Multiplicity one theorem for GL(n) and other Gelfand pairs

A. Aizenbud

Massachusetts Institute of Technology
http://math.mit.edu/~aizenr

Examples

Example (Fourier Series)

Examples

Example (Fourier Series)

- $L^{2}\left(S^{1}\right)=\oplus \operatorname{span}\left\{e^{i n x}\right\}$

Examples

Example (Fourier Series)

- $L^{2}\left(S^{1}\right)=\oplus \operatorname{span}\left\{e^{i n x}\right\}$
- $g e^{i n x}=\chi(g) e^{i n x}$

Examples

Example (Fourier Series)

- $L^{2}\left(S^{1}\right)=\oplus \operatorname{span}\left\{e^{i n x}\right\}$
- $g e^{i n x}=\chi(g) e^{i n x}$

Example (Spherical Harmonics)

Examples

Example (Fourier Series)

- $L^{2}\left(S^{1}\right)=\oplus \operatorname{span}\left\{e^{i n x}\right\}$
- $g e^{i n x}=\chi(g) e^{i n x}$

Example (Spherical Harmonics)

- $L^{2}\left(S^{2}\right)=\oplus_{m} H^{m}$

Examples

Example (Fourier Series)

- $L^{2}\left(S^{1}\right)=\oplus \operatorname{span}\left\{e^{i n x}\right\}$
- $g e^{i n x}=\chi(g) e^{i n x}$

Example (Spherical Harmonics)

- $L^{2}\left(S^{2}\right)=\oplus_{m} H^{m}$
- $H^{m}=\operatorname{span}_{i}\left\{y_{i}^{m}\right\}$ are irreducible representations of O_{3}

Examples

Example (Fourier Series)

- $L^{2}\left(S^{1}\right)=\oplus \operatorname{span}\left\{e^{i n x}\right\}$
- $g e^{i n x}=\chi(g) e^{i n x}$

Example (Spherical Harmonics)

- $L^{2}\left(S^{2}\right)=\oplus_{m} H^{m}$
- $H^{m}=\operatorname{span}_{i}\left\{y_{i}^{m}\right\}$ are irreducible representations of O_{3}

Example

Let X be a finite set. Let the symmetric group $\operatorname{Perm}(X)$ act on X. Consider the space $F(X)$ of complex valued functions on X as a representation of $\operatorname{Perm}(X)$. Then it decomposes to direct sum of distinct irreducible representations.

Examples

Example (Fourier Series)

- $L^{2}\left(S^{1}\right)=\oplus \operatorname{span}\left\{e^{i n x}\right\}$
- $g e^{i n x}=\chi(g) e^{i n x}$

Example (Spherical Harmonics)

- $L^{2}\left(S^{2}\right)=\oplus_{m} H^{m}$
- $H^{m}=\operatorname{span}_{i}\left\{y_{i}^{m}\right\}$ are irreducible representations of O_{3}

Example

Let X be a finite set. Let the symmetric group $\operatorname{Perm}(X)$ act on X. Consider the space $F(X)$ of complex valued functions on X as a representation of $\operatorname{Perm}(X)$. Then it decomposes to direct sum of distinct irreducible representations.

Gelfand Pairs

Definition

A pair of compact topological groups $(G \supset H)$ is called a Gelfand pair if the following equivalent conditions hold：

Gelfand Pairs

Definition

A pair of compact topological groups $(G \supset H)$ is called a Gelfand pair if the following equivalent conditions hold:

- $L^{2}(G / H)$ decomposes to direct sum of distinct irreducible representations of G.

Gelfand Pairs

Definition

A pair of compact topological groups $(G \supset H)$ is called a Gelfand pair if the following equivalent conditions hold：
－$L^{2}(G / H)$ decomposes to direct sum of distinct irreducible representations of G ．
－for any irreducible representation ρ of $G, \operatorname{dim} \rho^{H} \leq 1$ ．

Gelfand Pairs

Definition

A pair of compact topological groups $(G \supset H)$ is called a Gelfand pair if the following equivalent conditions hold:

- $L^{2}(G / H)$ decomposes to direct sum of distinct irreducible representations of G.
- for any irreducible representation ρ of $G, \operatorname{dim} \rho^{H} \leq 1$.
- for any irreducible representation ρ of G, $\operatorname{dimHom}_{H}(\rho, \mathbb{C}) \leq 1$.

Gelfand Pairs

Definition

A pair of compact topological groups $(G \supset H)$ is called a Gelfand pair if the following equivalent conditions hold:

- $L^{2}(G / H)$ decomposes to direct sum of distinct irreducible representations of G.
- for any irreducible representation ρ of $G, \operatorname{dim} \rho^{H} \leq 1$.
- for any irreducible representation ρ of G, $\operatorname{dimHom}_{H}(\rho, \mathbb{C}) \leq 1$.
- the algebra of bi- H-invariant functions on $G, C(H \backslash G / H)$, is commutative w.r.t. convolution.

Philosophical motivation

Observation
Representation theory of G

§

Harmonic analysis on G w.r.t. the two sided action of $G \times G$

Philosophical motivation

Observation

Representation theory of G §
Harmonic analysis on G w.r.t. the two sided action of $G \times G$

Conclusion

Let $H \subset G$ be a pair of groups. One can consider harmonic analysis over G / H as a generalization of representation theory.

Philosophical motivation

Observation

Representation theory of G

 iHarmonic analysis on G w.r.t. the two sided action of $G \times G$

Conclusion

Let $H \subset G$ be a pair of groups. One can consider harmonic analysis over G / H as a generalization of representation theory.

Example

Schur's lemma is equivalent to the Gelfand property of $(G \times G, \Delta G)$:

Philosophical motivation

Observation

Representation theory of G』
Harmonic analysis on G w.r.t. the two sided action of $G \times G$

Conclusion

Let $H \subset G$ be a pair of groups. One can consider harmonic analysis over G / H as a generalization of representation theory.

Example

Schur's lemma is equivalent to the Gelfand property of $(G \times G, \Delta G)$:

$$
\forall \pi \otimes \rho \in \operatorname{irr}(G \times G): \operatorname{dim}(\pi \otimes \rho)^{\Delta G} \leq 1
$$

Philosophical motivation

Observation

Representation theory of G』
Harmonic analysis on G w.r.t. the two sided action of $G \times G$

Conclusion

Let $H \subset G$ be a pair of groups. One can consider harmonic analysis over G / H as a generalization of representation theory.

Example

Schur's lemma is equivalent to the Gelfand property of $(G \times G, \Delta G)$:

$$
\begin{gathered}
\forall \pi \otimes \rho \in \operatorname{irr}(G \times G): \operatorname{dim}(\pi \otimes \rho)^{\Delta G} \leq 1 \\
\operatorname{dim} \operatorname{Hom}_{G}\left(\pi^{*}, \rho\right) \leq 1
\end{gathered}
$$

Strong Gelfand Pairs

Definition

A pair of compact topological groups $(G \supset H)$ is called a strong Gelfand pair if one of the following equivalent conditions is satisfied:

Strong Gelfand Pairs

Definition

A pair of compact topological groups $(G \supset H)$ is called a strong Gelfand pair if one of the following equivalent conditions is satisfied:

- the pair $(G \times H \supset \Delta H)$ is a Gelfand pair

Strong Gelfand Pairs

Definition

A pair of compact topological groups $(G \supset H)$ is called a strong Gelfand pair if one of the following equivalent conditions is satisfied:

- the pair $(G \times H \supset \Delta H)$ is a Gelfand pair
- for any irreducible representations ρ of G and τ of H,

$$
\operatorname{dimHom}_{H}\left(\left.\rho\right|_{H}, \tau\right) \leq 1 .
$$

Strong Gelfand Pairs

Definition

A pair of compact topological groups $(G \supset H)$ is called a strong Gelfand pair if one of the following equivalent conditions is satisfied:

- the pair $(G \times H \supset \Delta H)$ is a Gelfand pair
- for any irreducible representations ρ of G and τ of H, $\operatorname{dimHom}{ }_{H}\left(\left.\rho\right|_{H}, \tau\right) \leq 1$.
- the algebra of $\operatorname{Ad}(H)$-invariant functions on G, $C(G / / H):=C(G / A d(H))$, is commutative w.r.t. convolution.

Gelfand trick

Proposition (Gelfand)

Let σ be an involutive anti-automorphism of G (i.e. $\sigma\left(g_{1} g_{2}\right)=\sigma\left(g_{2}\right) \sigma\left(g_{1}\right)$ and $\left.\sigma^{2}=I d\right)$ and assume $\sigma(H)=H$.
Suppose that $\sigma(f)=f$ for all bi H-invariant functions
$f \in C(H \backslash G / H)$. Then (G, H) is a Gelfand pair.

Gelfand trick

Proposition (Gelfand)

Let σ be an involutive anti-automorphism of G (i.e. $\sigma\left(g_{1} g_{2}\right)=\sigma\left(g_{2}\right) \sigma\left(g_{1}\right)$ and $\left.\sigma^{2}=I d\right)$ and assume $\sigma(H)=H$.
Suppose that $\sigma(f)=f$ for all bi H-invariant functions $f \in C(H \backslash G / H)$. Then (G, H) is a Gelfand pair.

Proposition (Gelfand)

Let σ be an involutive anti-automorphism of G (i.e. $\left.\sigma\left(g_{1} g_{2}\right)=\sigma\left(g_{2}\right) \sigma\left(g_{1}\right)\right)$ and $\sigma^{2}=I d$ and assume $\sigma(H)=H$.
Suppose that $\sigma(f)=f$ for all $\operatorname{Ad}(H)$-invariant functions $f \in C(G / / H)$. Then (G, H) is a strong Gelfand pair.

