Multiplicities in relative representation theory

A. Aizenbud

Weizmann Institute of Science
http://aizenbud.org

Fourier Siries

Fourier Siries

- The circle possesses a lot of symmetries.

- The circle possesses a lot of symmetries.
- the trigonometric functions behaves nice w.r.t. these symmetries.

- The circle possesses a lot of symmetries.
- the trigonometric functions behaves nice w.r.t. these symmetries.

- Any function can be decomposed into a combination of trigonometric functions.

Abstract harmonic analysis

Abstract harmonic analysis

Goal

Let X be a geometric object that possesses a group of symmetries G. We would like to decompose the space of functions on X into functions which behave well w.r.t. G.

Abstract harmonic analysis

Goal

Let X be a geometric object that possesses a group of symmetries G. We would like to decompose the space of functions on X into functions which behave well w.r.t. G.

Theorem (Peter-Weyl,...)

In many settings

$$
\operatorname{Func}(X)=\bigoplus_{\rho \in \operatorname{irr}(G)} \rho \otimes \operatorname{Hom}(\rho, \operatorname{Func}(X))
$$

Abstract harmonic analysis

Goal

Let X be a geometric object that possesses a group of symmetries G. We would like to decompose the space of functions on X into functions which behave well w.r.t. G.

Theorem (Peter-Weyl,...)

In many settings

$$
\operatorname{Func}(X)=\bigoplus_{\rho \in \operatorname{irr}(G)} \rho \otimes \operatorname{Hom}(\rho, \operatorname{Func}(X))
$$

Goal

- Describe the assignment $\rho \mapsto \operatorname{Hom}(\rho, \operatorname{Func}(X))$

Abstract harmonic analysis

Goal

Let X be a geometric object that possesses a group of symmetries G. We would like to decompose the space of functions on X into functions which behave well w.r.t. G.

Theorem (Peter-Weyl,...)

In many settings

$$
\operatorname{Func}(X)=\underset{\rho \in \operatorname{iirr}(G)}{\bigoplus} \rho \otimes \operatorname{Hom}(\rho, \operatorname{Func}(X))
$$

Goal

- Describe the assignment $\rho \mapsto \operatorname{Hom}(\rho, \operatorname{Func}(X))$
- Describe the assignment $\rho \mapsto \operatorname{dim} \operatorname{Hom}(\rho, \operatorname{Func}(X))$

Frobenius reciprocity

Theorem (Frobenius reciprocity)
If $X=G / H$ is transitive then in many settings

$$
\operatorname{Hom}(\rho, \operatorname{Func}(X))=\left(\rho^{*}\right)^{H}
$$

Frobenius reciprocity

Theorem (Frobenius reciprocity)
If $X=G / H$ is transitive then in many settings

$$
\operatorname{Hom}(\rho, \operatorname{Func}(X))=\left(\rho^{*}\right)^{H}
$$

Goal

Describe the assignment $\rho \mapsto \operatorname{dim}\left(\rho^{H}\right)$.

Group case

Theorem (Peter-Weyl,...)

If $X=H$ and $G=H \times H$ acts on X from both sides, then in many settings

$$
\operatorname{Func}(X)=\bigoplus_{\rho \in \operatorname{irr}(H)} \rho \otimes \rho^{*} .
$$

Group case

Theorem (Peter-Weyl,...)

If $X=H$ and $G=H \times H$ acts on X from both sides, then in many settings

$$
\operatorname{Func}(X)=\bigoplus_{\rho \in \operatorname{irr}(H)} \rho \otimes \rho^{*} .
$$

Conclusion
We can interpret harmonic analysis as a generalization of representation theory.

Different settings

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftrightarrows} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftrightarrows} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.
- Compact groups. e.g. $G L_{n}\left(\mathbb{Z}_{p}\right), S O_{n}(\mathbb{R})$.

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftarrow} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.
- Compact groups. e.g. $G L_{n}\left(\mathbb{Z}_{p}\right), S O_{n}(\mathbb{R})$.
- Compact Lie groups. e.g. $S O_{n}(\mathbb{R})$.

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftarrow} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.
- Compact groups. e.g. $G L_{n}\left(\mathbb{Z}_{p}\right), S O_{n}(\mathbb{R})$.
- Compact Lie groups. e.g. $S O_{n}(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $G L_{n}(\mathbb{C}), \mathbb{C}$.

