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Gelfand Pairs and distributional criterion

Definition

A pair of groups (G D H) is called a Gelfand pair if for any
irreducible "admissible" representation p of G

dimHomy(p,C) < 1.
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Gelfand Pairs and distributional criterion

A pair of groups (G D H) is called a Gelfand pair if for any
irreducible "admissible" representation p of G

dimHomy(p,C) < 1.

Theorem (Gelfand-Kazhdan,...)

Let o be an involutive anti-automorphism of G (i.e.

o(g192) = 0(92)o(gy)) and o = Id and assume o(H) = H.
Suppose that (&) = ¢ for all bi H-invariant distributions ¢ on G.
Then (G, H) is a Gelfand pair.
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Strong Gelfand Pairs

Definition

A pair of groups (G, H) is called a strong Gelfand pair if for
any irreducible "admissible" representations p of G and = of H

dimHomy(p|x, ) < 1.




Strong Gelfand Pairs

A pair of groups (G, H) is called a strong Gelfand pair if for
any irreducible "admissible" representations p of G and = of H

dimHomy(p|H, 7) <1

Proposition

The pair (G, H) is a strong Gelfand pair if and only if the pair
(G x H, AH) is a Gelfand pair.

| |
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Strong Gelfand Pairs

A pair of groups (G, H) is called a strong Gelfand pair if for
any irreducible "admissible" representations p of G and = of H

dimHomy(p|x, ) < 1.

Proposition
The pair (G, H) is a strong Gelfand pair if and only if the pair
(G x H, AH) is a Gelfand pair.

| A\

Let o be an involutive anti-automorphism of G s.t. o(H) = H.
Suppose o (&) = & for all distributions ¢ on G invariant with
respect to conjugation by H. Then (G, H) is a strong Gelfand
pair.




Local fields of characteristic zero:
@ Archimedean: R and C
@ Non-archimedean(p-adic): Qp and its finite extensions.



Local fields of characteristic zero:

@ Archimedean: R and C
@ Non-archimedean(p-adic): Qp and its finite extensions.

Pair Field By
(GLpt1, GLp) A.-G.-Sayag, van-Dijk
(O(Va& F),0(V)) van-Dijk-Bossmann-Aparicio,
any A.-G.-Sayag
(GLn(E), GLn(F)) Flicker, A.-G.
(GLpyk, GLp x GLg) Jacquet-Rallis, A.-G.
(On+k, On X Ok) C A.-G.
(GLp, On)
(GLop, Spon) F#4AR Heumos - Rallis, Sayag
(GLpy1, GLy) strong R,C Aizenbud-Gourevitch
Aizenbud-Gourevitch-
(O(V & F),0(V)) strong | p-adic -Rallis-Schiffmann
(U(Ve F),U(V)) strong




Distributions on smooth manifolds and /-spaces

Let M be a smooth manifold. We denote by C°(M) the space
of smooth compactly supported functions on M. We denote by
D(M) := (C(M))* the space of distributions on M.
Sometimes we will also consider the space S*(M) of Schwartz
distributions on M.
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Distributions on smooth manifolds and /-spaces

Notation

Let M be a smooth manifold. We denote by C°(M) the space
of smooth compactly supported functions on M. We denote by
D(M) := (C(M))* the space of distributions on M.
Sometimes we will also consider the space S*(M) of Schwartz
distributions on M.

Definition

An /-space is a Hausdorff locally compact totally disconnected
topological space. For an ¢-space X we denote by S(X) the
space of compactly supported locally constant functions on X.
We let S*(X) := D(X) := S(X)* be the space of distributions on
X.
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Distributions supported in a closed subset

For a closed subset Z ¢ X we denote by Dx(Z) the space of
distributions on X supported in Z.

Proposition

Let Z c X be a closed subset and U := X — Z. Then we have
the exact sequence

0 — Dx(£) — D(X) — D(U).
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Distributions supported in a closed subset

For a closed subset Z ¢ X we denote by Dx(Z) the space of
distributions on X supported in Z.

Proposition

Let Z c X be a closed subset and U := X — Z. Then we have
the exact sequence

0 — Dx(£) — D(X) — D(U).

For ¢-spaces, Dx(Z) = D(Z).
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Distributions supported in a closed subset

For a closed subset Z ¢ X we denote by Dx(Z) the space of
distributions on X supported in Z.