Sum up

Rep. theory: $\Longleftrightarrow \begin{aligned} & \text { Algebra: } \\ & C(H \backslash G / H) \text { is } \\ & \text { commutative }\end{aligned}$ $\forall \rho \operatorname{dim} \rho^{H} \leq 1$
"Analysis": \exists anti-involution σ s.t. $f=\sigma(f)$ $\forall f \in C(H \backslash G / H)$

Geometry:
\exists anti-involution σ that preserves H double cosets

Non compact setting

Setting

In the non compact case we will consider complex smooth admissible representations of algebraic reductive groups over local fields.

Non compact setting

Setting

In the non compact case we will consider complex smooth admissible representations of algebraic reductive groups over local fields.

Definition

A local field is a locally compact non-discrete topological field. There are 2 types of local fields of characteristic zero:

- Archimedean: \mathbb{R} and \mathbb{C}
- non-Archimedean: \mathbb{Q}_{p} and their finite extensions

Non compact setting

Setting

In the non compact case we will consider complex smooth admissible representations of algebraic reductive groups over local fields.

Definition

A local field is a locally compact non-discrete topological field. There are 2 types of local fields of characteristic zero:

- Archimedean: \mathbb{R} and \mathbb{C}
- non-Archimedean: \mathbb{Q}_{p} and their finite extensions

Definition

A linear algebraic group is a subgroup of $G L_{n}$ defined by polynomial equations.

Reductive groups

Examples

$G L_{n}, O_{n}, U_{n}, S p_{2 n}, \ldots$, semisimple groups,

Reductive groups

Examples

$G L_{n}, O_{n}, U_{n}, S p_{2 n}, \ldots$, semisimple groups,

Fact

Any algebraic representation of a reductive group decomposes to a direct sum of irreducible representations.

Reductive groups

Examples

$G L_{n}, O_{n}, U_{n}, S p_{2 n}, \ldots$, semisimple groups,

Fact

Any algebraic representation of a reductive group decomposes to a direct sum of irreducible representations.

Fact

Reductive groups are unimodular.

Smooth representations

Definition

Over Archimedean F, by smooth representation V we mean a complex Fréchet representation V such that for any $v \in V$ the map $G \rightarrow V$ defined by v is smooth.

Smooth representations

Definition

Over Archimedean F, by smooth representation V we mean a complex Fréchet representation V such that for any $v \in V$ the map $G \rightarrow V$ defined by v is smooth.

Definition

Over non-Archimedean F, by smooth representation V we mean a complex linear representation V such that for any $v \in V$ there exists an open compact subgroup $K<G$ such that $K v=v$.

Distributions

Notation

Let M be a smooth manifold. We denote by $C_{c}^{\infty}(M)$ the space of smooth compactly supported functions on M. We will consider the space $\left(C_{c}^{\infty}(M)\right)^{*}$ of distributions on M. Sometimes we will also consider the space $\mathcal{S}^{*}(M)$ of Schwartz distributions on M.

Distributions

Notation

Let M be a smooth manifold. We denote by $C_{c}^{\infty}(M)$ the space of smooth compactly supported functions on M. We will consider the space $\left(C_{c}^{\infty}(M)\right)^{*}$ of distributions on M. Sometimes we will also consider the space $\mathcal{S}^{*}(M)$ of Schwartz distributions on M.

Definition

An ℓ-space is a Hausdorff locally compact totally disconnected topological space. For an ℓ-space X we denote by $\mathcal{S}(X)$ the space of compactly supported locally constant functions on X. We let $\mathcal{S}^{*}(X):=\mathcal{S}(X)^{*}$ be the space of distributions on X.

Gelfand Pairs

Definition

A pair of groups $(G \supset H)$ is called a Gelfand pair if for any irreducible admissible representation ρ of G

$$
\operatorname{dimHom}_{H}(\rho, \mathbb{C}) \cdot \operatorname{dimHom}_{H}(\widetilde{\rho}, \mathbb{C}) \leq 1
$$

Usually, this implies that

$$
\operatorname{dimHom}_{H}(\rho, \mathbb{C}) \leq 1
$$

Gelfand-Kazhdan distributional criterion

Theorem (Gelfand-Kazhdan,...)

Let σ be an involutive anti-automorphism of G and assume $\sigma(H)=H$.
Suppose that $\sigma(\xi)=\xi$ for all bi H-invariant distributions ξ on G. Then (G, H) is a Gelfand pair.

Strong Gelfand Pairs

Definition

A pair of groups (G, H) is called a strong Gelfand pair if for any irreducible admissible representations ρ of G and τ of H

$$
\operatorname{dimHom}_{H}(\rho, \tau) \cdot \operatorname{dimHom}_{H}(\widetilde{\rho}, \widetilde{\tau}) \leq 1
$$

Usually，this implies that $\operatorname{dimHom}_{H}(\rho, \tau) \leq 1$ ．

Strong Gelfand Pairs

Definition

A pair of groups (G, H) is called a strong Gelfand pair if for any irreducible admissible representations ρ of G and τ of H

$$
\operatorname{dimHom}_{H}(\rho, \tau) \cdot \operatorname{dimHom}_{H}(\widetilde{\rho}, \widetilde{\tau}) \leq 1
$$

Usually, this implies that $\operatorname{dimHom}_{H}(\rho, \tau) \leq 1$.

Proposition

The pair (G, H) is a strong Gelfand pair if and only if the pair $(G \times H, \Delta H)$ is a Gelfand pair.

Strong Gelfand Pairs

Definition

A pair of groups (G, H) is called a strong Gelfand pair if for any irreducible admissible representations ρ of G and τ of H

$$
\operatorname{dimHom}_{H}(\rho, \tau) \cdot \operatorname{dimHom}_{H}(\widetilde{\rho}, \widetilde{\tau}) \leq 1
$$

Usually, this implies that $\operatorname{dim}_{\boldsymbol{H o m}}^{H}(\rho, \tau) \leq 1$.

Proposition

The pair (G, H) is a strong Gelfand pair if and only if the pair $(G \times H, \Delta H)$ is a Gelfand pair.

Corollary

Let σ be an involutive anti-automorphism of G s.t. $\sigma(H)=H$. Suppose $\sigma(\xi)=\xi$ for all distributions ξ on G invariant with respect to conjugation by H. Then (G, H) is a strong Gelfand pair.

Rep. theory: $\forall \rho \operatorname{dim} \rho^{H} \leq 1$

Compact case

Algebra:
$C(H \backslash G / H)$
is commutative
$\Longleftarrow \left\lvert\, \begin{aligned} & \text { "Analysis": } \\ & \exists \sigma \text { s.t. } \quad f=\sigma(f) \\ & \forall f \in C(H \backslash G / H)\end{aligned}\right.$凤
Geometry:
$\exists \sigma$ that preserves H double cosets

Rep. theory: $\operatorname{dim} \operatorname{Hom}_{H}(\rho, \mathbb{C}) \leq 1$ $\forall \rho$

p-adic

Geometry:
$\exists \sigma$ that preserves
closed
H double cosets

Multiplicity one theorem for $G L_{n}$

Let F be a local field of characteristic zero.
Theorem (A.-Gourevitch-Rallis-Schiffmann-Sun-Zhu)
Every $G L_{n}(F)$-invariant distribution on $G L_{n+1}(F)$ is transposition invariant.

Multiplicity one theorem for $G L_{n}$

Let F be a local field of characteristic zero.
Theorem (A.-Gourevitch-Rallis-Schiffmann-Sun-Zhu)
Every $G L_{n}(F)$-invariant distribution on $G L_{n+1}(F)$ is transposition invariant.

It has the following corollary in representation theory.
Theorem (A.-Gourevitch-Rallis-Schiffmann-Sun-Zhu)
Let π be an irreducible admissible representation of $\mathrm{GL}_{n+1}(F)$ and τ be an irreducible admissible representation of $\mathrm{GL}_{n}(F)$. Then

$$
\operatorname{dim} \operatorname{Hom}_{\operatorname{GL}_{n}(F)}(\pi, \tau) \leq 1
$$

Multiplicity one theorem for $G L_{n}$

Let F be a local field of characteristic zero.
Theorem (A.-Gourevitch-Rallis-Schiffmann-Sun-Zhu)
Every $G L_{n}(F)$-invariant distribution on $G L_{n+1}(F)$ is transposition invariant.

It has the following corollary in representation theory.
Theorem (A.-Gourevitch-Rallis-Schiffmann-Sun-Zhu)
Let π be an irreducible admissible representation of $\mathrm{GL}_{n+1}(F)$ and τ be an irreducible admissible representation of $\mathrm{GL}_{n}(F)$. Then

$$
\operatorname{dim} \operatorname{Hom}_{\operatorname{GL}_{n}(F)}(\pi, \tau) \leq 1
$$

Similar theorems hold for orthogonal and unitary groups.

Reformulation

Reformulation

- $\widetilde{G}:=G L_{n}(F) \rtimes\{1, \sigma\}$
- Define a character χ of \widetilde{G} by $\chi\left(G L_{n}(F)\right)=\{1\}$,
$\chi\left(\widetilde{G}-G L_{n}(F)\right)=\{-1\}$.
- $\widetilde{G}:=G L_{n}(F) \rtimes\{1, \sigma\}$
- Define a character χ of \widetilde{G} by $\chi\left(G L_{n}(F)\right)=\{1\}$,

$$
\chi\left(\widetilde{G}-G L_{n}(F)\right)=\{-1\}
$$

Equivalent formulation:

Theorem
 $\mathcal{S}^{*}\left(G L_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.