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftarrow} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.
- Compact groups. e.g. $G L_{n}\left(\mathbb{Z}_{p}\right), S O_{n}(\mathbb{R})$.
- Compact Lie groups. e.g. $S O_{n}(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $G L_{n}(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. $G L_{n}$.

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftarrow} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.
- Compact groups. e.g. $G L_{n}\left(\mathbb{Z}_{p}\right), S O_{n}(\mathbb{R})$.
- Compact Lie groups. e.g. $S O_{n}(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $G L_{n}(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. $G L_{n}$.
- Locally compact groups,

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftarrow} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.
- Compact groups. e.g. $G L_{n}\left(\mathbb{Z}_{p}\right), S O_{n}(\mathbb{R})$.
- Compact Lie groups. e.g. $S O_{n}(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $G L_{n}(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. $G L_{n}$.
- Locally compact groups,
- Lie groups,

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftarrow} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.
- Compact groups. e.g. $G L_{n}\left(\mathbb{Z}_{p}\right), S O_{n}(\mathbb{R})$.
- Compact Lie groups. e.g. $S O_{n}(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $G L_{n}(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. $G L_{n}$.
- Locally compact groups,
- Lie groups,
- -groups,

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftarrow} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.
- Compact groups. e.g. $G L_{n}\left(\mathbb{Z}_{p}\right), S O_{n}(\mathbb{R})$.
- Compact Lie groups. e.g. $S O_{n}(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $G L_{n}(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. $G L_{n}$.
- Locally compact groups,
- Lie groups,
- ℓ-groups,
- p-adic reductive groups. e.g. $G L_{n}\left(\mathbb{Q}_{p}\right)$

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftrightarrows} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.
- Compact groups. e.g. $G L_{n}\left(\mathbb{Z}_{p}\right), S O_{n}(\mathbb{R})$.
- Compact Lie groups. e.g. $S O_{n}(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $G L_{n}(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. $G L_{n}$.
- Locally compact groups,
- Lie groups,
- ℓ-groups,
- p-adic reductive groups. e.g. $G L_{n}\left(\mathbb{Q}_{p}\right)$
- Real reductive groups. e.g. $G L_{n}(\mathbb{R})$

Different settings

- Finite groups. e.g. $G L_{n}\left(\mathbb{F}_{p}\right)$
- Pro-finite groups, e.g. $G L_{n}\left(\mathbb{Z}_{p}\right)=\lim _{\leftrightarrows} G L_{n}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$.
- Compact groups. e.g. $G L_{n}\left(\mathbb{Z}_{p}\right), S O_{n}(\mathbb{R})$.
- Compact Lie groups. e.g. $S O_{n}(\mathbb{R})$.
- (Linear) algebraic groups. e.g. $G L_{n}(\mathbb{C}), \mathbb{C}$. Reductive algebraic groups. e.g. $G L_{n}$.
- Locally compact groups,
- Lie groups,
- ℓ-groups,
- p-adic reductive groups. e.g. $G L_{n}\left(\mathbb{Q}_{p}\right)$
- Real reductive groups. e.g. $G L_{n}(\mathbb{R})$

Algebraic setting

Fix an algebraically closed field k.

Definition

Algebraic setting

Fix an algebraically closed field k.

Definition

- Linear algebraic group:

Algebraic setting

Fix an algebraically closed field k.
Definition

- Linear algebraic group: a subgroup of $G L_{n}(k)$ which is given by polynomial equations.

Algebraic setting

Fix an algebraically closed field k.
Definition

- Linear algebraic group: a subgroup of $G L_{n}(k)$ which is given by polynomial equations.
- Reductive algebraic group:

Algebraic setting

Fix an algebraically closed field k.
Definition

- Linear algebraic group: a subgroup of $G L_{n}(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to k^{n}.

Algebraic setting

Fix an algebraically closed field k.
Definition

- Linear algebraic group: a subgroup of $G L_{n}(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to k^{n}.
- Algebraic representation of G :

Algebraic setting

Fix an algebraically closed field k.
Definition

- Linear algebraic group: a subgroup of $G L_{n}(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to k^{n}.
- Algebraic representation of G: a polynomial homomorphism $G \rightarrow G L_{n}$,

Algebraic setting

Fix an algebraically closed field k.
Definition

- Linear algebraic group: a subgroup of $G L_{n}(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to k^{n}.
- Algebraic representation of G: a polynomial homomorphism $G \rightarrow G L_{n}$,
- Transitive G-variety:

Algebraic setting

Fix an algebraically closed field k.
Definition

- Linear algebraic group: a subgroup of $G L_{n}(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to k^{n}.
- Algebraic representation of G: a polynomial homomorphism $G \rightarrow G L_{n}$,
- Transitive G-variety: $X=G / H$ when $H<G<G L_{n}(k)$ are algebraic.

