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Examples

Example (Fourier Series)

L2(S1) =
⊕

span{einx}
geinx = χ(g)einx

Example (Spherical Harmonics)

L2(S2) =
⊕

m Hm

Hm = spani{ym
i } are irreducible representations of O3

Example

Let X be a finite set. Let the symmetric group Perm(X ) act on
X . Consider the space F (X ) of complex valued functions on X
as a representation of Perm(X ). Then it decomposes to direct
sum of distinct irreducible representations.
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Gelfand Pairs

Definition
A pair of compact topological groups (G ⊃ H) is called a
Gelfand pair if the following equivalent conditions hold:

L2(G/H) decomposes to direct sum of distinct irreducible
representations of G.
for any irreducible representation ρ of G, dimρH ≤ 1.
for any irreducible representation ρ of G,
dimHomH(ρ,C) ≤ 1.
the algebra of bi-H-invariant functions on G, C(H\G/H), is
commutative w.r.t. convolution.
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Philosophical motivation

Observation
Representation theory of G

m
Harmonic analysis on G w.r.t. the two sided action of G ×G

Conclusion
Let H ⊂ G be a pair of groups. One can consider harmonic
analysis over G/H as a generalization of representation theory.

Example
Schur’s lemma is equivalent to the Gelfand property of
(G ×G,∆G):

∀π ⊗ ρ ∈ irr(G ×G) : dim(π ⊗ ρ)∆G ≤ 1
m

dim HomG(π∗, ρ) ≤ 1
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Strong Gelfand Pairs

Definition
A pair of compact topological groups (G ⊃ H) is called a
strong Gelfand pair if one of the following equivalent
conditions is satisfied:

the pair (G × H ⊃ ∆H) is a Gelfand pair
for any irreducible representations ρ of G and τ of H,

dimHomH(ρ|H , τ) ≤ 1.

the algebra of Ad(H)-invariant functions on G,
C(G//H) := C(G/Ad(H)), is commutative w.r.t.
convolution.
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Gelfand trick

Proposition (Gelfand)
Let σ be an involutive anti-automorphism of G (i.e.
σ(g1g2) = σ(g2)σ(g1) and σ2 = Id) and assume σ(H) = H.
Suppose that σ(f ) = f for all bi H-invariant functions
f ∈ C(H\G/H). Then (G,H) is a Gelfand pair.

Proposition (Gelfand)
Let σ be an involutive anti-automorphism of G (i.e.
σ(g1g2) = σ(g2)σ(g1)) and σ2 = Id and assume σ(H) = H.
Suppose that σ(f ) = f for all Ad(H)-invariant functions
f ∈ C(G//H). Then (G,H) is a strong Gelfand pair.
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Sum up

Rep. theory:
∀ρdim ρH ≤ 1

ks +3
Algebra:
C(H\G/H) is
commutative

ks

"Analysis":
∃ anti-involution σ
s.t. f = σ(f )
∀f ∈ C(H\G/H)

KS

��
Geometry:
∃ anti-involution σ
that preserves
H double cosets
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Non compact setting

Setting
In the non compact case we will consider complex smooth
admissible representations of algebraic reductive groups over
local fields.

Definition
A local field is a locally compact non-discrete topological field.
There are 2 types of local fields of characteristic zero:

Archimedean: R and C
non-Archimedean: Qp and their finite extensions

Definition
A linear algebraic group is a subgroup of GLn defined by
polynomial equations.
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Reductive groups

Examples
GLn, On, Un, Sp2n,..., semisimple groups,

Fact
Any algebraic representation of a reductive group decomposes
to a direct sum of irreducible representations.

Fact
Reductive groups are unimodular.
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Smooth representations

Definition
Over Archimedean F , by smooth representation V we mean a
complex Fréchet representation V such that for any v ∈ V the
map G→ V defined by v is smooth.

Definition
Over non-Archimedean F , by smooth representation V we
mean a complex linear representation V such that for any
v ∈ V there exists an open compact subgroup K < G such that
Kv = v .
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Distributions

Notation
Let M be a smooth manifold. We denote by C∞c (M) the space
of smooth compactly supported functions on M. We will
consider the space (C∞c (M))∗ of distributions on M. Sometimes
we will also consider the space S∗(M) of Schwartz distributions
on M.