Equivalent formulation:

Theorem

$$
\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0
$$

$$
g\left(\begin{array}{cc}
A_{n \times n} & v_{n \times 1} \\
\phi_{1 \times n} & \lambda
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
g A g^{-1} & g v \\
\left(g^{*}\right)^{-1} \phi & \lambda
\end{array}\right) \text { and }\left(\begin{array}{ll}
A & v \\
\phi & \lambda
\end{array}\right)^{t}=\left(\begin{array}{cc}
A^{t} & \phi^{t} \\
v^{t} & \lambda
\end{array}\right)
$$

Equivalent formulation:

Theorem

$$
\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0
$$

$$
g\left(\begin{array}{cc}
A_{n \times n} & v_{n \times 1} \\
\phi_{1 \times n} & \lambda
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
g A g^{-1} & g v \\
\left(g^{*}\right)^{-1} \phi & \lambda
\end{array}\right) \text { and }\left(\begin{array}{ll}
A & v \\
\phi & \lambda
\end{array}\right)^{t}=\left(\begin{array}{cc}
A^{t} & \phi^{t} \\
v^{t} & \lambda
\end{array}\right)
$$

- $V:=F^{n}$
- $X:=s l(V) \times V \times V^{*}$

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.

$$
g\left(\begin{array}{cc}
A_{n \times n} & v_{n \times 1} \\
\phi_{1 \times n} & \lambda
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
g A g^{-1} & g v \\
\left(g^{*}\right)^{-1} \phi & \lambda
\end{array}\right) \text { and }\left(\begin{array}{ll}
A & v \\
\phi & \lambda
\end{array}\right)^{t}=\left(\begin{array}{cc}
A^{t} & \phi^{t} \\
v^{t} & \lambda
\end{array}\right)
$$

- $V:=F^{n}$
- $X:=s l(V) \times V \times V^{*}$
- \widetilde{G} acts on X by

$$
\begin{aligned}
& g(A, v, \phi)=\left(g A g^{-1}, g v,\left(g^{*}\right)^{-1} \phi\right) \\
& \sigma(A, v, \phi)=\left(A^{t}, \phi^{t}, v^{t}\right)
\end{aligned}
$$

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.
$g\left(\begin{array}{cc}A_{n \times n} & v_{n \times 1} \\ \phi_{1 \times n} & \lambda\end{array}\right) g^{-1}=\left(\begin{array}{cc}g A g^{-1} & g v \\ \left(g^{*}\right)^{-1} \phi & \lambda\end{array}\right)$ and $\left(\begin{array}{cc}A & v \\ \phi & \lambda\end{array}\right)^{t}=\left(\begin{array}{cc}A^{t} & \phi^{t} \\ v^{t} & \lambda\end{array}\right)$

- $V:=F^{n}$
- $X:=s l(V) \times V \times V^{*}$
- \tilde{G} acts on X by

$$
\begin{aligned}
& g(A, v, \phi)=\left(g A g^{-1}, g v,\left(g^{*}\right)^{-1} \phi\right) \\
& \sigma(A, v, \phi)=\left(A^{t}, \phi^{t}, v^{t}\right) .
\end{aligned}
$$

Equivalent formulation:

Theorem

$\mathcal{S}^{*}(X)^{\tilde{\mathrm{G}}, \chi}=0$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{S}^{*}(U)^{G, \chi}=0$ and $\mathcal{S}_{X}^{*}(Z)^{G, \chi}=0$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{S}^{*}(U)^{G, \chi}=0$ and $\mathcal{S}_{X}^{*}(Z)^{G, \chi}=0$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proof.

$$
0 \rightarrow \mathcal{S}_{\chi}^{*}(Z)^{G, \chi} \rightarrow \mathcal{S}^{*}(X)^{G, \chi} \rightarrow \mathcal{S}^{*}(U)^{G, \chi} .
$$

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{S}^{*}(U)^{G, \chi}=0$ and $\mathcal{S}_{X}^{*}(Z)^{G, \chi}=0$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proof.

$$
0 \rightarrow \mathcal{S}_{X}^{*}(Z)^{G, \chi} \rightarrow \mathcal{S}^{*}(X)^{G, \chi} \rightarrow \mathcal{S}^{*}(U)^{G, \chi}
$$

For ℓ-spaces, $\mathcal{S}_{X}^{*}(Z)^{G, \chi} \cong \mathcal{S}^{*}(Z)^{G, \chi}$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{S}^{*}(U)^{G, \chi}=0$ and $\mathcal{S}_{X}^{*}(Z)^{G, \chi}=0$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proof.

$$
0 \rightarrow \mathcal{S}_{X}^{*}(Z)^{G, \chi} \rightarrow \mathcal{S}^{*}(X)^{G, \chi} \rightarrow \mathcal{S}^{*}(U)^{G, \chi}
$$

For ℓ-spaces, $\mathcal{S}_{X}^{*}(Z)^{G, \chi} \cong \mathcal{S}^{*}(Z)^{G, \chi}$.
For smooth manifolds, there is a slightly more complicated statement which takes into account transversal derivatives:

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{S}^{*}(U)^{G, \chi}=0$ and $\mathcal{S}_{X}^{*}(Z)^{G, \chi}=0$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proof.

$$
0 \rightarrow \mathcal{S}_{X}^{*}(Z)^{G, \chi} \rightarrow \mathcal{S}^{*}(X)^{G, \chi} \rightarrow \mathcal{S}^{*}(U)^{G, \chi}
$$

For ℓ-spaces, $\mathcal{S}_{X}^{*}(Z)^{G, \chi} \cong \mathcal{S}^{*}(Z)^{G, \chi}$.
For smooth manifolds, there is a slightly more complicated statement which takes into account transversal derivatives:

$$
g r_{k}\left(\mathcal{S}_{X}^{*}(Z)\right)=\mathcal{S}^{*}\left(Z, \operatorname{Sym}^{k}\left(C N_{Z}^{X}\right)\right)
$$

Theorem (Bernstein, Baruch, ...)

Let $\psi: X \rightarrow Z$ be a map.
Let G act on X and Z such that $\psi(g x)=g \psi(x)$.
Suppose that the action of G on Z is transitive.
Suppose that both G and $\operatorname{Stab}_{G}(z)$ are unimodular. Then

$$
\mathcal{S}^{*}(X)^{G, \chi} \cong \mathcal{S}^{*}\left(X_{z}\right)^{\operatorname{Stab}_{G}(z), \chi} .
$$

Generalized Harish-Chandra descent

Theorem (A.-Gourevitch)

Let a reductive group G act on a smooth affine algebraic variety X. Let χ be a character of G. Suppose that for any $a \in X$ s.t. the orbit Ga is closed we have

$$
\mathcal{S}^{*}\left(N_{G a, a}^{X}\right)^{G_{a}, \chi}=0 .
$$

Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Fourier transform

Let V be a finite dimensional vector space over F and Q be a non-degenerate quadratic form on V. Let $\widehat{\xi}$ denote the Fourier transform of ξ defined using Q.

Proposition

Let G act on V linearly and preserving Q. Let $\xi \in \mathcal{S}^{*}(V)^{G, \chi}$. Then $\widehat{\xi} \in \mathcal{S}^{*}(V)^{G, \chi}$.

Fourier transform and homogeneity

－We call a distribution $\xi \in \mathcal{S}^{*}(V)$ abs－homogeneous of degree d if for any $t \in F^{\times}$，

$$
h_{t}(\xi)=u(t)|t|^{d} \xi,
$$

where h_{t} denotes the homothety action on distributions and u is some unitary character of F^{\times}．

Fourier transform and homogeneity

- We call a distribution $\xi \in \mathcal{S}^{*}(V)$ abs-homogeneous of degree d if for any $t \in F^{\times}$,

$$
h_{t}(\xi)=u(t)|t|^{d} \xi
$$

where h_{t} denotes the homothety action on distributions and u is some unitary character of F^{\times}.

> Theorem (Homogeneity theorem - Jacquet, Rallis, Schiffmann,...)
> Assume F is non-Archimedean. Let $\xi \in \mathcal{S}_{V}^{*}(Z(Q))$ be s.t.
> $\widehat{\xi} \in \mathcal{S}_{V}^{*}(Z(Q))$. Then ξ is abs-homogeneous of degree $\frac{1}{2} \operatorname{dim} V$.

Fourier transform and homogeneity

- We call a distribution $\xi \in \mathcal{S}^{*}(V)$ abs-homogeneous of degree d if for any $t \in F^{\times}$,

$$
h_{t}(\xi)=u(t)|t|^{d} \xi
$$

where h_{t} denotes the homothety action on distributions and u is some unitary character of F^{\times}.

> Theorem (Homogeneity theorem - Jacquet, Rallis, Schiffmann,...)

Assume F is non-Archimedean. Let $\xi \in \mathcal{S}_{V}^{*}(Z(Q))$ be s.t.
$\widehat{\xi} \in \mathcal{S}_{V}^{*}(Z(Q))$. Then ξ is abs-homogeneous of degree $\frac{1}{2} \operatorname{dim} V$.

Theorem (Archimedean homogeneity theorem - A.-Gourevitch)

Let F be any local field. Let $L \subset \mathcal{S}_{V}^{*}(Z(Q))$ be a non-zero linear subspace s. $t . \forall \xi \in L$ we have $\widehat{\xi} \in L$ and $Q \xi \in L$.
Then there exists a non-zero distribution $\xi \in L$ which is abs-homogeneous of degree $\frac{1}{2} \operatorname{dim} V$ or of degree $\frac{1}{2} \operatorname{dim} V+1$.

Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of $T^{*} X$.

Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of $T^{*} X$.

Singular Support (=Characteristic variety)	Wave front set
Defined using D-modules	Defined using Fourier transform
Available only in the	Available in both cases
Archimedean case	

Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of $T^{*} X$.

Singular Support (=Characteristic variety)	Wave front set
Defined using D-modules	Defined using Fourier transform
Available only in the	Available in both cases
Archimedean case	

In the non-Archimedean case we define the singular support to be the Zariski closure of the wave front set.

Let X be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^{*}(X)$. Then $\overline{\operatorname{Supp}}(\xi)_{Z a r}=p_{X}(S S(\xi))$, where $p_{X}: T^{*} X \rightarrow X$ is the projection.