Algebraic setting

Fix an algebraically closed field k.
Definition

- Linear algebraic group: a subgroup of $G L_{n}(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to k^{n}.
- Algebraic representation of G : a polynomial homomorphism $G \rightarrow G L_{n}$,
- Transitive G-variety: $X=G / H$ when $H<G<G L_{n}(k)$ are algebraic.
- $O(X)$:

Algebraic setting

Fix an algebraically closed field k.
Definition

- Linear algebraic group: a subgroup of $G L_{n}(k)$ which is given by polynomial equations.
- Reductive algebraic group: a linear algebraic group with no normal subgroup isomorphic to k^{n}.
- Algebraic representation of G: a polynomial homomorphism $G \rightarrow G L_{n}$,
- Transitive G-variety: $X=G / H$ when $H<G<G L_{n}(k)$ are algebraic.
- $O(X)$: H-invariant polynomials on G.

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- $O(X)$ have bounded multiplicities,

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- $O(X)$ have bounded multiplicities,
- $O(X)$ is multiplicity free,

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- $O(X)$ have bounded multiplicities,
- $O(X)$ is multiplicity free,
- $|B \backslash X|<\infty$, where $B \subset G$ is the Borel subgroup.

Harmonic analysis for the algebraic setting

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- $O(X)$ have bounded multiplicities,
- $O(X)$ is multiplicity free,
- $|B \backslash X|<\infty$, where $B \subset G$ is the Borel subgroup.

"Proof"

Any $\pi \in \operatorname{irr}(G)$ is induced from the Borel.

Harmonic analysis for the algebraic setting

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- $O(X)$ have bounded multiplicities,
- $O(X)$ is multiplicity free,
- $|B \backslash X|<\infty$, where $B \subset G$ is the Borel subgroup.

"Proof"

Any $\pi \in \operatorname{irr}(G)$ is induced from the Borel. That is,

$$
\pi \cong O(G)^{B, \chi}, \text { for } \chi \in \operatorname{irr}(B)
$$

Harmonic analysis for the algebraic setting

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- $O(X)$ have bounded multiplicities,
- $O(X)$ is multiplicity free,
- $|B \backslash X|<\infty$, where $B \subset G$ is the Borel subgroup.

"Proof"

Any $\pi \in \operatorname{irr}(G)$ is induced from the Borel. That is,

$$
\pi \cong O(G)^{B, \chi}, \text { for } \chi \in \operatorname{irr}(B)
$$

We get:

$$
\langle\pi, O(X)\rangle=\operatorname{dim} O(X)^{B, \chi}
$$

Harmonic analysis for the algebraic setting

"Theorem"

Let G be a reductive group and X be a tranzitive G-variety. Then TFAE:

- $O(X)$ have bounded multiplicities,
- $O(X)$ is multiplicity free,
- $|B \backslash X|<\infty$, where $B \subset G$ is the Borel subgroup.

"Proof"

Any $\pi \in \operatorname{irr}(G)$ is induced from the Borel. That is,

$$
\pi \cong O(G)^{B, \chi}, \text { for } \chi \in \operatorname{irr}(B)
$$

We get:

$$
\langle\pi, O(X)\rangle=\operatorname{dim} O(X)^{B, \chi} "="|B \backslash \backslash X| .
$$

Group schemes

Group schemes

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $M a t_{n \times n}$.

Group schemes

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $M a t_{n \times n}$.
- If R is a ring, we get a group of solutions $G(R)$.

Group schemes

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $M a t_{n \times n}$.
- If R is a ring, we get a group of solutions $G(R)$.
- Given a G-scheme X, we can study harmonic analysis on $X(R)$ in many different settings.

Group schemes

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $M a t_{n \times n}$.
- If R is a ring, we get a group of solutions $G(R)$.
- Given a G-scheme X, we can study harmonic analysis on $X(R)$ in many different settings.