Definition
An `-space is a Hausdorff locally compact totally disconnected
topological space. For an `-space X we denote by S(X ) the
space of compactly supported locally constant functions on X .
We let S∗(X ) := S(X )∗ be the space of distributions on X .
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Gelfand Pairs

Definition
A pair of groups (G ⊃ H) is called a Gelfand pair if for any
irreducible admissible representation ρ of G

dimHomH(ρ,C) · dimHomH(ρ̃,C) ≤ 1

Usually, this implies that

dimHomH(ρ,C) ≤ 1.
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Gelfand-Kazhdan distributional criterion

Theorem (Gelfand-Kazhdan,...)
Let σ be an involutive anti-automorphism of G and assume
σ(H) = H.
Suppose that σ(ξ) = ξ for all bi H-invariant distributions ξ on G.
Then (G,H) is a Gelfand pair.
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Strong Gelfand Pairs

Definition
A pair of groups (G,H) is called a strong Gelfand pair if for
any irreducible admissible representations ρ of G and τ of H

dimHomH(ρ, τ) · dimHomH(ρ̃, τ̃) ≤ 1

Usually, this implies that dimHomH(ρ, τ) ≤ 1.

Proposition

The pair (G,H) is a strong Gelfand pair if and only if the pair
(G × H,∆H) is a Gelfand pair.

Corollary

Let σ be an involutive anti-automorphism of G s.t. σ(H) = H.
Suppose σ(ξ) = ξ for all distributions ξ on G invariant with
respect to conjugation by H. Then (G,H) is a strong Gelfand
pair.
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Rep. theory:
∀ρdim ρH ≤ 1

ks +3
Algebra:
C(H\G/H)
is commutative

ks
"Analysis":
∃ σ s.t. f = σ(f )
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KS

��

Compact case
Geometry:
∃ σ that preserves
H double cosets

Rep. theory:
dim HomH(ρ,C) ≤ 1
∀ρ
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Multiplicity one theorem for GLn

Let F be a local field of characteristic zero.

Theorem (A.-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every GLn(F )-invariant distribution on GLn+1(F ) is
transposition invariant.

It has the following corollary in representation theory.

Theorem (A.-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Let π be an irreducible admissible representation of GLn+1(F )
and τ be an irreducible admissible representation of GLn(F ).
Then

dim HomGLn(F )(π, τ) ≤ 1.

Similar theorems hold for orthogonal and unitary groups.
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Reformulation

G̃ := GLn(F ) o {1, σ}
Define a character χ of G̃ by χ(GLn(F )) = {1},
χ(G̃ −GLn(F )) = {−1}.

Equivalent formulation:

Theorem

S∗(GLn+1(F ))
eG,χ = 0.
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Equivalent formulation:

Theorem

S∗(gln+1(F ))
eG,χ = 0.

g
(

An×n vn×1
φ1×n λ

)
g−1 =

(
gAg−1 gv

(g∗)−1φ λ

)
and

(
A v
φ λ

)t

=

(
At φt

v t λ

)
V := F n

X := sl(V )× V × V ∗

G̃ acts on X by
g(A, v , φ) = (gAg−1,gv , (g∗)−1φ)
σ(A, v , φ) = (At , φt , v t ).

Equivalent formulation:

Theorem

S∗(X )
eG,χ = 0.
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First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We
want to show S∗(X )G,χ = 0.

Proposition
Let U ⊂ X be an open G-invariant subset and Z := X − U.
Suppose that S∗(U)G,χ = 0 and S∗X (Z )G,χ = 0. Then
S∗(X )G,χ = 0.

Proof.

0→ S∗X (Z )G,χ → S∗(X )G,χ → S∗(U)G,χ.

For `-spaces, S∗X (Z )G,χ ∼= S∗(Z )G,χ.
For smooth manifolds, there is a slightly more complicated
statement which takes into account transversal derivatives:

grk (S∗X (Z )) = S∗(Z ,Symk (CNX
Z ))
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Frobenius descent

Xz

��

// X

��
z // Z

Theorem (Bernstein, Baruch, ...)