Properties and the Integrability Theorem

Let X be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^{*}(X)$. Then $\overline{\operatorname{Supp}}(\xi)_{Z a r}=p_{X}(S S(\xi))$, where $p_{X}: T^{*} X \rightarrow X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in \mathcal{S}^{*}(X)^{G, \chi}$. Then

$$
S S(\xi) \subset\left\{(x, \phi) \in T^{*} X \mid \forall \alpha \in \mathfrak{g} \quad \phi(\alpha(x))=0\right\}
$$

Properties and the Integrability Theorem

Let X be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^{*}(X)$. Then $\overline{\operatorname{Supp}}(\xi)_{Z a r}=p_{X}(S S(\xi))$, where $p_{X}: T^{*} X \rightarrow X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in \mathcal{S}^{*}(X)^{G, \chi}$. Then

$$
S S(\xi) \subset\left\{(x, \phi) \in T^{*} X \mid \forall \alpha \in \mathfrak{g} \quad \phi(\alpha(x))=0\right\}
$$

- Let V be a linear space. Let $Z \subset V^{*}$ be a closed subvariety, invariant with respect to homotheties. Let $\xi \in \mathcal{S}^{*}(V)$. Suppose that $\operatorname{Supp}(\widehat{\xi}) \subset Z$. Then $S S(\xi) \subset V \times Z$.

Properties and the Integrability Theorem

Let X be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^{*}(X)$. Then $\overline{\operatorname{Supp}}(\xi)_{Z a r}=p_{X}(S S(\xi))$, where $p_{X}: T^{*} X \rightarrow X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in \mathcal{S}^{*}(X)^{G, \chi}$. Then

$$
S S(\xi) \subset\left\{(x, \phi) \in T^{*} X \mid \forall \alpha \in \mathfrak{g} \quad \phi(\alpha(x))=0\right\}
$$

- Let V be a linear space. Let $Z \subset V^{*}$ be a closed subvariety, invariant with respect to homotheties. Let $\xi \in \mathcal{S}^{*}(V)$. Suppose that $\operatorname{Supp}(\widehat{\xi}) \subset Z$. Then $S S(\xi) \subset V \times Z$.
- Integrability theorem:

Let $\xi \in \mathcal{S}^{*}(X)$. Then $S S(\xi)$ is (weakly) coisotropic.

Coisotropic varieties

Definition

Let M be a smooth algebraic variety and ω be a symplectic form on it. Let $Z \subset M$ be an algebraic subvariety. We call it M-coisotropic if the following equivalent conditions hold.

- At every smooth point $z \in Z$ we have $T_{z} Z \supset\left(T_{z} Z\right)^{\perp}$. Here, $\left(T_{z} Z\right)^{\perp}$ denotes the orthogonal complement to $T_{z} Z$ in $T_{z} M$ with respect to ω.
- The ideal sheaf of regular functions that vanish on \bar{Z} is closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.

Coisotropic varieties

Definition

Let M be a smooth algebraic variety and ω be a symplectic form on it. Let $Z \subset M$ be an algebraic subvariety. We call it M-coisotropic if the following equivalent conditions hold.

- At every smooth point $z \in Z$ we have $T_{z} Z \supset\left(T_{z} Z\right)^{\perp}$. Here, $\left(T_{z} Z\right)^{\perp}$ denotes the orthogonal complement to $T_{z} Z$ in $T_{z} M$ with respect to ω.
- The ideal sheaf of regular functions that vanish on \bar{Z} is closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.

- Every non-empty coisotropic subvariety of M has dimension at least $\frac{\operatorname{dim} M}{2}$.

Weakly coisotropic varieties

Definition

Let X be a smooth algebraic variety. Let $Z \subset T^{*} X$ be an algebraic subvariety. We call it $T^{*} X$-weakly coisotropic if one of the following equivalent conditions holds.

- For a generic smooth point $a \in p_{X}(Z)$ and for a generic smooth point $y \in p_{X}^{-1}(a) \cap Z$ we have $C N_{p_{X}(Z), a}^{X} \subset T_{y}\left(p_{X}^{-1}(a) \cap Z\right)$.
- For any smooth point $a \in p_{X}(Z)$ the fiber $p_{X}^{-1}(a) \cap Z$ is locally invariant with respect to shifts by $C N_{p_{X}(Z), a}^{X}$.

Weakly coisotropic varieties

Definition

Let X be a smooth algebraic variety. Let $Z \subset T^{*} X$ be an algebraic subvariety. We call it $T^{*} X$-weakly coisotropic if one of the following equivalent conditions holds.

- For a generic smooth point $a \in p_{X}(Z)$ and for a generic smooth point $y \in p_{X}^{-1}(a) \cap Z$ we have $C N_{p_{X}(Z), a}^{X} \subset T_{y}\left(p_{X}^{-1}(a) \cap Z\right)$.
- For any smooth point $a \in p_{X}(Z)$ the fiber $p_{X}^{-1}(a) \cap Z$ is locally invariant with respect to shifts by $C N_{p_{X}(Z), a}^{X}$.
- Every non-empty weakly coisotropic subvariety of $T^{*} X$ has dimension at least $\operatorname{dim} X$.

Definition

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety and $R \subset T^{*} X$ be any subvariety. We define the restriction $\left.R\right|_{Z} \subset T^{*} Z$ of R to Z by

$$
\left.R\right|_{Z}:=q\left(p_{X}^{-1}(Z) \cap R\right)
$$

where $q: p_{X}^{-1}(Z) \rightarrow T^{*} Z$ is the projection.

$$
T^{*} X \supset p_{X}^{-1}(Z) \rightarrow T^{*} Z
$$

Definition

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety and $R \subset T^{*} X$ be any subvariety. We define the restriction $\left.R\right|_{Z} \subset T^{*} Z$ of R to Z by

$$
\left.R\right|_{z}:=q\left(p_{X}^{-1}(Z) \cap R\right)
$$

where $q: p_{X}^{-1}(Z) \rightarrow T^{*} Z$ is the projection.

$$
T^{*} X \supset p_{X}^{-1}(Z) \rightarrow T^{*} Z
$$

Lemma

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety. Let $R \subset T^{*} X$ be a (weakly) coisotropic variety. Then, under some transversality assumption, $\left.R\right|_{Z} \subset T^{*} Z$ is a (weakly) coisotropic variety.

Harish-Chandra descent and homogeneity

Notation

$$
S:=\left\{(A, v, \phi) \in X_{n} \mid A^{n}=0 \text { and } \phi\left(A^{i} v\right)=0 \forall 0 \leq i \leq n\right\} .
$$

Harish-Chandra descent and homogeneity

Notation

$$
S:=\left\{(A, v, \phi) \in X_{n} \mid A^{n}=0 \text { and } \phi\left(A^{i} v\right)=0 \forall 0 \leq i \leq n\right\} .
$$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in S.

Notation

$$
S:=\left\{(A, v, \phi) \in X_{n} \mid A^{n}=0 \text { and } \phi\left(A^{i} v\right)=0 \forall 0 \leq i \leq n\right\} .
$$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in S.

Notation

$$
S^{\prime}:=\left\{(A, v, \phi) \in S \mid A^{n-1} v=\left(A^{*}\right)^{n-1} \phi=0\right\}
$$

Harish-Chandra descent and homogeneity

Notation

$$
S:=\left\{(A, v, \phi) \in X_{n} \mid A^{n}=0 \text { and } \phi\left(A^{i} v\right)=0 \forall 0 \leq i \leq n\right\} .
$$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in S.

Notation

$$
S^{\prime}:=\left\{(A, v, \phi) \in S \mid A^{n-1} v=\left(A^{*}\right)^{n-1} \phi=0\right\}
$$

By the homogeneity theorem, the stratification method and Frobenius descent we get that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in S^{\prime}.

Reduction to the geometric statement

Notation

$$
\begin{aligned}
T^{\prime}=\{ & \left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in X \times X \mid \forall i, j \in\{1,2\} \\
& \left.\left(A_{i}, v_{j}, \phi_{j}\right) \in S^{\prime} \text { and }\left[A_{1}, A_{2}\right]+v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}=0\right\} .
\end{aligned}
$$

Reduction to the geometric statement

Notation

$$
\begin{aligned}
T^{\prime}=\{ & \left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in X \times X \mid \forall i, j \in\{1,2\} \\
& \left.\left(A_{i}, v_{j}, \phi_{j}\right) \in S^{\prime} \text { and }\left[A_{1}, A_{2}\right]+v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}=0\right\}
\end{aligned}
$$

It is enough to show:

Theorem (The geometric statement)

There are no non-empty $X \times X$-weakly coisotropic subvarieties of T^{\prime}.

Summary

Flowchart

$$
S l(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { homogeneity theorem }]{\text { Fourier transform and }} S^{\prime} \xrightarrow[\text { integrability theorem }]{\text { Fourier transform and }} T^{\prime}
$$

Reduction to the Key Lemma

Notation

$$
T^{\prime \prime}:=\left\{\left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in T^{\prime} \mid A_{1}^{n-1}=0\right\} .
$$

Reduction to the Key Lemma

Notation

$$
T^{\prime \prime}:=\left\{\left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in T^{\prime} \mid A_{1}^{n-1}=0\right\} .
$$

It is easy to see that there are no non-empty $X \times X$-weakly coisotropic subvarieties of $T^{\prime \prime}$.

Reduction to the Key Lemma

Notation

$$
T^{\prime \prime}:=\left\{\left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in T^{\prime} \mid A_{1}^{n-1}=0\right\} .
$$

It is easy to see that there are no non-empty $X \times X$-weakly coisotropic subvarieties of $T^{\prime \prime}$.

Notation

Let $A \in s l(V)$ be a nilpotent Jordan block. Denote $R_{A}:=\left.\left(T^{\prime}-T^{\prime \prime}\right)\right|_{\{A\} \times V \times V^{*}}$.

Reduction to the Key Lemma

Notation

$$
T^{\prime \prime}:=\left\{\left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in T^{\prime} \mid A_{1}^{n-1}=0\right\}
$$

It is easy to see that there are no non-empty $X \times X$-weakly coisotropic subvarieties of $T^{\prime \prime}$.