Example

R can be:

Group schemes

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $M a t_{n \times n}$.
- If R is a ring, we get a group of solutions $G(R)$.
- Given a G-scheme X, we can study harmonic analysis on $X(R)$ in many different settings.

Example

R can be:

- \mathbb{F}_{q},

Group schemes

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $M a t_{n \times n}$.
- If R is a ring, we get a group of solutions $G(R)$.
- Given a G-scheme X, we can study harmonic analysis on $X(R)$ in many different settings.

Example

R can be:

- \mathbb{F}_{q},
- \mathbb{Z}_{p},

Group schemes

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $M a t_{n \times n}$.
- If R is a ring, we get a group of solutions $G(R)$.
- Given a G-scheme X, we can study harmonic analysis on $X(R)$ in many different settings.

Example

R can be:

- \mathbb{F}_{q},
- \mathbb{Z}_{p},
- \mathbb{Q}_{p},

Group schemes

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $M a t_{n \times n}$.
- If R is a ring, we get a group of solutions $G(R)$.
- Given a G-scheme X, we can study harmonic analysis on $X(R)$ in many different settings.

Example

R can be:

- \mathbb{F}_{q},
- \mathbb{Z}_{p},
- \mathbb{Q}_{p},
- \mathbb{R},

Group schemes

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $M a t_{n \times n}$.
- If R is a ring, we get a group of solutions $G(R)$.
- Given a G-scheme X, we can study harmonic analysis on $X(R)$ in many different settings.

Example

R can be:

- \mathbb{F}_{q},
- \mathbb{Z}_{p},
- \mathbb{Q}_{p},
- \mathbb{R},
- $\mathbb{F}_{p}[[t]]$,

Group schemes

- Group scheme G: system of polynomial equations with integer coefficients defining a group in $M a t_{n \times n}$.
- If R is a ring, we get a group of solutions $G(R)$.
- Given a G-scheme X, we can study harmonic analysis on $X(R)$ in many different settings.

Example

R can be:

- \mathbb{F}_{q},
- \mathbb{Z}_{p},
- \mathbb{Q}_{p},
- \mathbb{R},
- $\mathbb{F}_{p}[[t]]$,
- $\mathbb{F}_{p}((t))$.

A fundamental conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X).

A fundamental conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

Fis a tinite or local field $\left(\sup _{\rho \text { eirr }(G(F))} \operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}^{\infty}(X(F))\right)<\infty\right.$.

A fundamental conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

Previous results:

A fundamental conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

$$
\sup _{F \text { is a tinite or local field }}\left(\sup _{\rho \text { eirr } G(F))} \operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}^{\infty}(X(F))\right)<\infty .\right.
$$

Previous results:

- Non-F-uniform partial results:

A fundamental conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then
$F \sup _{\text {is a finite or local field }}\left(\sup _{\rho \text { eirr }}(G)\right) \operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}^{\infty}(X(F))\right)<\infty$.
Previous results:

- Non-F-uniform partial results: Delorme, Sakellaridis-Venkatesh, Kobayashi-Oshima, Krötz-Schlichtkrull.

A fundamental conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

F is a finite or local field $\left(\sup _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}^{\infty}(X(F))\right)<\infty\right.$.
Previous results:

- Non-F-uniform partial results: Delorme, Sakellaridis-Venkatesh, Kobayashi-Oshima, Krötz-Schlichtkrull.
- Multiplisty 1 cases and related cases:

A fundamental conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

$$
\sup \text { is a finite or local field }\left(\sup _{\rho \in \operatorname{irrr}(G(F))} \operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}^{\infty}(X(F))\right)<\infty .\right.
$$

Previous results:

- Non-F-uniform partial results: Delorme, Sakellaridis-Venkatesh, Kobayashi-Oshima, Krötz-Schlichtkrull.
- Multiplisty 1 cases and related cases: Gelfand-Kazhdan, Shalika, Jacquet-Rallis, A.-Gourevitch-Rallis-Schiffman, ...,

A fundamental conjecture

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel subgroup acts with finitely may orbits on X). Then

$$
\sup \text { is a finite or local field }\left(\sup _{\rho \in \operatorname{irrr}(G(F))} \operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}^{\infty}(X(F))\right)<\infty .\right.
$$

Previous results:

- Non-F-uniform partial results: Delorme, Sakellaridis-Venkatesh, Kobayashi-Oshima, Krötz-Schlichtkrull.
- Multiplisty 1 cases and related cases: Gelfand-Kazhdan, Shalika, Jacquet-Rallis, A.-Gourevitch-Rallis-Schiffman, ..., Hakim,...

