ) into U(W ).

Theorem
Every U(V )- invariant distribution on U(W ) is invariant with
respect to transposition.

G := U(V )

G̃ := G o {1, σ}, χ as before.
X := su(V )× V
G̃ acts on X by g(A, v) = (gAg−1,gv), σ(A, v) = (−A,−v).
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Orthogonal and unitary groups

Let D be either F or a quadratic extension of F . Let V be a
vector space over D. Let < , > be a non-degenerate hermitian
form on V . Let W := V ⊕ D. Extend < , > to W in the obvious
way. Consider the embedding of U(V ) into U(W ).

Theorem
Every U(V )- invariant distribution on U(W ) is invariant with
respect to transposition.

G := U(V )

G̃ := G o {1, σ}, χ as before.
X := su(V )× V
G̃ acts on X by g(A, v) = (gAg−1,gv), σ(A, v) = (−A,−v).

Equivalent formulation:

Theorem

S∗(X )G̃,χ = 0.



Sketch of the proof

Let N ⊂ su(V ) be the cone of nilpotent elements
Γ := {v ∈ V , < v , v >= 0}

By Harish-Chandra descent we can assume that any
ξ ∈ S∗(X )G̃,χ is supported in N × Γ.

νλ(A, v) := (A + λv ⊗ v t − λ
n < v , v > Id , v), λ = −λ.

µλ(A, v) := (A + λ(v ⊗ v tA + Av ⊗ v t ), v)

Lemma (Key)

Any ζ ∈ S∗(V )G̃A,χ such that both ζ and ζ̂ are supported in QA
is zero.
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