Let ψ : X → Z be a map.
Let G act on X and Z such that ψ(gx) = gψ(x).
Suppose that the action of G on Z is transitive.
Suppose that both G and StabG(z) are unimodular. Then

S∗(X )G,χ ∼= S∗(Xz)StabG(z),χ.
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Generalized Harish-Chandra descent

Theorem (A.-Gourevitch)
Let a reductive group G act on a smooth affine algebraic variety
X. Let χ be a character of G. Suppose that for any a ∈ X s.t.
the orbit Ga is closed we have

S∗(NX
Ga,a)Ga,χ = 0.

Then S∗(X )G,χ = 0.
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Fourier transform

Let V be a finite dimensional vector space over F and Q be a
non-degenerate quadratic form on V . Let ξ̂ denote the Fourier
transform of ξ defined using Q.

Proposition

Let G act on V linearly and preserving Q. Let ξ ∈ S∗(V )G,χ.
Then ξ̂ ∈ S∗(V )G,χ.
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Fourier transform and homogeneity

We call a distribution ξ ∈ S∗(V ) abs-homogeneous of
degree d if for any t ∈ F×,

ht (ξ) = u(t)|t |dξ,
where ht denotes the homothety action on distributions
and u is some unitary character of F×.

Theorem (Homogeneity theorem – Jacquet, Rallis,
Schiffmann,...)

Assume F is non-Archimedean. Let ξ ∈ S∗V (Z (Q)) be s.t.
ξ̂ ∈ S∗V (Z (Q)). Then ξ is abs-homogeneous of degree 1

2dimV.

Theorem (Archimedean homogeneity theorem – A.-Gourevitch)

Let F be any local field. Let L ⊂ S∗V (Z (Q)) be a non-zero linear
subspace s. t. ∀ξ ∈ L we have ξ̂ ∈ L and Qξ ∈ L.
Then there exists a non-zero distribution ξ ∈ L which is
abs-homogeneous of degree 1

2dimV or of degree 1
2dimV + 1.
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Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of T ∗X .

Singular Support Wave front set
(=Characteristic variety)

Defined using D-modules Defined using Fourier transform
Available only in the Available in both cases
Archimedean case

In the non-Archimedean case we define the singular support to
be the Zariski closure of the wave front set.
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Properties and the Integrability Theorem

Let X be a smooth algebraic variety.
Let ξ ∈ S∗(X ). Then Supp(ξ)Zar = pX (SS(ξ)), where
pX : T ∗X → X is the projection.

Let an algebraic group G act on X . Let ξ ∈ S∗(X )G,χ. Then

SS(ξ) ⊂ {(x , φ) ∈ T ∗X | ∀α ∈ g φ(α(x)) = 0}.

Let V be a linear space. Let Z ⊂ V ∗ be a closed
subvariety, invariant with respect to homotheties. Let
ξ ∈ S∗(V ). Suppose that Supp(ξ̂) ⊂ Z . Then
SS(ξ) ⊂ V × Z .
Integrability theorem:
Let ξ ∈ S∗(X ). Then SS(ξ) is (weakly) coisotropic.
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Coisotropic varieties

Definition
Let M be a smooth algebraic variety and ω be a symplectic
form on it. Let Z ⊂ M be an algebraic subvariety. We call it
M-coisotropic if the following equivalent conditions hold.

At every smooth point z ∈ Z we have TzZ ⊃ (TzZ )⊥. Here,
(TzZ )⊥ denotes the orthogonal complement to TzZ in TzM
with respect to ω.
The ideal sheaf of regular functions that vanish on Z is
closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.

Every non-empty coisotropic subvariety of M has
dimension at least dim M

2 .
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Weakly coisotropic varieties

Definition
Let X be a smooth algebraic variety. Let Z ⊂ T ∗X be an
algebraic subvariety. We call it T ∗X -weakly coisotropic if one
of the following equivalent conditions holds.

For a generic smooth point a ∈ pX (Z ) and for a generic
smooth point y ∈ p−1

X (a) ∩ Z we have
CNX

pX (Z ),a ⊂ Ty (p−1
X (a) ∩ Z ).

For any smooth point a ∈ pX (Z ) the fiber p−1
X (a) ∩ Z is

locally invariant with respect to shifts by CNX
pX (Z ),a.