Strategy

Strategy

- Prove for $F=\mathbb{F}_{p}$,

Strategy

- Prove for $F=\mathbb{F}_{p}$, using geometric description of all representations.

Strategy

- Prove for $F=\mathbb{F}_{p}$, using geometric description of all representations.
- Prove for $F=\mathbb{Z}_{p}$,

Strategy

- Prove for $F=\mathbb{F}_{p}$, using geometric description of all representations.
- Prove for $F=\mathbb{Z}_{p}$, using the exact sequence

$$
1 \rightarrow 1+p M a t_{n \times n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{F}_{p}\right) \rightarrow 1
$$

Strategy

- Prove for $F=\mathbb{F}_{p}$, using geometric description of all representations.
- Prove for $F=\mathbb{Z}_{p}$, using the exact sequence

$$
1 \rightarrow 1+p M a t_{n \times n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{F}_{p}\right) \rightarrow 1
$$

- Prove for $F=\mathbb{Q}_{p}$ for cuspidal representations,

Strategy

- Prove for $F=\mathbb{F}_{p}$, using geometric description of all representations.
- Prove for $F=\mathbb{Z}_{p}$, using the exact sequence

$$
1 \rightarrow 1+p M a t_{n \times n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{F}_{p}\right) \rightarrow 1
$$

- Prove for $F=\mathbb{Q}_{p}$ for cuspidal representations, using $\rho=i n d_{G\left(\mathbb{Z}_{p}\right)}^{G\left(\mathbb{Q}_{p}\right)}(\tau)$.

Strategy

- Prove for $F=\mathbb{F}_{p}$, using geometric description of all representations.
- Prove for $F=\mathbb{Z}_{p}$, using the exact sequence

$$
1 \rightarrow 1+p M a t_{n \times n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{F}_{p}\right) \rightarrow 1
$$

- Prove for $F=\mathbb{Q}_{p}$ for cuspidal representations, using $\rho=i n d_{G\left(\mathbb{Z}_{p}\right)}^{G\left(\mathbb{Q}_{p}\right)}(\tau)$.
- Prove for $F=\mathbb{Q}_{p}$ for all representations,

Strategy

- Prove for $F=\mathbb{F}_{p}$, using geometric description of all representations.
- Prove for $F=\mathbb{Z}_{p}$, using the exact sequence

$$
1 \rightarrow 1+p M a t_{n \times n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{F}_{p}\right) \rightarrow 1
$$

- Prove for $F=\mathbb{Q}_{p}$ for cuspidal representations, using $\rho=i n d_{G\left(\mathbb{Z}_{p}\right)}^{G\left(\mathbb{Q}_{p}\right)}(\tau)$.
- Prove for $F=\mathbb{Q}_{p}$ for all representations, using $\pi=i n d_{P\left(\mathbb{Q}_{p}\right)}^{G\left(\mathbb{Q}_{p}\right)}(\rho)$.

Strategy

- Prove for $F=\mathbb{F}_{p}$, using geometric description of all representations.
- Prove for $F=\mathbb{Z}_{p}$, using the exact sequence

$$
1 \rightarrow 1+p M a t_{n \times n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{F}_{p}\right) \rightarrow 1
$$

- Prove for $F=\mathbb{Q}_{p}$ for cuspidal representations, using $\rho=i n d_{G\left(\mathbb{Z}_{p}\right)}^{G\left(\mathbb{Q}_{p}\right)}(\tau)$.
- Prove for $F=\mathbb{Q}_{p}$ for all representations, using $\pi=i n d_{P\left(\mathbb{Q}_{p}\right)}^{G\left(\mathbb{Q}_{p}\right)}(\rho)$.

Strategy

- Prove for $F=\mathbb{F}_{p}$, using geometric description of all representations.
- Prove for $F=\mathbb{Z}_{p}$, using the exact sequence

$$
1 \rightarrow 1+p M a t_{n \times n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{F}_{p}\right) \rightarrow 1 .
$$

- Prove for $F=\mathbb{Q}_{p}$ for cuspidal representations, using $\rho=\operatorname{ind}_{G\left(\mathbb{Z}_{p}\right)}^{G\left(\mathbb{Q}_{p}\right)}(\tau)$.
- Prove for $F=\mathbb{Q}_{p}$ for all representations, using $\pi=i n d_{P\left(\mathbb{Q}_{p}\right)}^{G\left(\mathbb{Q}_{p}\right)}(\rho)$.