Proposition

Let Z c X be a closed subset and U := X — Z. Then we have
the exact sequence

0 — Dx(£) — D(X) — D(U).

For ¢-spaces, Dx(Z) = D(Z).

For smooth manifolds, Dx(Z) has an infinite filtration whose
factors are D(Z, Symk(CNZ)), where Sym*(CNZ) denote
symmetric powers of the conormal bundle to Z.
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Geometric conditions

Let G be an algebraic group over a local field F. Let H be a
closed algebraic subgroup. Let o : G — G be an antiinvolution.
We want to show that every H x H invariant distribution on G is
o-invariant.
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Geometric conditions

Let G be an algebraic group over a local field F. Let H be a
closed algebraic subgroup. Let o : G — G be an antiinvolution.
We want to show that every H x H invariant distribution on G is
o-invariant.

A necessary condition for that is :
"o preserves every closed double coset (which carries H x H
invariant distribution)".
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Geometric conditions

Let G be an algebraic group over a local field F. Let H be a
closed algebraic subgroup. Let o : G — G be an antiinvolution.
We want to show that every H x H invariant distribution on G is
o-invariant.

A necessary condition for that is :
"o preserves every closed double coset (which carries H x H
invariant distribution)".

Over p-adic fields, it is sufficient (but not necessary) to prove
that o preserves every double coset.
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Reformulation of the problem

Notation
Leto acton H x H by o(hy, ho) := (o(hy"),o(hy")). Denote

—_—

Hx H:=(HxH)x{1,0}.

It has a natural action on G. Define a character x of HxH by

—_—

X(H >x H) = {1}, x(H x H— (H x H)) = {-1}.

Now our problem becomes equivalent to D(G)"*"x = 0.
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First tool: Stratification

A group G acts on a space X, and x is a character of G. We
want to show D(X)%X = 0.
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First tool: Stratification

A group G acts on a space X, and x is a character of G. We
want to show D(X)%X = 0.

| \

Proposition

Let U C X be an open G-invariant subset and Z -= X — U.
Suppose that D(U)%X = 0 and Dx(Z)%x = 0. Then
D(X)Gx = 0.
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First tool: Stratification

Setting

A group G acts on a space X, and x is a character of G. We
want to show D(X)%X = 0.

Proposition

Let U C X be an open G-invariant subset and Z -= X — U.
Suppose that D(U)%X = 0 and Dx(Z)%x = 0. Then
D(X)Gx = 0.

0 — Dx(2)%X — D(X)GX — D(U)CxX.
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First tool: Stratification

Setting

A group G acts on a space X, and x is a character of G. We
want to show D(X)%X = 0.

Proposition

Let U C X be an open G-invariant subset and Z -= X — U.
Suppose that D(U)%X = 0 and Dx(Z)%x = 0. Then
D(X)Gx = 0.

0 — Dx(2)%X — D(X)GX — D(U)CxX.

For ¢-spaces, Dx(Z)%X = D(Z)%x.
For smooth manifolds, to show DX(Z)G’X it is enough to show
that D(Z, Sym*(CN%))Ex = 0 for any k.
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Frobenius reciprocity

Theorem (Bernstein, Baruch, ...)

Lety : X — Z be a map.

Leta G acton X and Z such that ¢(gx) = gy (x).
Suppose that the action of G on Z is transitive.

Suppose that both G and Stabg(z) are unimodular. Then

D(X)G,X o~ D(Xz)StabG(Z)’X.
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Reductive groups

GLp, semisimple groups, Op, Uy, Spop, ...

Any algebraic representation of a reductive group decomposes
to a direct sum of irreducible representations.

Reductive groups are unimodular.
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Luna’s slice theorem

We say that x € X is G-semisimple if its orbit is closed.

Theorem (Luna’s slice theorem)

Let a reductive group G act on a smooth affine algebraic variety
X. Let x € X be G-semisimple. Then there exist

(i) an open G-invariant neighborhood U of Gx in X with a
G-equivariant retract p : U — Gx and

(i) a Gy -equivariant embedding + : p~'(x) — NX

B with open
image such that ¢(x) = 0.