Every non-empty weakly coisotropic subvariety of T ∗X has
dimension at least dim X .
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Definition
Let X be a smooth algebraic variety. Let Z ⊂ X be a smooth
subvariety and R ⊂ T ∗X be any subvariety. We define the
restriction R|Z ⊂ T ∗Z of R to Z by

R|Z := q(p−1
X (Z ) ∩ R),

where q : p−1
X (Z )→ T ∗Z is the projection.

T ∗X ⊃ p−1
X (Z ) � T ∗Z

Lemma
Let X be a smooth algebraic variety. Let Z ⊂ X be a smooth
subvariety. Let R ⊂ T ∗X be a (weakly) coisotropic variety.
Then, under some transversality assumption, R|Z ⊂ T ∗Z is a
(weakly) coisotropic variety.
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Harish-Chandra descent and homogeneity

Notation

S := {(A, v , φ) ∈ Xn|An = 0 and φ(Aiv) = 0∀0 ≤ i ≤ n}.

By Harish-Chandra descent we can assume that any
ξ ∈ S∗(X )

eG,χ is supported in S.

Notation

S′ := {(A, v , φ) ∈ S|An−1v = (A∗)n−1φ = 0}.

By the homogeneity theorem, the stratification method and
Frobenius descent we get that any ξ ∈ S∗(X )

eG,χ is supported in
S′.
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Reduction to the geometric statement

Notation

T ′ = {((A1, v1, φ1), (A2, v2, φ2)) ∈ X × X | ∀i , j ∈ {1,2}
(Ai , vj , φj) ∈ S′ and [A1,A2] + v1 ⊗ φ2 − v2 ⊗ φ1 = 0}.

It is enough to show:

Theorem (The geometric statement)
There are no non-empty X × X-weakly coisotropic subvarieties
of T ′.
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Summary

Flowchart

sl(V )× V × V ∗ H.Ch.

descent
// S

homogeneity theorem

Fourier transform and // S′
integrability theorem

Fourier transform and // T ′
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Reduction to the Key Lemma

Notation

T ′′ := {((A1, v1, φ1), (A2, v2, φ2)) ∈ T ′|An−1
1 = 0}.

It is easy to see that there are no non-empty X × X -weakly
coisotropic subvarieties of T ′′.

Notation
Let A ∈ sl(V ) be a nilpotent Jordan block. Denote
RA := (T ′ − T ′′)|{A}×V×V∗ .

It is enough to show:

Lemma (Key Lemma)
There are no non-empty V × V ∗ × V × V ∗-weakly coisotropic
subvarieties of RA.
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Proof of the Key Lemma

Notation

QA := S′ ∩ ({A} × V × V ∗) =
n−1⋃
i=1

(KerAi)× (Ker(A∗)n−i)

It is easy to see that RA ⊂ QA ×QA and QA ×QA =
⋃n−1

i,j=1 Lij ,
where

Lij := (KerAi)× (Ker(A∗)n−i)× (KerAj)× (Ker(A∗)n−j).

It is easy to see that any weakly coisotropic subvariety of
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Proof of the Key Lemma

Let (v1, φ1, v2, φ2) ∈ RA ∩ Lii . Let M := v1 ⊗ φ2 − v2 ⊗ φ1.

Clearly, M is of the form

M =

(
0i×i ∗

0(n−i)×i 0(n−i)×(n−i)

)
.

We know that there exists a nilpotent B satisfying [A,B] = M.
Hence this B is upper nilpotent, which implies Mi,i+1 = 0 and
hence f (v1, φ1, v2, φ2) = 0.
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Aim

Task
Let a reductive group G act on an affine variety X and let χ be
a character of G.

We want to prove:

S∗(X )G,χ = 0.

Applications: Representation theory, Harmonic analysis,
Gelfand pairs, trace formula, relative trace formula, ...

