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Formulation

Let F be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every GLn(F )-invariant distribution on GLn+1(F ) is
transposition invariant.

It has the following corollary in representation theory.

Theorem
Let π be an irreducible admissible representation of GLn+1(F )
and τ be an irreducible admissible representation of GLn(F ).
Then

dim HomGLn(F )(π, τ) ≤ 1.

Similar theorems hold for orthogonal and unitary groups.
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Distributions

Notation
Let M be a smooth manifold. We denote by C∞c (M) the space
of smooth compactly supported functions on M. We will
consider the space (C∞c (M))∗ of distributions on M. Sometimes
we will also consider the space S∗(M) of Schwartz distributions
on M.

Definition
An `-space is a Hausdorff locally compact totally disconnected
topological space. For an `-space X we denote by S(X ) the
space of compactly supported locally constant functions on X .
We let S∗(X ) := S(X )∗ be the space of distributions on X .
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G̃ := GLn(F )o {1, σ}
Define a character χ of G̃ by χ(GLn(F )) = {1},
χ(G̃ −GLn(F )) = {−1}.

Equivalent formulation:

Theorem

S∗(GLn+1(F ))G̃,χ = 0.
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Equivalent formulation:

Theorem

S∗(gln+1(F ))G̃,χ = 0.

g
(

An×n vn×1
φ1×n λ

)
g−1 =

(
gAg−1 gv
(g∗)−1φ λ

)
and

(
A v
φ λ

)t

=

(
At φt

v t λ

)
V := F n

X := sl(V )× V × V ∗

G̃ acts on X by
g(A, v , φ) = (gAg−1,gv , (g∗)−1φ)
σ(A, v , φ) = (At , φt , v t).

Equivalent formulation:

Theorem

S∗(X )G̃,χ = 0.



Equivalent formulation:

Theorem

S∗(gln+1(F ))G̃,χ = 0.

g
(

An×n vn×1
φ1×n λ

)
g−1 =

(
gAg−1 gv
(g∗)−1φ λ

)
and

(
A v
φ λ

)t

=

(
At φt

v t λ

)

V := F n

X := sl(V )× V × V ∗

G̃ acts on X by
g(A, v , φ) = (gAg−1,gv , (g∗)−1φ)
σ(A, v , φ) = (At , φt , v t).

Equivalent formulation:

Theorem

S∗(X )G̃,χ = 0.



Equivalent formulation:

Theorem

S∗(gln+1(F ))G̃,χ = 0.

g
(

An×n vn×1
φ1×n λ

)
g−1 =

(
gAg−1 gv
(g∗)−1φ λ

)
and

(
A v
φ λ

)t

=

(
At φt

v t λ

)
V := F n

X := sl(V )× V × V ∗

G̃ acts on X by
g(A, v , φ) = (gAg−1,gv , (g∗)−1φ)
σ(A, v , φ) = (At , φt , v t).

Equivalent formulation:

Theorem

S∗(X )G̃,χ = 0.



Equivalent formulation:

Theorem

S∗(gln+1(F ))G̃,χ = 0.

g
(

An×n vn×1
φ1×n λ

)
g−1 =

(
gAg−1 gv
(g∗)−1φ λ

)
and

(
A v
φ λ

)t

=

(
At φt

v t λ

)
V := F n

X := sl(V )× V × V ∗

G̃ acts on X by
g(A, v , φ) = (gAg−1,gv , (g∗)−1φ)
σ(A, v , φ) = (At , φt , v t).

Equivalent formulation:

Theorem

S∗(X )G̃,χ = 0.



Equivalent formulation:

Theorem

S∗(gln+1(F ))G̃,χ = 0.

g
(

An×n vn×1
φ1×n λ

)
g−1 =

(
gAg−1 gv
(g∗)−1φ λ

)
and

(
A v
φ λ

)t

=

(
At φt

v t λ

)
V := F n

X := sl(V )× V × V ∗

G̃ acts on X by
g(A, v , φ) = (gAg−1,gv , (g∗)−1φ)
σ(A, v , φ) = (At , φt , v t).

Equivalent formulation:

Theorem

S∗(X )G̃,χ = 0.



First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We
want to show S∗(X )G,χ = 0.

Proposition
Let U ⊂ X be an open G-invariant subset and Z := X − U.
Suppose that S∗(U)G,χ = 0 and S∗X (Z )G,χ = 0. Then
S∗(X )G,χ = 0.

Proof.

0→ S∗X (Z )G,χ → S∗(X )G,χ → S∗(U)G,χ.

For `-spaces, S∗X (Z )G,χ ∼= S∗(Z )G,χ.
For smooth manifolds, there is a slightly more complicated
statement which takes into account transversal derivatives.
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Frobenius descent

Xz

��

// X

��
z // Z

Theorem (Bernstein, Baruch, ...)

Let ψ : X → Z be a map.
Let G act on X and Z such that ψ(gx) = gψ(x).
Suppose that the action of G on Z is transitive.
Suppose that both G and StabG(z) are unimodular. Then

S∗(X )G,χ ∼= S∗(Xz)
StabG(z),χ.