Generalized Harish-Chandra descent

Theorem

Let a reductive group G act on a smooth affine algebraic variety
X. Let x be a character of G. Suppose that for any
G-semisimple x € X we have

D(Néx,x)emx =0.
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A stronger version

Let V be an algebraic finite dimensional representation over F
of a reductive group G.
@ Q(V):=(V/VE). Since G is reductive, there is a canonical
splitting V = Q(V) @ V€,
o rN(V):={veQV)Gv >0}
@ R(V):=Q(V)-T(V).
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A stronger version

Let V be an algebraic finite dimensional representation over F
of a reductive group G.
@ Q(V):=(V/VE). Since G is reductive, there is a canonical
splitting V = Q(V) @ V€,
o rN(V):={veQV)Gv >0}
@ R(V):=Q(V)-T(V).

Theorem

Let a reductive group G act on a smooth affine variety X. Let x
be a character of G. Suppose that for any G-semisimple x € X

such that

D(R(Né(x,x))GX’X =0
we have

D(Q(Ngy )X = 0.

Then D(X)GX = 0.
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Fourier transform

Let V be a finite dimensional vector space over F and B be a
non-degenerate quadratic form on V. Let £ denote the Fourier
transform of ¢ defined using B.

Proposition

Let G act on V linearly and preserving B. Let ¢ € S*(V)Cx.
Then ¢ € S*(V)Gx.
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Fourier transform and homogeneity

@ We call a distribution £ € S*(V) abs-homogeneous of
degree d if forany t € F*,
hi(€) = u(t)|t|%,

where h; denotes the homothety action on distributions
and u is some unitary character of F*.



Fourier transform and homogeneity

@ We call a distribution £ € S*(V) abs-homogeneous of
degree d if forany t € F*,
h(€) = u()|tl €,

where h; denotes the homothety action on distributions
and u is some unitary character of F*.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let¢ € S\ (Z(B)) be s. t.
£es; v(Z(B)). Then ¢ is abs-homogeneous of degree %dimV.




Fourier transform and homogeneity

@ We call a distribution £ € S*(V) abs-homogeneous of
degree d if forany t € F*,
hi(€) = u(t)|t|%,

where h; denotes the homothety action on distributions
and u is some unitary character of F*.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let¢ € S\ (Z(B)) be s. t.
£es; v(Z(B)). Then ¢ is abs-homogeneous of degree %dimV.

Theorem (archimedean homogeneity)

Let F be any local field. Let L C Sy,(Z(B)) be a non-zero linear
subspace s. t. V¢ € L we have E € Land B¢ € L.

Then there exists a non-zero distribution £ € L which is
abs-homogeneous of degree %dimV or of degree %dimV +1.




Localization principle

|

y——Y

Theorem (Aizenbud-Gourevitch-Sayag)

Let a reductive group G act on a smooth affine variety X. Let Y
be an algebraic variety and ¢ : X — Y be an algebraic
G-invariant map. Let x be a character of G. Suppose that for
any y € Y we have Dx(X,)%X = 0. Then D(X)X = 0.
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Localization principle

|

y——Y

Theorem (Aizenbud-Gourevitch-Sayag)

Let a reductive group G act on a smooth affine variety X. Let Y
be an algebraic variety and ¢ : X — Y be an algebraic
G-invariant map. Let x be a character of G. Suppose that for
any y € Y we have Dx(X,)%X = 0. Then D(X)X = 0.

For ¢-spaces, a stronger version of this principle was proven by
J. Bernstein 30 years ago.
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Symmetric pairs

@ A symmetric pair is a triple (G, H,0) where H C G are
reductive groups, and 6 is an involution of G such that
H=G".

@ We call (G, H,0) connected if G/H is Zariski connected.

@ Define an antiinvolution o : G — G by o(g) :== (g™ ").
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Symmetric Gelfand pairs

@ A symmetric pair (G, H, 0) is called good if o preserves all
closed H x H double cosets.
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Symmetric Gelfand pairs

@ A symmetric pair (G, H, 0) is called good if o preserves all
closed H x H double cosets.

Proposition
Any connected symmetric pair over C is good.
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Symmetric Gelfand pairs

@ A symmetric pair (G, H, 0) is called good if o preserves all
closed H x H double cosets.

Proposition
Any connected symmetric pair over C is good.
Any good symmetric pair is a Gelfand pair.
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Symmetric Gelfand pairs

@ A symmetric pair (G, H, 0) is called good if o preserves all
closed H x H double cosets.

Proposition
Any connected symmetric pair over C is good.
Any good symmetric pair is a Gelfand pair.

To check that a symmetric pair is Gelfand
@ Prove that it is good
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Symmetric Gelfand pairs

@ A symmetric pair (G, H, 0) is called good if o preserves all
closed H x H double cosets.