Notation

Let $A \in s I(V)$ be a nilpotent Jordan block. Denote $R_{A}:=\left.\left(T^{\prime}-T^{\prime \prime}\right)\right|_{\{A\} \times V \times V *}$.

It is enough to show:

Lemma (Key Lemma)

There are no non-empty $V \times V^{*} \times V \times V^{*}$-weakly coisotropic subvarieties of R_{A}.

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$ and $Q_{A} \times Q_{A}=\bigcup_{i, j=1}^{n-1} L_{i j}$, where

$$
L_{i j}:=\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right) \times\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-j}\right) .
$$

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$ and $Q_{A} \times Q_{A}=\bigcup_{i, j=1}^{n-1} L_{i j}$, where

$$
L_{i j}:=\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right) \times\left(\operatorname{Ker} A^{j}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-j}\right) .
$$

It is easy to see that any weakly coisotropic subvariety of $Q_{A} \times Q_{A}$ is contained in $\bigcup_{i=1}^{n-1} L_{i j}$.

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$ and $Q_{A} \times Q_{A}=\bigcup_{i, j=1}^{n-1} L_{i j}$, where

$$
L_{i j}:=\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right) \times\left(\operatorname{Ker} A^{j}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-j}\right) .
$$

It is easy to see that any weakly coisotropic subvariety of $Q_{A} \times Q_{A}$ is contained in $\bigcup_{i=1}^{n-1} L_{i j}$. Hence it is enough to show that for any $0<i<n$, we have $\operatorname{dim} R_{A} \cap L_{i i}<2 n$.

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$ and $Q_{A} \times Q_{A}=\bigcup_{i, j=1}^{n-1} L_{i j}$, where

$$
L_{i j}:=\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right) \times\left(\operatorname{Ker} A^{j}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-j}\right) .
$$

It is easy to see that any weakly coisotropic subvariety of $Q_{A} \times Q_{A}$ is contained in $\bigcup_{i=1}^{n-1} L_{i j}$. Hence it is enough to show that for any $0<i<n$, we have $\operatorname{dim} R_{A} \cap L_{i i}<2 n$. Let $f \in \mathcal{O}\left(L_{i i}\right)$ be the polynomial defined by

$$
f\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right):=\left(v_{1}\right)_{i}\left(\phi_{2}\right)_{i+1}-\left(v_{2}\right)_{i}\left(\phi_{1}\right)_{i+1} .
$$

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$ and $Q_{A} \times Q_{A}=\bigcup_{i, j=1}^{n-1} L_{i j}$, where

$$
L_{i j}:=\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right) \times\left(\operatorname{Ker} A^{j}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-j}\right) .
$$

It is easy to see that any weakly coisotropic subvariety of $Q_{A} \times Q_{A}$ is contained in $\bigcup_{i=1}^{n-1} L_{i j}$. Hence it is enough to show that for any $0<i<n$, we have $\operatorname{dim} R_{A} \cap L_{i i}<2 n$. Let $f \in \mathcal{O}\left(L_{i i}\right)$ be the polynomial defined by

$$
f\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right):=\left(v_{1}\right)_{i}\left(\phi_{2}\right)_{i+1}-\left(v_{2}\right)_{i}\left(\phi_{1}\right)_{i+1} .
$$

It is enough to show that $f\left(R_{A} \cap L_{i i}\right)=\{0\}$.

Proof of the Key Lemma

Let $\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right) \in R_{A} \cap L_{i j}$. Let $M:=v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}$.

Proof of the Key Lemma

Let $\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right) \in R_{A} \cap L_{i i}$. Let $M:=v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}$.
Clearly, M is of the form

$$
M=\left(\begin{array}{cc}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times(n-i)}
\end{array}\right) .
$$

Proof of the Key Lemma

Let $\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right) \in R_{A} \cap L_{i i}$. Let $M:=v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}$.
Clearly, M is of the form

$$
M=\left(\begin{array}{cc}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times(n-i)}
\end{array}\right) .
$$

We know that there exists a nilpotent B satisfying $[A, B]=M$.

Proof of the Key Lemma

Let $\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right) \in R_{A} \cap L_{i i}$. Let $M:=v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}$.
Clearly, M is of the form

$$
M=\left(\begin{array}{cc}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times(n-i)}
\end{array}\right) .
$$

We know that there exists a nilpotent B satisfying $[A, B]=M$. Hence this B is upper nilpotent, which implies $M_{i, i+1}=0$

Proof of the Key Lemma

Let $\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right) \in R_{A} \cap L_{i i}$. Let $M:=v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}$.
Clearly, M is of the form

$$
M=\left(\begin{array}{cc}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times(n-i)}
\end{array}\right) .
$$

We know that there exists a nilpotent B satisfying $[A, B]=M$. Hence this B is upper nilpotent, which implies $M_{i, i+1}=0$ and hence $f\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right)=0$.

Summary

Flowchart

$$
s l(V) \times V \times V^{*}
$$

Summary

Flowchart

$$
s l(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S
$$

Summary

Flowchart

$$
S I(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { homogeneity theorem }]{\text { Fourier transform and }} S^{\prime}
$$

Summary

Flowchart

$$
S l(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { homogeneity theorem }]{\text { Fourier transform and }} S^{\prime} \xrightarrow[\text { integrability theorem }]{\text { Fourier transform and }} T^{\prime}
$$

Summary

Flowchart

$$
S I(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { hourier transform and }]{\text { hogeneity theorem }} S^{\prime} \xrightarrow[\text { integrability theorem }]{\text { Fourier transform and }} T^{\prime}
$$

$$
T^{\prime}-T^{\prime \prime}
$$

Summary

Flowchart

$$
\begin{array}{r}
s l(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { homogeneity theorem }]{\text { Fourier transform and }} S^{\prime} \xrightarrow[\text { Fourier transform and }]{\text { integrability theorem }} T^{\prime} \\
\qquad R_{A} \stackrel{\text { restriction }}{\longleftarrow} T^{\prime}-T^{\prime \prime}
\end{array}
$$

Summary

Flowchart

$$
\begin{gathered}
s I(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }}>S \xrightarrow[\text { homogeneity theorem }]{\text { Fourier transform and }} S^{\prime} \xrightarrow[\text { Fourier transform and }]{\text { integrability theorem }} T^{\prime} \\
\qquad L_{i i} \cap R_{A} \stackrel{R_{A} \subset \cup L_{i j}}{\leftarrow} R_{A} \stackrel{\text { restriction }}{\leftarrow} T^{\prime}-T^{\prime \prime}
\end{gathered}
$$

Summary

Flowchart

$$
\begin{gathered}
s l(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { homogeneity theorem }]{\text { Fourier transform and }} S^{\prime} \xrightarrow[\text { integrability theorem }]{\text { Fourier transform and }} T^{\prime} \\
\emptyset \stackrel{f\left(R_{A} \cap L_{i i}\right)=0}{\leftarrow} L_{i i} \cap R_{A} \stackrel{R_{A} \subset \cup L_{i j}}{\longleftrightarrow} R_{A} \stackrel{\text { restriction }}{\longleftrightarrow} T^{\prime}-T^{\prime \prime}
\end{gathered}
$$

Aim

Task

Let a reductive group G act on an affine variety X and let χ be a character of G.

Aim

Task

Let a reductive group G act on an affine variety X and let χ be a character of G. We want to prove:

$$
\mathcal{S}^{*}(X)^{G, \chi}=0 .
$$

Aim

Task

Let a reductive group G act on an affine variety X and let χ be a character of G. We want to prove:

$$
\mathcal{S}^{*}(X)^{G, \chi}=0 .
$$

Applications:

Aim

Task

Let a reductive group G act on an affine variety X and let χ be a character of G. We want to prove:

$$
\mathcal{S}^{*}(X)^{G, \chi}=0 .
$$

Applications: Representation theory, Harmonic analysis,

Aim

Task

Let a reductive group G act on an affine variety X and let χ be a character of G. We want to prove:

$$
\mathcal{S}^{*}(X)^{G, \chi}=0 .
$$

Applications: Representation theory, Harmonic analysis, Gelfand pairs,

Aim

Task

Let a reductive group G act on an affine variety X and let χ be a character of G. We want to prove:

$$
\mathcal{S}^{*}(X)^{G, \chi}=0 .
$$

Applications: Representation theory, Harmonic analysis, Gelfand pairs, trace formula, relative trace formula, ...

Aim

Task

Let a reductive group G act on an affine variety X and let χ be a character of G. We want to prove:

$$
\mathcal{S}^{*}(X)^{G, \chi}=0 .
$$

Applications: Representation theory, Harmonic analysis, Gelfand pairs, trace formula, relative trace formula, ...

Necessary condition:

Close orbits do not carry equivariant distributions

Aim

Task

Let a reductive group G act on an affine variety X and let χ be a character of G. We want to prove:

$$
\mathcal{S}^{*}(X)^{G, \chi}=0 .
$$

Applications: Representation theory, Harmonic analysis, Gelfand pairs, trace formula, relative trace formula, ...

Necessary condition:

Close orbits do not carry equivariant distributions I
$\chi \mid G_{a} \neq 1$ for any semi simple $a \in X$ (i.e. $a \in X$ with closed orbit Ga)

Luna's slice theorem

Luna's slice theorem

Theorem (Luna)

Let a reductive group G act on a smooth affine algebraic variety X. Let $a \in X$ be a semi-simple point. Then there exists an invariant (etale) neighborhood U of $G a$ with an equivariant projection $p: U \rightarrow$ Ga s.t. the fiber $p^{-1}(a)$ is G-isomorphic to an (etale) neighborhood of 0 in the normal space $N_{\text {Ga,a }}^{X}$.

Generalized Harish-Chandra descent

Theorem (A.-Gourevitch)

Let a reductive group G act on a smooth affine algebraic variety X. Let χ be a character of G. Suppose that for any $a \in X$ s.t. the orbit Ga is closed, we have

$$
\mathcal{S}^{*}\left(N_{G a, a}^{X}\right)^{G_{a}, \chi}=0 .
$$

Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Conclusions

Conclusions

We reduce to the following

Task

Let a reductive group G act (linearly) on an linear space V and let χ be a character of G.