$F=\mathbb{F}_{p}$

Theorem (A.-Avni, Shechter)

Let G be a reductive algebraic group scheme and X be a spherical G-scheme.

$F=\mathbb{F}_{p}$

Theorem (A.-Avni, Shechter)

Let G be a reductive algebraic group scheme and X be a spherical G-scheme. Then
$\sup _{F \text { is a finite field }}\left(\max _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])\right)<\infty$.

$F=\mathbb{F}_{p}$

Theorem (A.-Avni, Shechter)

Let G be a reductive algebraic group scheme and X be a spherical G-scheme. Then

$$
\sup _{F \text { is a finite field }}\left(\max _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])\right)<\infty .
$$

"Proof"

$F=\mathbb{F}_{p}$

Theorem (A.-Avni, Shechter)

Let G be a reductive algebraic group scheme and X be a spherical G-scheme. Then

$$
\sup _{F \text { is a finite field }}\left(\max _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])\right)<\infty .
$$

"Proof"

- Use Lusztig's character sheaves in order to categorify the computation of multiplicities of principal series representations.

$F=\mathbb{F}_{p}$

Theorem (A.-Avni, Shechter)

Let G be a reductive algebraic group scheme and X be a spherical G-scheme. Then

$$
\sup _{F \text { is a finite field }}\left(\max _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])\right)<\infty .
$$

"Proof"

- Use Lusztig's character sheaves in order to categorify the computation of multiplicities of principal series representations.
- The multiplicities are of geometric nature and lim sup $\operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}\left[X\left(\mathbb{F}_{p^{n}}\right)\right]\right)$ is bounded.
$n \rightarrow \infty$

$F=\mathbb{F}_{p}$

Theorem (A.-Avni, Shechter)

Let G be a reductive algebraic group scheme and X be a spherical G-scheme. Then

$$
\sup _{F \text { is a finite field }}\left(\max _{\rho \in \operatorname{irr}(G(F))} \operatorname{dim} \operatorname{Hom}(\rho, \mathbb{C}[X(F)])\right)<\infty .
$$

"Proof"

- Use Lusztig's character sheaves in order to categorify the computation of multiplicities of principal series representations.
- The multiplicities are of geometric nature and lim sup $\operatorname{dim} \operatorname{Hom}\left(\rho, \mathbb{C}\left[X\left(\mathbb{F}_{p^{n}}\right)\right]\right)$ is bounded.
$n \rightarrow \infty$
- Deduce the result.

Symmetric pairs

Definition

Let G be a group and $\theta: G \rightarrow G$ be an involution (i.e. $\theta \circ \theta=i d$). We call G / G^{θ} a symmetric space.

Symmetric pairs

Definition

Let G be a group and $\theta: G \rightarrow G$ be an involution (i.e. $\theta \circ \theta=i d$). We call G / G^{θ} a symmetric space.

Theorem (clasical)

Any symmetric space of a reductive group is spherical.

Symmetric pairs

Definition

Let G be a group and $\theta: G \rightarrow G$ be an involution (i.e. $\theta \circ \theta=i d$). We call G / G^{θ} a symmetric space.

Theorem (clasical)

Any symmetric space of a reductive group is spherical.

Example
 $H \times H / \Delta H=H$ as a $H \times H$-space.

$F=\mathbb{Z}_{p}$

Theorem* (A.-Avni)
Let G be a reductive algebraic group scheme and X be a symmetric G-scheme.

$F=\mathbb{Z}_{p}$

Theorem* (A.-Avni)

Let G be a reductive algebraic group scheme and X be a symmetric G-scheme. Then

$$
\sup _{p>2 \text { is prime }}\left(\max _{\rho \operatorname{iirr}\left(G\left(\mathbb{Z}_{p}\right)\right)} \operatorname{dim} \operatorname{Hom}\left(\rho, C\left(X\left(\mathbb{Z}_{p}\right)\right)\right)\right)<\infty .
$$

$F=\mathbb{Z}_{p}$

Theorem* (A.-Avni)

Let G be a reductive algebraic group scheme and X be a symmetric G-scheme. Then

$$
\sup _{p>2 \text { is prime }}\left(\max _{\rho \operatorname{iirr}\left(G\left(\mathbb{Z}_{\rho}\right)\right)} \operatorname{dim} \operatorname{Hom}\left(\rho, C\left(X\left(\mathbb{Z}_{\rho}\right)\right)\right)\right)<\infty .
$$