Proposition
Any connected symmetric pair over C is good.
Any good symmetric pair is a Gelfand pair.

To check that a symmetric pair is Gelfand
@ Prove that it is good
© Prove that there are no equivariant distributions supported
on the singular set in the Lie algebra g.
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Symmetric Gelfand pairs

@ A symmetric pair (G, H, 0) is called good if o preserves all
closed H x H double cosets.

Proposition
Any connected symmetric pair over C is good.
Any good symmetric pair is a Gelfand pair.

To check that a symmetric pair is Gelfand

@ Prove that it is good

@ Prove that there are no equivariant distributions supported
on the singular set in the Lie algebra g.

© Compute all the "descendants" of the pair and prove (2) for
them.
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Results for GL and U

’(U(V@W),U(V)XU(W))‘

|

[(GL(V), U(V))] [(GLnyx, GLy x GLy) |

|

| (GLA(E), GLn(F))|

The pairs (GLy(E), GLn(F)) and (GLj.«, GLn x GLg) are
Gelfand pairs.
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Results for O

For F = C, the pairs (O(V @ W), O(V) x O(W)) and
(GL(V),O(V)) are Gelfand pairs.
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Results for non-symmetric pairs

Let F be a p-adic field. Then the following pairs are strong
Gelfand pairs

[(O(VeF),0(V))]

(U(VaF),uV))|

| (GLns1,GLy) |
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Formulation

Let F be a p-adic field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every GL,(F)-invariant distribution on GLp1(F) is
transposition invariant.
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Formulation

Let F be a p-adic field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every GL,(F)-invariant distribution on GLp1(F) is
transposition invariant.

@ G:= Gp:= GLy(F)

e G:=Gx{1,0}

@ Define a character y of G by x(G) ={1},
X(G-G) ={-1}.
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Formulation

Let F be a p-adic field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every GL,(F)-invariant distribution on GLp1(F) is
transposition invariant.

@ G:= Gp:= GLy(F)

e G:=Gx{1,0}

@ Define a character y of G by x(G) ={1},
X(G-G) ={-1}.

Equivalent formulation:

S*(GLp1(F))GX = 0.
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Equivalent formulation:

S*(glh1(F))Gx = 0.




Equivalent formulation:

S*(glh1(F))Gx = 0.

e V.=F"
@ X:=sl(V)x VxV*



Equivalent formulation:

S*(glh1(F))Gx = 0.

e V.=F"

@ X:=sl(V)x VxV*

e Gactson X by
g(A v,¢) = (9Ag ', gv.(g") "¢)
(A, v, ) = (AL ¢!, vh).



Equivalent formulation:

S*(glh1(F))Gx = 0.

e V. =F"
@ X:=sl(V)x VxV*
@ Gactson X by
g(A v,0) = (9Ag ', gv,(9) ")
(A, v, ) = (AL ¢!, vh).
Equivalent formulation:

S*(X)8x = 0. \




Equivalent formulation:

S*(glh1(F))Gx = 0.

e V.=F"
@ X:=sl(V)x VxV*
@ G actson X by

9(A,v,¢) = (9Ag ', 9v,(g%) "9)
o(A,v,9) = (AL, ¢!, V).

Equivalent formulation:

S*(X)8x = 0. \

Reason:

An><n Vnx1 -1 _ gqu gv A v t_ At ¢t
9<¢1m A )g ‘<(g*)1¢ A) and <¢> A) ‘(vt A)




Harish-Chandra descent

@ Let V' C sl, be the cone of nilpotent elements
oM:={veV,pec V*|p(v)=0}
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Harish-Chandra descent

@ Let V' C sl, be the cone of nilpotent elements
oM:={veV,pec V*|p(v)=0}

By Harish-Chandra descent we can assume that any
¢ € §*(X)%x is supported in N x T.
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Harish-Chandra descent

@ Let V' C sl, be the cone of nilpotent elements

e lM:={veV,pe V| o(v)=0}
By Harish-Chandra descent we can assume that any
¢ € §*(X)%x is supported in N x T.

o Ni:={aeN|dmGa<i}cN
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Harish-Chandra descent

@ Let V' C sl, be the cone of nilpotent elements

e lM:={veV,pe V| o(v)=0}
By Harish-Chandra descent we can assume that any
¢ € §*(X)%x is supported in N x T.