Conclusions

We reduce to the following

Task

Let a reductive group G act (linearly) on an linear space V and let χ be a character of G. We should prove that

$$
\mathcal{S}^{*}(V)^{G, \chi}=0
$$

Conclusions

We reduce to the following

Task

Let a reductive group G act (linearly) on an linear space V and let χ be a character of G. We should prove that

$$
\mathcal{S}^{*}(V)^{G, \chi}=0
$$

- We may assume $V^{G}=0$

Conclusions

We reduce to the following

Task

Let a reductive group G act (linearly) on an linear space V and let χ be a character of G. We should prove that

$$
\mathcal{S}^{*}(V)^{G, \chi}=0
$$

- We may assume $V^{G}=0$
- Let $p: V \rightarrow V / / G:=\operatorname{spec}\left(O(V)^{G}\right)$

Conclusions

We reduce to the following

Task

Let a reductive group G act (linearly) on an linear space V and let χ be a character of G. We should prove that

$$
\mathcal{S}^{*}(V)^{G, \chi}=0
$$

- We may assume $V^{G}=0$
- Let $p: V \rightarrow V / / G:=\operatorname{spec}\left(O(V)^{G}\right)$
- Let $\mathcal{N}(V):=p^{-1}(p(0))$

Conclusions

We reduce to the following

Task

Let a reductive group G act (linearly) on an linear space V and let χ be a character of G. We should prove that

$$
\mathcal{S}^{*}(V)^{G, \chi}=0
$$

- We may assume $V^{G}=0$
- Let $p: V \rightarrow V / / G:=\operatorname{spec}\left(O(V)^{G}\right)$
- Let $\mathcal{N}(V):=p^{-1}(p(0))=\{x \in V \mid \overline{G x} \ni 0\}$

Conclusions

We reduce to the following

Task

Let a reductive group G act (linearly) on an linear space V and let χ be a character of G. We should prove that

$$
\mathcal{S}^{*}(V)^{G, \chi}=0
$$

- We may assume $V^{G}=0$
- Let $p: V \rightarrow V / / G:=\operatorname{spec}\left(O(V)^{G}\right)$
- Let $\mathcal{N}(V):=p^{-1}(p(0))=\{x \in V \mid \overline{G x} \ni 0\}$
- Let $\mathcal{R}(V):=V-\mathcal{N}(V)$

Conclusions

We reduce to the following

Task

Let a reductive group G act (linearly) on an linear space V and let χ be a character of G. We should prove that

$$
\mathcal{S}^{*}(V)^{G, \chi}=0
$$

- We may assume $V^{G}=0$
- Let $p: V \rightarrow V / / G:=\operatorname{spec}\left(O(V)^{G}\right)$
- Let $\mathcal{N}(V):=p^{-1}(p(0))=\{x \in V \mid \overline{G x} \ni 0\}$
- Let $\mathcal{R}(V):=V-\mathcal{N}(V)$
by induction we may assume:

$$
\mathcal{S}^{*}(\mathcal{R}(V))^{G, \chi}=0 .
$$

Conclusions

Conclusions

Using Fourier transform, we reduce the problem to showing

Conclusions

Using Fourier transform, we reduce the problem to showing
Task

$$
\left(\mathcal{S}_{\mathcal{N}(V)}^{*}(V) \cap \mathcal{F}\left(\mathcal{S}_{\mathcal{N}(V)}^{*}(V)\right)^{G, \chi}=0\right.
$$

Conclusions

Using Fourier transform, we reduce the problem to showing
Task

$$
\left(\mathcal{S}_{\mathcal{N}(V)}^{*}(V) \cap \mathcal{F}\left(\mathcal{S}_{\mathcal{N}(V)}^{*}(V)\right)^{G, \chi}=0\right.
$$

Using homogeneity theorem, we reduce the problem to showing

Task

$$
\left(\mathcal{S}_{\mathcal{N}(V)}^{*}(V) \cap \mathcal{F}\left(\mathcal{S}_{\mathcal{N}(V)}^{*}(V)\right)^{G \times F^{\times}, \chi \times u}=0\right.
$$

Symmetric pairs

Symmetric pairs

- A symmetric pair is a triple (G, H, θ) where $H \subset G$ are reductive groups, and θ is an involution of G such that $H=G^{\theta}$.

Symmetric pairs

- A symmetric pair is a triple (G, H, θ) where $H \subset G$ are reductive groups, and θ is an involution of G such that $H=G^{\theta}$.
- We call (G, H, θ) connected if G / H is Zariski connected.

Symmetric pairs

- A symmetric pair is a triple (G, H, θ) where $H \subset G$ are reductive groups, and θ is an involution of G such that $H=G^{\theta}$.
- We call (G, H, θ) connected if G / H is Zariski connected.
- Define an anti-involution $\sigma: G \rightarrow G$ by $\sigma(g):=\theta\left(g^{-1}\right)$.

Question
Which symmetric pairs are Gelfand pairs?

Which symmetric pairs are Gelfand pairs?
For symmetric pairs of rank one this question was studied extensively by van-Dijk, Bosman, Rader and Rallis.

Question

Which symmetric pairs are Gelfand pairs?
For symmetric pairs of rank one this question was studied extensively by van-Dijk, Bosman, Rader and Rallis.

Task

$$
\mathcal{S}^{*}(G)^{H \times H} \subset \mathcal{S}^{*}(G)^{\sigma}
$$

Question

Which symmetric pairs are Gelfand pairs?
For symmetric pairs of rank one this question was studied extensively by van-Dijk, Bosman, Rader and Rallis.

Task

$$
\mathcal{S}^{*}(G)^{H \times H} \subset \mathcal{S}^{*}(G)^{\sigma}
$$

Necessary condition:

Definition

A symmetric pair (G, H, θ) is called good if σ preserves all closed $H \times H$ double closets.

Question

Which symmetric pairs are Gelfand pairs?

For symmetric pairs of rank one this question was studied extensively by van-Dijk, Bosman, Rader and Rallis.

Task

$$
\mathcal{S}^{*}(G)^{H \times H} \subset \mathcal{S}^{*}(G)^{\sigma}
$$

Necessary condition:

Definition

A symmetric pair (G, H, θ) is called good if σ preserves all closed $H \times H$ double closets.

Proposition

Any connected symmetric pair over \mathbb{C} is good.

Question

Which symmetric pairs are Gelfand pairs?

For symmetric pairs of rank one this question was studied extensively by van-Dijk, Bosman, Rader and Rallis.

Task

$$
\mathcal{S}^{*}(G)^{H \times H} \subset \mathcal{S}^{*}(G)^{\sigma}
$$

Necessary condition:

Definition

A symmetric pair (G, H, θ) is called good if σ preserves all closed $H \times H$ double closets.

Proposition

Any connected symmetric pair over \mathbb{C} is good.

Conjecture

Any good symmetric pair is a Gelfand pair.

How to complete the task?

Reformulating our task

How to complete the task？

Reformulating our task
Task

How to complete the task？

Reformulating our task

Task

Let $\widetilde{H \times H}=H \times H \rtimes\{1, \sigma\}$

How to complete the task？

Reformulating our task

Task

Let $\widetilde{H \times H}=H \times H \rtimes\{1, \sigma\}$ and $\chi: \widetilde{H \times H} \rightarrow \mathbb{C}$

How to complete the task?

Reformulating our task
Task
Let $\widetilde{H \times H}=H \times H \rtimes\{1, \sigma\}$ and $\chi: \widetilde{H \times H} \rightarrow \mathbb{C}$ defined by $\chi(\widetilde{H \times H}-H \times H)=-1$

How to complete the task?

Reformulating our task
Task
Let $\widetilde{H \times H}=H \times H \rtimes\{1, \sigma\}$ and $\chi: \widetilde{H \times H} \rightarrow \mathbb{C}$ defined by $\chi(\widetilde{H \times H}-H \times H)=-1$ we have to show that

How to complete the task?

Reformulating our task
Task
Let $\widetilde{H \times H}=H \times H \rtimes\{1, \sigma\}$ and $\chi: \widetilde{H \times H} \rightarrow \mathbb{C}$ defined by $\chi(\widetilde{H \times H}-H \times H)=-1$ we have to show that

$$
\mathcal{S}^{*}(G)^{\widetilde{H \times H}, \chi}=0
$$

How to complete the task?

Reformulating our task

Task

Let $\widetilde{H \times H}=H \times H \rtimes\{1, \sigma\}$ and $\chi: \widetilde{H \times H} \rightarrow \mathbb{C}$ defined by $\chi(\widetilde{H \times H}-H \times H)=-1$ we have to show that

$$
\mathcal{S}^{*}(G)^{\widetilde{H \times H}, \chi}=0
$$

Using Harsh-Chandra Descent it is enough to show that

How to complete the task?

Reformulating our task

Task

Let $\widetilde{H \times H}=H \times H \rtimes\{1, \sigma\}$ and $\chi: \widetilde{H \times H} \rightarrow \mathbb{C}$ defined by $\chi(\widetilde{H \times H}-H \times H)=-1$ we have to show that

$$
\mathcal{S}^{*}(G)^{\widetilde{H \times H}, \chi}=0
$$

Using Harsh-Chandra Descent it is enough to show that
(1) The pair (G, H) is good

How to complete the task?

Reformulating our task

Task

Let $\widetilde{H \times H}=H \times H \rtimes\{1, \sigma\}$ and $\chi: \widetilde{H \times H} \rightarrow \mathbb{C}$ defined by $\chi(\widetilde{H \times H}-H \times H)=-1$ we have to show that

$$
\mathcal{S}^{*}(G)^{\widetilde{H \times H}, \chi}=0
$$

Using Harsh-Chandra Descent it is enough to show that
(1) The pair (G, H) is good
(2) $\mathcal{S}^{*}\left(\mathfrak{g}^{\sigma}\right)^{\widetilde{H}, \chi}=0$ provided that $\mathcal{S}^{*}\left(\mathcal{R}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0$.