Theorem* (A.-Avni)

Let $n>0$ be an integer. Then

$$
\begin{aligned}
& \sup _{\substack{ \\
p>2-\operatorname{prime} \\
\Gamma-\operatorname{group} \\
\phi: \Gamma \rightarrow G L_{n}\left(\mathbb{F}_{p}\right) ;|\operatorname{Ker}(\phi)|=p^{k} \\
\theta: \Gamma \rightarrow \Gamma ; \theta \circ \theta=i d \\
\rho \in \operatorname{irr}(\Gamma)}} \operatorname{dim}\left(\rho^{r^{\theta}}\right)<\infty .
\end{aligned}
$$

Ingredients in the proof

Ingredients in the proof

- Larsen-Pink Theorem:

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory:

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1,
$$

for any $\pi \in \operatorname{irr}(G)$ we have

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

for any $\pi \in \operatorname{irr}(G)$ we have

- either $\pi=\operatorname{ind}_{S}^{G}(\rho)$ where $S<G$ is proper,

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

for any $\pi \in \operatorname{irr}(G)$ we have

- either $\pi=\operatorname{ind}_{S}^{G}(\rho)$ where $S<G$ is proper,
- or $\left.\pi\right|_{N}$ is isotypic.

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

for any $\pi \in \operatorname{irr}(G)$ we have

- either $\pi=\operatorname{ind}_{S}^{G}(\rho)$ where $S<G$ is proper,
- or $\left.\pi\right|_{N}$ is isotypic.
- Finite field case:

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

for any $\pi \in \operatorname{irr}(G)$ we have

- either $\pi=\operatorname{ind}_{S}^{G}(\rho)$ where $S<G$ is proper,
- or $\left.\pi\right|_{N}$ is isotypic.
- Finite field case: [A.-Avni, Shechter]

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

for any $\pi \in \operatorname{irr}(G)$ we have

- either $\pi=\operatorname{ind}_{S}^{G}(\rho)$ where $S<G$ is proper,
- or $\left.\pi\right|_{N}$ is isotypic.
- Finite field case: [A.-Avni, Shechter]
- Groups of odd order:

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

for any $\pi \in \operatorname{irr}(G)$ we have

- either $\pi=\operatorname{ind}_{S}^{G}(\rho)$ where $S<G$ is proper,
- or $\left.\pi\right|_{N}$ is isotypic.
- Finite field case: [A.-Avni, Shechter]
- Groups of odd order: $\sqrt{ }$.

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

for any $\pi \in \operatorname{irr}(G)$ we have

- either $\pi=\operatorname{ind}_{S}^{G}(\rho)$ where $S<G$ is proper,
- or $\left.\pi\right|_{N}$ is isotypic.
- Finite field case: [A.-Avni, Shechter]
- Groups of odd order: $\sqrt{ }$.
- Homological estimate:

Ingredients in the proof

- Larsen-Pink Theorem: Any subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$ is essentially an algebraic group of bounded complexity.
- Clifford Theory: Given a short exact sequence

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

for any $\pi \in \operatorname{irr}(G)$ we have

- either $\pi=\operatorname{ind}_{S}^{G}(\rho)$ where $S<G$ is proper,
- or $\left.\pi\right|_{N}$ is isotypic.
- Finite field case: [A.-Avni, Shechter]
- Groups of odd order: $\sqrt{ }$.
- Homological estimate: $H^{1}\left(S_{2}, \Gamma\right), H^{2}(\Gamma, \sqrt[p^{\infty}]{1})$.

Steps in the proof

Steps in the proof

- The case of groups with odd order:

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:
- $\operatorname{dim} \rho^{r^{\theta}} \leq 1$

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:
- $\operatorname{dim} \rho^{r^{\theta}} \leq 1$
- $H^{1}\left(S_{2}, \Gamma\right)=1$

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:
- $\operatorname{dim} \rho^{r^{\theta}} \leq 1$
- $H^{1}\left(S_{2}, \Gamma\right)=1$
- $\rho^{r^{\theta}} \neq 0 \Rightarrow \rho=\left(\rho^{*}\right) \circ \theta$