Necessary condition:

Close orbits do not carry equivariant distributions
m

χ|Ga 6= 1 for any semi simple a ∈ X (i.e. a ∈ X with closed orbit
Ga)
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Luna’s slice theorem

Theorem (Luna)
Let a reductive group G act on a smooth affine algebraic variety
X. Let a ∈ X be a semi-simple point. Then there exists an
invariant (etale) neighborhood U of Ga with an equivariant
projection p : U → Ga s.t. the fiber p−1(a) is G-isomorphic to
an (etale) neighborhood of 0 in the normal space NX

Ga,a.
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Generalized Harish-Chandra descent

Theorem (A.-Gourevitch)
Let a reductive group G act on a smooth affine algebraic variety
X. Let χ be a character of G. Suppose that for any a ∈ X s.t.
the orbit Ga is closed, we have

S∗(NX
Ga,a)Ga,χ = 0.

Then S∗(X )G,χ = 0.
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Conclusions

We reduce to the following

Task
Let a reductive group G act (linearly) on an linear space V and
let χ be a character of G. We should prove that

S∗(V )G,χ = 0

We may assume V G = 0

Let p : V → V//G := spec(O(V )G)

Let N (V ) := p−1(p(0)) = {x ∈ V |Gx 3 0}

Let R(V ) := V −N (V )

by induction we may assume:

S∗(R(V ))G,χ = 0.
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Conclusions

Using Fourier transform, we reduce the problem to showing

Task

(S∗N (V )(V ) ∩ F(S∗N (V )(V ))G,χ = 0

Using homogeneity theorem, we reduce the problem to showing

Task

(S∗N (V )(V ) ∩ F(S∗N (V )(V ))G×F×,χ×u = 0
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Symmetric pairs

A symmetric pair is a triple (G,H, θ) where H ⊂ G are
reductive groups, and θ is an involution of G such that H = Gθ.

We call (G,H, θ) connected if G/H is Zariski connected.

Define an anti-involution σ : G→ G by σ(g) := θ(g−1).
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Question
Which symmetric pairs are Gelfand pairs?

For symmetric pairs of rank one this question was studied
extensively by van-Dijk, Bosman, Rader and Rallis.

Task

S∗(G)H×H ⊂ S∗(G)σ

Necessary condition:

Definition
A symmetric pair (G,H, θ) is called good if σ preserves all
closed H × H double closets.

Proposition
Any connected symmetric pair over C is good.

Conjecture
Any good symmetric pair is a Gelfand pair.
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How to complete the task?

Reformulating our task

Task

Let H̃ × H = H × H o {1, σ} and χ : H̃ × H → C defined by
χ(H̃ × H − H × H) = −1 we have to show that

S∗(G)H̃×H,χ = 0

Using Harsh-Chandra Descent it is enough to show that
1 The pair (G,H) is good

2 S∗(gσ)
eH,χ = 0 provided that S∗(R(gσ))

eH,χ = 0.

3 Compute all the "descendants" of the pair and prove (2) for
them.

We call the property (2) regularity. We conjecture that all
symmetric pairs are regular. This will imply that any good
symmetric pair is a Gelfand pair.
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How to prove regularity?

it is enough to prove that (S∗gσ (N (gσ)) ∩ F(S∗gσ (N (gσ))
eH,χ = 0

Let H ′ = H̃ × F× and χ′ = χ× | · |dim(gσ)/2(+1)u
Using Homogeneity theorem it is enough to prove that:
(S∗gσ (N (gσ))H′,χ′) ∩ F(S∗gσ (N (gσ))H′,χ′) = 0

We call an element a ∈ N (gσ) distinguished if ha is nilpotent.
Using Integrability theorem it is enough to prove that:
S∗gσ (O)H′,χ′ = 0 for any distinguished orbit O

Using Frobenius descent it is enough to prove that for any
distinguished a:

χ′|H′
a
∆ 6= 1 – in the non-Archimedean case

(Ngσ

Ha,a)H′
a,χ

′∆ = 0 – in the Archimedean case

A. Aizenbud Multiplicity one theorem for GL(n) and other Gelfand pairs
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Regular symmetric pairs

Pair p-adic case by real case by
(G ×G,∆G) A.-Gourevitch

(GLn(E),GLn(F )) Flicker
(GLn+k ,GLn ×GLk ) Jacquet-Rallis A.-

(On+k ,On ×Ok ) A.-Gourevitch Gourevitch
(GLn,On)

(GL2n,Sp2n) Heumos - Rallis A.-Sayag
(sp2m, slm ⊕ ga)

(e6, sp8)
(e6, sl6 ⊕ sl2) Sayag

(e7, sl8) A. (based on
(e8, so16) work of Sekiguchi)

(f4, sp6 ⊕ sl2)
(g2, sl2 ⊕ sl2)

A. Aizenbud Multiplicity one theorem for GL(n) and other Gelfand pairs



Some classical applications

Harmonic analysis.