How to complete the task?

Reformulating our task

Task

Let $\widetilde{H \times H}=H \times H \rtimes\{1, \sigma\}$ and $\chi: \widetilde{H \times H} \rightarrow \mathbb{C}$ defined by $\chi(\widetilde{H \times H}-H \times H)=-1$ we have to show that

$$
\mathcal{S}^{*}(G)^{\widetilde{H \times H}, \chi}=0
$$

Using Harsh-Chandra Descent it is enough to show that
(1) The pair (G, H) is good
(2) $\mathcal{S}^{*}\left(\mathfrak{g}^{\sigma}\right)^{\widetilde{H}, \chi}=0$ provided that $\mathcal{S}^{*}\left(\mathcal{R}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0$.
(3) Compute all the "descendants" of the pair and prove (2) for them.

How to complete the task?

Reformulating our task

Task

Let $\widetilde{H \times H}=H \times H \rtimes\{1, \sigma\}$ and $\chi: \widetilde{H \times H} \rightarrow \mathbb{C}$ defined by $\chi(\widetilde{H \times H}-H \times H)=-1$ we have to show that

$$
\mathcal{S}^{*}(G)^{\widetilde{H \times H}, \chi}=0
$$

Using Harsh-Chandra Descent it is enough to show that
(1) The pair (G, H) is good
(2) $\mathcal{S}^{*}\left(\mathfrak{g}^{\sigma}\right)^{\widetilde{H}, \chi}=0$ provided that $\mathcal{S}^{*}\left(\mathcal{R}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0$.
(3) Compute all the "descendants" of the pair and prove (2) for them.

We call the property (2) regularity. We conjecture that all symmetric pairs are regular. This will imply that any good symmetric pair is a Gelfand pair.

How to prove regularity?

How to prove regularity?

- it is enough to prove that $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0\right.\right.$

How to prove regularity?

- it is enough to prove that $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0\right.\right.$
- Let $H^{\prime}=\widetilde{H} \times F^{\times}$and $\chi^{\prime}=\chi \times|\cdot|^{\operatorname{dim}\left(\mathfrak{g}^{\sigma}\right) / 2(+1)} u$
- it is enough to prove that $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0\right.\right.$
- Let $H^{\prime}=\widetilde{H} \times F^{\times}$and $\chi^{\prime}=\chi \times\left.|\cdot|\right|^{\operatorname{dim}\left(\mathfrak{g}^{\sigma}\right) / 2(+1)} u$ Using Homogeneity theorem it is enough to prove that: $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right)=0$
- it is enough to prove that $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0\right.\right.$
- Let $H^{\prime}=\widetilde{H} \times F^{\times}$and $\chi^{\prime}=\chi \times\left.|\cdot|\right|^{\operatorname{dim}\left(\mathfrak{g}^{\sigma}\right) / 2(+1)} u$ Using Homogeneity theorem it is enough to prove that: $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right)=0$
- We call an element $a \in \mathcal{N}\left(\mathfrak{g}^{\sigma}\right)$ distinguished if \mathfrak{h}_{a} is nilpotent.

How to prove regularity?

- it is enough to prove that $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0\right.\right.$
- Let $H^{\prime}=\widetilde{H} \times F^{\times}$and $\chi^{\prime}=\chi \times\left.|\cdot|\right|^{\operatorname{dim}\left(\mathfrak{g}^{\sigma}\right) / 2(+1)} u$ Using Homogeneity theorem it is enough to prove that: $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right)=0$
- We call an element $a \in \mathcal{N}\left(\mathfrak{g}^{\sigma}\right)$ distinguished if \mathfrak{h}_{a} is nilpotent. Using Integrability theorem it is enough to prove that: $\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}(O)^{H^{\prime}, \chi^{\prime}}=0$ for any distinguished orbit O

How to prove regularity?

- it is enough to prove that $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0\right.\right.$
- Let $H^{\prime}=\widetilde{H} \times F^{\times}$and $\chi^{\prime}=\chi \times\left.|\cdot|\right|^{\operatorname{dim}\left(\mathfrak{g}^{\sigma}\right) / 2(+1)} u$ Using Homogeneity theorem it is enough to prove that: $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right)=0$
- We call an element $a \in \mathcal{N}\left(\mathfrak{g}^{\sigma}\right)$ distinguished if \mathfrak{h}_{a} is nilpotent. Using Integrability theorem it is enough to prove that: $\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}(O)^{H^{\prime}, \chi^{\prime}}=0$ for any distinguished orbit O
- Using Frobenius descent it is enough to prove that for any distinguished a :

How to prove regularity?

- it is enough to prove that $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0\right.\right.$
- Let $H^{\prime}=\widetilde{H} \times F^{\times}$and $\chi^{\prime}=\chi \times\left.|\cdot|\right|^{\operatorname{dim}\left(\mathfrak{g}^{\sigma}\right) / 2(+1)} u$ Using Homogeneity theorem it is enough to prove that: $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right)=0$
- We call an element $a \in \mathcal{N}\left(\mathfrak{g}^{\sigma}\right)$ distinguished if \mathfrak{h}_{a} is nilpotent. Using Integrability theorem it is enough to prove that: $\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}(O)^{H^{\prime}, \chi^{\prime}}=0$ for any distinguished orbit O
- Using Frobenius descent it is enough to prove that for any distinguished a:
- $\left.\chi^{\prime}\right|_{H_{a}^{\prime}} \Delta \neq 1$ - in the non-Archimedean case

How to prove regularity?

- it is enough to prove that $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0\right.\right.$
- Let $H^{\prime}=\widetilde{H} \times F^{\times}$and $\chi^{\prime}=\chi \times\left.|\cdot|\right|^{\operatorname{dim}\left(\mathfrak{g}^{\sigma}\right) / 2(+1)} u$ Using Homogeneity theorem it is enough to prove that: $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right)=0$
- We call an element $a \in \mathcal{N}\left(\mathfrak{g}^{\sigma}\right)$ distinguished if \mathfrak{h}_{a} is nilpotent. Using Integrability theorem it is enough to prove that: $\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}(O)^{H^{\prime}, \chi^{\prime}}=0$ for any distinguished orbit O
- Using Frobenius descent it is enough to prove that for any distinguished a :
- $\left.\chi^{\prime}\right|_{H_{a}^{\prime}} \Delta \neq 1$ - in the non-Archimedean case
- $\left(N_{H a, a}^{\mathrm{g}^{\sigma}}\right)^{H_{a}^{\prime}, \chi^{\prime} \Delta}=0-$ in the Archimedean case

How to prove regularity?

- it is enough to prove that $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{\widetilde{H}, \chi}=0\right.\right.$
- Let $H^{\prime}=\widetilde{H} \times F^{\times}$and $\chi^{\prime}=\chi \times\left.|\cdot|\right|^{\operatorname{dim}\left(\mathfrak{g}^{\sigma}\right) / 2(+1)} u$ Using Homogeneity theorem it is enough to prove that: $\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right) \cap \mathcal{F}\left(\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}\left(\mathcal{N}\left(\mathfrak{g}^{\sigma}\right)\right)^{H^{\prime}, \chi^{\prime}}\right)=0$
- We call an element $a \in \mathcal{N}\left(\mathfrak{g}^{\sigma}\right)$ distinguished if \mathfrak{h}_{a} is nilpotent. Using Integrability theorem it is enough to prove that: $\mathcal{S}_{\mathfrak{g}^{\sigma}}^{*}(O)^{H^{\prime}, \chi^{\prime}}=0$ for any distinguished orbit O
- Using Frobenius descent it is enough to prove that for any distinguished a :
- $\left.\chi^{\prime}\right|_{H_{a}^{\prime}} \Delta \neq 1$ - in the non-Archimedean case
- $\left(N_{H a, a}^{\mathrm{g}^{\sigma}}\right)^{H_{a}^{\prime}, \chi^{\prime} \Delta}=0-$ in the Archimedean case

Regular symmetric pairs

Pair	p-adic case by	real case by
$(G \times G, \Delta G)$	A.-Gourevitch	A.Gourevitch
$\left(G L_{n}(E), G L_{n}(F)\right)$	Flicker	
$\left(G L_{n+k}, G L_{n} \times G L_{k}\right)$	Jacquet-Rallis	
$\left(O_{n+k}, O_{n} \times O_{k}\right)$	A.-Gourevitch	
$\left(G L_{n}, O_{n}\right)$		
$\left(G L_{2 n}, S p_{2 n}\right)$	Heumos - Rallis	A.-Sayag
$\left(s p_{2 m}, s l_{m} \oplus \mathfrak{g}_{a}\right)$	A.	Sayag (based on work of Sekiguchi)
$\left(e_{6}, s p_{8}\right)$		
$\left(e_{6}, s l_{6} \oplus s l_{2}\right)$		
$\left(e_{7}, s /_{8}\right)$		
$\left(e_{8}, \mathrm{SO}_{16}\right)$		
$\left(f_{4}, s p_{6} \oplus s l_{2}\right)$		
$\left(g_{2}, s l_{2} \oplus s l_{2}\right)$		

Some classical applications

- Harmonic analysis.

Some classical applications

- Harmonic analysis.
$(S O(3, \mathbb{R}), S O(2, \mathbb{R})$ is a Gelfand pair spherical harmonics.

Some classical applications

- Harmonic analysis.
$(S O(3, \mathbb{R}), S O(2, \mathbb{R})$ is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis:

Some classical applications

- Harmonic analysis. $(S O(3, \mathbb{R}), S O(2, \mathbb{R})$ is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis:
$\left(S_{n}, S_{n-1}\right)$ is a strong Gelfand pair basis for irreducible representations of S_{n}

Some classical applications

- Harmonic analysis.
$(S O(3, \mathbb{R}), S O(2, \mathbb{R})$ is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis:
$\left(S_{n}, S_{n-1}\right)$ is a strong Gelfand pair basis for irreducible representations of S_{n} The same for $O(n, \mathbb{R})$ and $U(n, \mathbb{R})$.