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:
- $\operatorname{dim} \rho^{r^{\theta}} \leq 1$
- $H^{1}\left(S_{2}, \Gamma\right)=1$
- $\rho^{r^{\theta}} \neq 0 \Rightarrow \rho=\left(\rho^{*}\right) \circ \theta$
- The case of groups with trivial p-radical:

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:
- $\operatorname{dim} \rho^{r^{\theta}} \leq 1$
- $H^{1}\left(S_{2}, \Gamma\right)=1$
- $\rho^{r^{\theta}} \neq 0 \Rightarrow \rho=\left(\rho^{*}\right) \circ \theta$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\operatorname{dim}\left(\rho^{\Gamma^{\theta}}, \chi\right)$

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:
- $\operatorname{dim} \rho^{r^{\theta}} \leq 1$
- $H^{1}\left(S_{2}, \Gamma\right)=1$
- $\rho^{\Gamma^{\theta}} \neq 0 \Rightarrow \rho=\left(\rho^{*}\right) \circ \theta$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\operatorname{dim}\left(\rho^{\Gamma^{\theta}}, \chi\right)$
- The case of $\operatorname{Rad}_{p}(\Gamma)$-isotypic representations:

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:
- $\operatorname{dim} \rho^{r^{\theta}} \leq 1$
- $H^{1}\left(S_{2}, \Gamma\right)=1$
- $\rho^{\Gamma^{\theta}} \neq 0 \Rightarrow \rho=\left(\rho^{*}\right) \circ \theta$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\operatorname{dim}\left(\rho^{\Gamma^{\theta}}, \chi\right)$
- The case of $\operatorname{Rad}_{p}(\Gamma)$-isotypic representations: We use $H^{2}(\Gamma, \sqrt[p^{\infty}]{1})=0$ to bound $\operatorname{dim}\left(\rho^{\Gamma^{\theta}}\right)$

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:
- $\operatorname{dim} \rho^{r^{\theta}} \leq 1$
- $H^{1}\left(S_{2}, \Gamma\right)=1$
- $\rho^{\Gamma^{\theta}} \neq 0 \Rightarrow \rho=\left(\rho^{*}\right) \circ \theta$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\operatorname{dim}\left(\rho^{\Gamma^{\theta}}, \chi\right)$
- The case of $\operatorname{Rad}_{p}(\Gamma)$-isotypic representations: We use $H^{2}(\Gamma, \sqrt[p^{\infty}]{1})=0$ to bound $\operatorname{dim}\left(\rho^{\Gamma^{\theta}}\right)$
- General case:

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:
- $\operatorname{dim} \rho^{r^{\theta}} \leq 1$
- $H^{1}\left(S_{2}, \Gamma\right)=1$
- $\rho^{r^{\theta}} \neq 0 \Rightarrow \rho=\left(\rho^{*}\right) \circ \theta$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\operatorname{dim}\left(\rho^{\Gamma^{\theta}, \chi}\right)$
- The case of $\operatorname{Rad}_{p}(\Gamma)$-isotypic representations: We use $H^{2}(\Gamma, \sqrt[p^{\infty}]{1})=0$ to bound $\operatorname{dim}\left(\rho^{\Gamma^{\theta}}\right)$
- General case: We use boundd on $H^{1}\left(S_{2}, \Gamma\right)$, induction assumption, [Larsen-Pink], Clifford theory and the previous case.

Steps in the proof

- The case of groups with odd order: We use $\sqrt{ }$. to show:
- $\operatorname{dim} \rho^{r^{\theta}} \leq 1$
- $H^{1}\left(S_{2}, \Gamma\right)=1$
- $\rho^{r^{\theta}} \neq 0 \Rightarrow \rho=\left(\rho^{*}\right) \circ \theta$
- The case of groups with trivial p-radical: We use [Larsen-Pink, A.-Avni, Shechter] to bound $\operatorname{dim}\left(\rho^{\Gamma^{\theta}, \chi}\right)$
- The case of $\operatorname{Rad}_{p}(\Gamma)$-isotypic representations: We use $H^{2}(\Gamma, \sqrt[p^{\infty}]{1})=0$ to bound $\operatorname{dim}\left(\rho^{\Gamma^{\theta}}\right)$
- General case: We use boundd on $H^{1}\left(S_{2}, \Gamma\right)$, induction assumption, [Larsen-Pink], Clifford theory and the previous case.

$$
\text { bound } \rho^{\Gamma^{\theta}}
$$