o Ni:={aeN|dmGa<i}cN
We prove by descending induction on / that
S*(X)GX = S*(N; x IGx,
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We assume S*(X)éax = S*(N; x r)é,x_ i
We want to prove that S*(X)GX = §*(N_y x IN)&x,

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs



We assume S*(X)éax = S*(N; x r)é,x_ i
We want to prove that S*(X)&X = S*(Nj_y x IN)GX,
o (A V,¢) = (A+A\v® ¢ — 2¢(V)Id, v, o)

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs



We assume S*(X)G:X = S*(Ni x r)@"X. B

We want to prove that S*(X)GX = §*(N_y x IN)&x,
® (A v,0):=(A+Av®¢— 76(v)ld,v,9)

Let¢ e S*(X)éﬁx. We know that for any A,

£ € S*(n(Ni x IN)EX,
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We assume S*(X)éax = S*(N; x r)é,x_ i
We want to prove that S*(X)&X = S*(Nj_y x IN)GX,
o (A V,¢) = (A+A\v® ¢ — 2¢(V)Id, v, o)

Let¢ e S*(X)éﬁx. We know that for any A,
£ € S*(n(Ni x IN)EX,
o Ni:= () vu(\V; x T

AEF

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs



We assume S*(X)éax = S*(N; x r)é,x_ i
We want to prove that S*(X)&X = S*(Nj_y x IN)GX,
o (A V,¢) = (A+A\v® ¢ — 2¢(V)Id, v, o)

Let¢ e S*(X)éﬁx. We know that for any A,
£ € S*(n(Ni x IN)EX,
o Ni:= () vu(\V; x T

eF
We know that ¢ € S*(V;)Gx.
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We assume S*(X)éax = S*(N; x r)é,x_ i
We want to prove that S*(X)&X = S*(Nj_y x IN)GX,
o (A V,¢) = (A+A\v® ¢ — 2¢(V)Id, v, o)

Let¢ e S*(X)éﬁx. We know that for any A,
£ € S*(n(Ni x IN)EX,
o Ni:= () vu(\V; x T

AeF
We know that ¢ € S*(V;)Gx.
@ Let O Cc NV; — Nj_1 be an open orbit.
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We assume S*(X)éax = S*(N; x r)é,x_ i
We want to prove that S*(X)&X = S*(Nj_y x IN)GX,
o (A V,¢) = (A+A\v® ¢ — 2¢(V)Id, v, o)

Let¢ e S*(X)éﬁx. We know that for any A,
£ € S*(n(Ni x IN)EX,
o Ni:= () vu(\V; x T

eF
We know that ¢ € S*(V;)Gx.

° I:etOc/\/,-—/\/,-,1 bein open orbit.
@ O:=(0Ox Vx VNN,
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We assume S*(X)éax = S*(N; x r)é,x_ i
We want to prove that S*(X)&X = S*(Nj_y x IN)GX,
o (A V,¢) = (A+A\v® ¢ — 2¢(V)Id, v, o)

Let¢ e S*(X)éﬁx. We know that for any A,
£ € S*(n(Ni x IN)EX,
o Ni:= () vu(\V; x T

AeF
We know that ¢ € S*(A;)Gx.
oLetOC N; — Ni_1 bein open orbit.
@ O:=(0Ox Vx VNN,
@ 1 :=loxvxvs-
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We assume S*(X)éax = S*(N; x r)é,x_ i
We want to prove that S*(X)&X = S*(Nj_y x IN)GX,
o (A V,¢) = (A+A\v® ¢ — 2¢(V)Id, v, o)

Let¢ e S*(X)éﬁx. We know that for any A,
£ € S*(n(Ni x IN)EX,
o Ni:= () vu(\V; x T

AeF
We know that ¢ € S*(A;)Gx.
oLetOC N; — Ni_1 bein open orbit.
@ O:=(0Ox Vx VNN,
@ 1 :=loxvxvs-
We have to show n, = 0.
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It is enough to prove

Anyn € S*(Ox V x V*)éx such that both n and i are
supported in O is zero.
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It is enough to prove

Anyn € S*(Ox V x V*)éx such that both n and i are
supported in O is zero.

Apply Frobenius reciprocity:

(O}

A

_

>D<~—

T

o)
@ AcO ~
© Oa:={(v.9) € V x V*|(A,v.9) € O}

@ Let G := Stabg(A) denote the centralizer of A.
@ Gp = Stabg(A)
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Reformulation

Equivalent formulation:

Any ¢ € 8*(V x V*)éAvX such that both ¢ and E are supported in
O, is zero.