Some classical applications

- Harmonic analysis. $(S O(3, \mathbb{R}), S O(2, \mathbb{R})$ is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis:
$\left(S_{n}, S_{n-1}\right)$ is a strong Gelfand pair basis for irreducible representations of S_{n} The same for $O(n, \mathbb{R})$ and $U(n, \mathbb{R})$.
- Classification of representations:

Some classical applications

- Harmonic analysis. $(S O(3, \mathbb{R}), S O(2, \mathbb{R})$ is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis:
$\left(S_{n}, S_{n-1}\right)$ is a strong Gelfand pair basis for irreducible representations of S_{n} The same for $O(n, \mathbb{R})$ and $U(n, \mathbb{R})$.
- Classification of representations: $(G L(n, \mathbb{R}), O(n, \mathbb{R}))$ is a Gelfand pair the irreducible representations of $G L(n, \mathbb{R})$ which have an $O(n, \mathbb{R})$-invariant vector are the same as characters of the algebra $C(O(n, \mathbb{R}) \backslash G L(n, \mathbb{R}) / O(n, \mathbb{R})$.

Some classical applications

- Harmonic analysis. $(S O(3, \mathbb{R}), S O(2, \mathbb{R})$ is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis:
$\left(S_{n}, S_{n-1}\right)$ is a strong Gelfand pair basis for irreducible representations of S_{n} The same for $O(n, \mathbb{R})$ and $U(n, \mathbb{R})$.
- Classification of representations: $(G L(n, \mathbb{R}), O(n, \mathbb{R}))$ is a Gelfand pair the irreducible representations of $G L(n, \mathbb{R})$ which have an $O(n, \mathbb{R})$-invariant vector are the same as characters of the algebra $C(O(n, \mathbb{R}) \backslash G L(n, \mathbb{R}) / O(n, \mathbb{R})$.
The same for the pair $(G L(n, \mathbb{C}), U(n))$.

More modern applications

More modern applications

Automorphic forms

More modern applications

Automorphic forms

- Automorphic multiplicity one

More modern applications

Automorphic forms

- Automorphic multiplicity one $\Leftrightarrow\left(G L_{n}(\mathbb{A}), G L_{n}(\mathbb{Q})\right)$ is a Gelfand pair

More modern applications

Automorphic forms

- Automorphic multiplicity one $\Leftrightarrow\left(G L_{n}(\mathbb{A}), G L_{n}(\mathbb{Q})\right)$ is a Gelfand pair $\Leftarrow\left(G L_{n}, U_{n}, \psi\right)$ is a Gelfand pair.

More modern applications

Automorphic forms

- Automorphic multiplicity one $\Leftrightarrow\left(G L_{n}(\mathbb{A}), G L_{n}(\mathbb{Q})\right)$ is a Gelfand pair $\Leftarrow\left(G L_{n}, U_{n}, \psi\right)$ is a Gelfand pair.
- splitting of automorphic periods:

More modern applications

Automorphic forms

- Automorphic multiplicity one $\Leftrightarrow\left(G L_{n}(\mathbb{A}), G L_{n}(\mathbb{Q})\right)$ is a Gelfand pair $\Leftarrow\left(G L_{n}, U_{n}, \psi\right)$ is a Gelfand pair.
- splitting of automorphic periods:

Automorphic periods - integrals of automorphic forms over a subgroup H.

More modern applications

Automorphic forms

- Automorphic multiplicity one $\Leftrightarrow\left(G L_{n}(\mathbb{A}), G L_{n}(\mathbb{Q})\right)$ is a Gelfand pair $\Leftarrow\left(G L_{n}, U_{n}, \psi\right)$ is a Gelfand pair.
- splitting of automorphic periods:

Automorphic periods - integrals of automorphic forms over a subgroup H.
(G, H) is a Gelfand pair $\Rightarrow H$-period splits into local factors.

Other applications of invariant distributions

Other applications of invariant distributions

- Study of the principal series

Other applications of invariant distributions

- Study of the principal series
- Kirillov conjecture:

Other applications of invariant distributions

- Study of the principal series
- Kirillov conjecture: Any irreducible unitary representation of $G L_{n}$ remains irreducible when restricted to P_{n}

Other applications of invariant distributions

- Study of the principal series
- Kirillov conjecture: Any irreducible unitary representation of $G L_{n}$ remains irreducible when restricted to P_{n} \Uparrow
any $\operatorname{Ad}\left(P_{n}\right)$ invariant distribution on $G L_{n}$ is $A d\left(G L_{n}\right)$ invariant

Other applications of invariant distributions

- Study of the principal series
- Kirillov conjecture: Any irreducible unitary representation of $G L_{n}$ remains irreducible when restricted to P_{n} \Uparrow
any $\operatorname{Ad}\left(P_{n}\right)$ invariant distribution on $G L_{n}$ is $A d\left(G L_{n}\right)$ invariant介
any $\operatorname{Ad}\left(G L_{n-1}\right)$ invariant distribution on $G L_{n}$ is transposition invariant

Other applications of invariant distributions

- Study of the principal series
- Kirillov conjecture: Any irreducible unitary representation of $G L_{n}$ remains irreducible when restricted to P_{n}
\Uparrow
any $\operatorname{Ad}\left(P_{n}\right)$ invariant distribution on $G L_{n}$ is $A d\left(G L_{n}\right)$ invariant介
any $\operatorname{Ad}\left(G L_{n-1}\right)$ invariant distribution on $G L_{n}$ is transposition invariant
- Trace formula and relative trace formula:

Other applications of invariant distributions

- Study of the principal series
- Kirillov conjecture: Any irreducible unitary representation of $G L_{n}$ remains irreducible when restricted to P_{n}
\Uparrow
any $\operatorname{Ad}\left(P_{n}\right)$ invariant distribution on $G L_{n}$ is $A d\left(G L_{n}\right)$ invariant
介
any $\operatorname{Ad}\left(G L_{n-1}\right)$ invariant distribution on $G L_{n}$ is transposition invariant
- Trace formula and relative trace formula: Smooth matching

Classical examples

Pair	Anti-involution
$(G \times G, \Delta G)$	$(g, h) \mapsto\left(h^{-1}, g^{-1}\right)$
$(O(n+k), O(n) \times O(k))$	
$(U(n+k), U(n) \times U(k))$	$g \mapsto g^{-1}$
$(G L(n, \mathbb{R}), O(n))$	$g \mapsto g^{t}$
(G, G^{θ}), where G - Lie group, θ - involution, G^{θ} is compact	$g \mapsto \theta\left(g^{-1}\right)$
(G, K), where G - is a reductive group, K - maximal compact subgroup	Cartan anti-involution

Results on Gelfand pairs

Pair	p-adic case	real case
$(G,(N, \psi))$	Gelfand-Kazhdan	Shalika, Kostant
$\left(G L_{n}(E), G L_{n}(F)\right)$	Flicker	A.- Gourevitch
$\left(G L_{n+k}, G L_{n} \times G L_{k}\right)$	Jacquet-Rallis	
$\left(O_{n+k}, O_{n} \times O_{k}\right)$ over \mathbb{C}	-	
$\left(G L_{n}, O_{n}\right)$ over \mathbb{C}	Heumos-Rallis	A.-Sayag
$\left(G L_{2 n}, S p_{2 n}\right)$	Jacquet-Rallis	A.-Gourevitch
$\left(G L_{2 n},\left(\left(\begin{array}{cc}g & u \\ 0 & g\end{array}\right), \psi\right)\right)$	-Jacquet	
$\left(G L_{n},\left(\left(\begin{array}{cc}S P & u \\ 0 & N\end{array}\right), \psi\right)\right)$	Offen-Sayag	A.-Offen-Sayag

- real: \mathbb{R} and \mathbb{C}
- p -adic: \mathbb{Q}_{p} and its finite extensions.

Results on Gelfand pairs

Pair	p-adic	char $F>0$	real
(G, (N, ψ)	GelfandKazhdan	GelfandKazhdan	Shalika, Kostant
$\left(G L_{n}(E), G L_{n}(F)\right)$	Flicker	Flicker	A.Gourevitch
$\left(G L_{n+k}, G L_{n} \times G L_{k}\right)$	JacquetRallis	A.- AvniGourevitch	
$\left(O_{n+k}, O_{n} \times O_{k}\right)$ over \mathbb{C} $\left(G L_{n}, O_{n}\right)$ over \mathbb{C}			
$\left(G L_{2 n}, S p_{2 n}\right)$	$\begin{aligned} & \text { Heumos- } \\ & \text { Rallis } \end{aligned}$	$\begin{aligned} & \text { Heumos- } \\ & \text { Rallis } \end{aligned}$	A.Sayag
$\left(G L_{2 n},\left(\left(\begin{array}{ll}g & u \\ 0 & g\end{array}\right), \psi\right)\right)$	Jacquet- Rallis		A.-Gourevitch -Jacquet
$\left.\left(G L_{n},\left(\begin{array}{cc}S P & u \\ 0 & N\end{array}\right), \psi\right)\right)$	Offen-Sayag	Offen-Sayag	A.-OffenSayag

- real: \mathbb{R} and \mathbb{C}
- p -adic: \mathbb{Q}_{p} and its finite extensions.
- char $F>0: \mathbb{F}_{q}((t))$

Results on strong Gelfand pairs

Pair	p-adic	char $F>0$	real
$\left(G L_{n+1}, G L_{n}\right)$	A.- Gourevitch- Rallis-	A.-Avni- Gourevitch, Henniart	A.-Gourevitch, Sun-Zhu
Schiffmann		Sun-Zhu	
$(O(V \oplus F), O(V))$			

- real: \mathbb{R} and \mathbb{C}
- p -adic: \mathbb{Q}_{p} and its finite extensions.
- char $F>0: \mathbb{F}_{q}((t))$