(SO(3,R),SO(2,R) is a Gelfand pair -
spherical harmonics.

Gelfand-Zeitlin basis:
(Sn,Sn−1) is a strong Gelfand pair -
basis for irreducible representations of Sn
The same for O(n,R) and U(n,R).

Classification of representations:
(GL(n,R),O(n,R)) is a Gelfand pair -
the irreducible representations of GL(n,R) which have an
O(n,R)-invariant vector are the same as characters of the
algebra C(O(n,R)\GL(n,R)/O(n,R).
The same for the pair (GL(n,C),U(n)).
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More modern applications

Automorphic forms

Automorphic multiplicity one⇔ (GLn(A),GLn(Q)) is a Gelfand
pair⇐ (GLn,Un, ψ) is a Gelfand pair.

splitting of automorphic periods:
Automorphic periods – integrals of automorphic forms over a
subgroup H.
(G,H) is a Gelfand pair⇒ H-period splits into local factors.
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Other applications of invariant distributions

Study of the principal series

Kirillov conjecture: Any irreducible unitary representation of
GLn remains irreducible when restricted to Pn

⇑
any Ad(Pn) invariant distribution on GLn is Ad(GLn) invariant

⇑
any Ad(GLn−1) invariant distribution on GLn is transposition
invariant

Trace formula and relative trace formula:
Smooth matching
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Classical examples

Pair Anti-involution
(G ×G,∆G) (g,h) 7→ (h−1,g−1)

(O(n + k),O(n)×O(k))
(U(n + k),U(n)× U(k)) g 7→ g−1

(GL(n,R),O(n)) g 7→ gt

(G,Gθ), where
G - Lie group, θ- involution, g 7→ θ(g−1)

Gθ is compact
(G,K ), where

G - is a reductive group, Cartan anti-involution
K - maximal compact subgroup
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Results on Gelfand pairs

Pair p-adic case real case
(G, (N, ψ)) Gelfand-Kazhdan Shalika, Kostant

(GLn(E),GLn(F )) Flicker
(GLn+k ,GLn ×GLk ) Jacquet-Rallis A.-

(On+k ,On ×Ok ) over C Gourevitch
(GLn,On) over C

(GL2n,Sp2n) Heumos-Rallis A.-Sayag

(GL2n, (

(
g u
0 g

)
, ψ)) Jacquet-Rallis A.-Gourevitch

-Jacquet

(GLn, (

(
SP u
0 N

)
, ψ)) Offen-Sayag A.-Offen-Sayag

real: R and C

p-adic: Qp and its finite extensions.
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Results on Gelfand pairs
Pair p-adic charF > 0 real

(G, (N, ψ)) Gelfand- Gelfand- Shalika, Kostant
Kazhdan Kazhdan

(GLn(E),GLn(F )) Flicker Flicker
(GLn+k ,GLn ×GLk ) Jacquet- A.- Avni- A.-

Rallis Gourevitch Gourevitch
(On+k ,On ×Ok ) over C

(GLn,On) over C
(GL2n,Sp2n) Heumos- Heumos- A.-

Rallis Rallis Sayag

(GL2n, (

(
g u
0 g

)
, ψ)) Jacquet- A.-Gourevitch

Rallis -Jacquet

(GLn, (

(
SP u
0 N

)
, ψ)) Offen-Sayag Offen-Sayag A.-Offen-

Sayag

real: R and C
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Results on strong Gelfand pairs

Pair p-adic charF > 0 real
A.- A.-Avni- A.-Gourevitch,

(GLn+1,GLn) Gourevitch- Gourevitch, Sun-Zhu
Rallis- Henniart

(O(V ⊕ F ),O(V )) Schiffmann
(U(V ⊕ F ),U(V )) Sun-Zhu

real: R and C

p-adic: Qp and its finite extensions.

charF > 0: Fq((t))
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