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs



Reformulation

Equivalent formulation:

Any ¢ € 8*(V x V*)éAvX such that both ¢ and E are supported in
O, is zero.

@ Qa:={(v,0) e Vx V*[ve ¢ € [A ghl}

Proposition
5,4 C QA
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Reformulation

Equivalent formulation:

Any ¢ € 8*(V x V*)éAvX such that both ¢ and E are supported in
O, is zero.

@ Qa:={(v,0) e Vx V*[ve ¢ € [A ghl}

Proposition
5,4 C QA

Now it is enough to prove

Any ¢ € S*(V x V*)éA’X such that both ¢ and Z are supported in
Q4 is zero.
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Reduction to Jordan block

Proposition
QA@B C QA X QB
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Reduction to Jordan block

Proposition
QA@B C QA X QB
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Reduction to Jordan block

Proposition
QA@B C QA X QB

—

(Dew v=("* ,5.)
(0 8)(z wp=("" 5w) :

Hence we can assume that A = J, is one Jordan block.
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Proof for Jordan block

Qa={(v,9) e Vx V' |v@ ¢ € [A gh]}
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Proof for Jordan block

Qa=A{(v,0) e Vx V' va¢e[Aghl} =
={(v,¢) e Vx V¥|v® ¢Lga}
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Proof for Jordan block

L
I

(v,p) e Vx V¥ va ¢ € [Aghl} =
(v,9) e VX Vv dlgal =
(v,9) € Vx V*|¢(Cv) =0 VC € ga}

I
A
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Proof for Jordan block

v,p) e Vx Vive ¢ e [A ghl} =
v,9) € Vx VIV dlgal =

vV,p) € Vx V*¢p(Cv) =0 VC € ga} =
v,$) € V x V¥|¢p(Alv) = 0Vi > 0}
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Proof for Jordan block

)eVx Vive ¢ c[Aghl} =

e Vx Vi vedlga) =

)e Vx V¥o(Cv) =0 VC € ga} =

) e V x V¥|¢(A'v) = 0Vi > 0} c Z(B)
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Proof for Jordan block

)eVx Vive ¢ c[Aghl} =

e Vx Vi vedlga) =

)e Vx V¥o(Cv) =0 VC € ga} =

) e V x V¥|¢(A'v) = 0Vi > 0} c Z(B)

where B(v, ¢) :
Supp(¢), Supp(

¢(v)-

C Z(B) = ( is abs-homogeneous of degree n.

)
~—
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Proof for Jordan block

@ Denote U := (V — KerA"1) x V*
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Proof for Jordan block

@ Denote U := (V — KerA"1) x V*

We have
UnQycVxO.
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Proof for Jordan block

@ Denote U := (V — KerA"1) x V*

We have
UnQycVxO.

Hence (|y = 0.
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Proof for Jordan block

@ Denote U := (V — KerA"1) x V*

We have
UnQycVxO.

Hence ¢|y = 0. So Supp(¢) € KerA"1 x V=,
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Proof for Jordan block

@ Denote U := (V — KerA"1) x V*

We have
UnQycVxO.

Hence ¢|y = 0. So Supp(¢) € KerA"1 x V=,
Similarly, Supp(¢) € KerA"=' x Ker(A*)"1.
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Proof for Jordan block

@ Denote U := (V — KerA"1) x V*
We have
UnQycVxO.
Hence ¢|y = 0. So Supp(¢) € KerA"1 x V=,
Similarly, Supp(¢) C KerA™ x Ker(A*)"~".
Similarly, Supp(¢) € KerA™ ' x Ker(A*)"~1.
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Proof for Jordan block

@ Denote U := (V — KerA"1) x V*

We have
UnQycVxO.

Hence ¢|y = 0. So Supp(¢) € KerA"1 x V=,
Similarly, Supp(¢) C KerA™' x Ker(A*)"~1.
Similarly, Supp(¢) C KerA™ x Ker(A*)"~1.
Hence ( is invariant with respect to shifts by
ImA"=1 x Im(A*)"—1.
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Proof for Jordan block

@ Denote U := (V — KerA"1) x V*

We have
UnQycVxO.

Hence ¢|y = 0. So Supp(¢) € KerA"1 x V=,
Similarly, Supp(¢) C KerA™' x Ker(A*)"~1.
Similarly, Supp(¢) C KerA™ x Ker(A*)"~1.
Hence ( is invariant with respect to shifts by

ImA™=1 x Im(A*)"~1. Therefore

¢ € S*(KerA™ 1 /ImA™ ' x Ker(A*)"1 /Im(A*)"™ 1) = S*(V,_ox Vi'_,).
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Proof for Jordan block

@ Denote U := (V — KerA"1) x V*

We have
UnQycVxO.

Hence ¢|y = 0. So Supp(¢) € KerA"1 x V=,
Similarly, Supp(¢) C KerA™' x Ker(A*)"~1.
Similarly, Supp(¢) C KerA™ x Ker(A*)"~1.
Hence ( is invariant with respect to shifts by

ImA™=1 x Im(A*)"~1. Therefore
¢ € S*(KerA™ 1 /ImA™ ' x Ker(A*)"1 /Im(A*)"™ 1) = S*(V,_ox Vi'_,).

By induction ¢ = 0. O
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Summary

Flowchart

SIV)x Vx VD A T — > Ny x T2

descent

~  Frobenius ~
Q, Qa On reciprocity o

Fourier transform andi homogeneity theorem

QJn aF
Homogeneity

QJn72 o QED
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Orthogonal and unitary groups

Let D be either F or a quadratic extension of F. Let V be a
vector space over D. Let <, > be a non-degenerate hermitian
formon V. Let W := V@ D. Extend <, >to W in the obvious
way. Consider the embedding of U(V) into U(W).

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs



Orthogonal and unitary groups

Let D be either F or a quadratic extension of F. Let V be a
vector space over D. Let <, > be a non-degenerate hermitian
formon V. Let W := V@ D. Extend <, >to W in the obvious
way. Consider the embedding of U(V) into U(W).

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every U(V)- invariant distribution on U(W) is invariant with
respect to transposition.

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs



Orthogonal and unitary groups

Let D be either F or a quadratic extension of F. Let V be a
vector space over D. Let <, > be a non-degenerate hermitian
formon V. Let W := V @ D. Extend <, > to W in the obvious
way. Consider the embedding of U(V) into U(W).

Every U(V)- invariant distribution on U(W) is invariant with
respect to transposition.

° G:=U(V)
@ G:=Gx{1,0}, x as before.
@ X:=su(V)xV

@ Gactson X by g(A,v) = (gAg~ ", gv), o(A,v) = (A, —V).
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Orthogonal and unitary groups

Let D be either F or a quadratic extension of F. Let V be a
vector space over D. Let <, > be a non-degenerate hermitian
formon V. Let W := V @ D. Extend <, > to W in the obvious
way. Consider the embedding of U(V) into U(W).

Every U(V)- invariant distribution on U(W) is invariant with
respect to transposition.

e G:=U(V)

e G:=Gx {1,0}, x as before.
@ X:=su(V)xV

@ Gactson X by g(A,v) = (gAg~ ", gv), o(A,v) = (A, —V).
Equivalent formulation:

S*(X)Gx =0.




Sketch of the proof

@ Let V' C su(V) be the cone of nilpotent elements
olN={veV,<v,v>=0}
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Sketch of the proof

@ Let V' C su(V) be the cone of nilpotent elements
olN={veV,<v,v>=0}

By Harish-Chandra descent we can assume that any
¢ € §*(X)%x is supported in N x T
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Sketch of the proof

@ Let V' C su(V) be the cone of nilpotent elements
olN={veV,<v,v>=0}

By Harish-Chandra descent we can assume that any
¢ € §*(X)%x is supported in N x T

o (A V) =A+ivevi—2<v,v>ldv), = -\
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Sketch of the proof

@ Let V' C su(V) be the cone of nilpotent elements
olN={veV,<v,v>=0}

By Harish-Chandra descent we can assume that any
¢ € §*(X)%x is supported in N x T

o (A V) =(A+ivevi—2<v,v>ldv), = -\
o (A V) =A+Ave viIA+Are v, v)
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Sketch of the proof

@ Let V' C su(V) be the cone of nilpotent elements
olN={veV,<v,v>=0}

By Harish-Chandra descent we can assume that any
¢ € §*(X)%x is supported in N x T

o (A V) =(A+ivevi—2<v,v>ldv), = -\
o (A V) =A+Ave viIA+Are v, v)

Any ¢ € §*( V)éAvX such that both ¢ and ¢ are supported in Qa
is zero.
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