A. Aizenbud Multiplicity One Theorems



Generalized Harish-Chandra descent

Theorem
Let a reductive group G act on a smooth affine algebraic variety
X. Let χ be a character of G. Suppose that for any a ∈ X s.t.
the orbit Ga is closed we have

S∗(NX
Ga,a)

Ga,χ = 0.

Then S∗(X )G,χ = 0.
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Fourier transform

Let V be a finite dimensional vector space over F and Q be a
non-degenerate quadratic form on V . Let ξ̂ denote the Fourier
transform of ξ defined using Q.

Proposition

Let G act on V linearly and preserving Q. Let ξ ∈ S∗(V )G,χ.
Then ξ̂ ∈ S∗(V )G,χ.
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Fourier transform and homogeneity

We call a distribution ξ ∈ S∗(V ) abs-homogeneous of
degree d if for any t ∈ F×,

ht(ξ) = u(t)|t |dξ,
where ht denotes the homothety action on distributions
and u is some unitary character of F×.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let ξ ∈ S∗V (Z (Q)) be s.t.
ξ̂ ∈ S∗V (Z (Q)). Then ξ is abs-homogeneous of degree 1

2dimV.

Theorem (archimedean homogeneity)

Let F be any local field. Let L ⊂ S∗V (Z (Q)) be a non-zero linear
subspace s. t. ∀ξ ∈ L we have ξ̂ ∈ L and Qξ ∈ L.
Then there exists a non-zero distribution ξ ∈ L which is
abs-homogeneous of degree 1

2dimV or of degree 1
2dimV + 1.
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Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of T ∗X .

Singular Support Wave front set
(=Characteristic variety)

Defined using D-modules Defined using Fourier transform
Available only in the Available in both cases
Archimedean case

In the non-Archimedean case we define the singular support to
be the Zariski closure of the wave front set.
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Properties and the Integrability Theorem

Let X be a smooth algebraic variety.
Let ξ ∈ S∗(X ). Then Supp(ξ)Zar = pX (SS(ξ)), where
pX : T ∗X → X is the projection.

Let an algebraic group G act on X . Let ξ ∈ S∗(X )G,χ. Then

SS(ξ) ⊂ {(x , φ) ∈ T ∗X | ∀α ∈ g φ(α(x)) = 0}.

Let V be a linear space. Let Z ⊂ V ∗ be a closed
subvariety, invariant with respect to homotheties. Let
ξ ∈ S∗(V ). Suppose that Supp(ξ̂) ⊂ Z . Then
SS(ξ) ⊂ V × Z .
Integrability theorem:
Let ξ ∈ S∗(X ). Then SS(ξ) is (weakly) coisotropic.

A. Aizenbud Multiplicity One Theorems



Properties and the Integrability Theorem

Let X be a smooth algebraic variety.
Let ξ ∈ S∗(X ). Then Supp(ξ)Zar = pX (SS(ξ)), where
pX : T ∗X → X is the projection.
Let an algebraic group G act on X . Let ξ ∈ S∗(X )G,χ. Then

SS(ξ) ⊂ {(x , φ) ∈ T ∗X | ∀α ∈ g φ(α(x)) = 0}.

Let V be a linear space. Let Z ⊂ V ∗ be a closed
subvariety, invariant with respect to homotheties. Let
ξ ∈ S∗(V ). Suppose that Supp(ξ̂) ⊂ Z . Then
SS(ξ) ⊂ V × Z .
Integrability theorem:
Let ξ ∈ S∗(X ). Then SS(ξ) is (weakly) coisotropic.

A. Aizenbud Multiplicity One Theorems



Properties and the Integrability Theorem

Let X be a smooth algebraic variety.
Let ξ ∈ S∗(X ). Then Supp(ξ)Zar = pX (SS(ξ)), where
pX : T ∗X → X is the projection.
Let an algebraic group G act on X . Let ξ ∈ S∗(X )G,χ. Then

SS(ξ) ⊂ {(x , φ) ∈ T ∗X | ∀α ∈ g φ(α(x)) = 0}.

Let V be a linear space. Let Z ⊂ V ∗ be a closed
subvariety, invariant with respect to homotheties. Let
ξ ∈ S∗(V ). Suppose that Supp(ξ̂) ⊂ Z . Then
SS(ξ) ⊂ V × Z .

Integrability theorem:
Let ξ ∈ S∗(X ). Then SS(ξ) is (weakly) coisotropic.

A. Aizenbud Multiplicity One Theorems



Properties and the Integrability Theorem

Let X be a smooth algebraic variety.
Let ξ ∈ S∗(X ). Then Supp(ξ)Zar = pX (SS(ξ)), where
pX : T ∗X → X is the projection.
Let an algebraic group G act on X . Let ξ ∈ S∗(X )G,χ. Then

SS(ξ) ⊂ {(x , φ) ∈ T ∗X | ∀α ∈ g φ(α(x)) = 0}.

Let V be a linear space. Let Z ⊂ V ∗ be a closed
subvariety, invariant with respect to homotheties. Let
ξ ∈ S∗(V ). Suppose that Supp(ξ̂) ⊂ Z . Then
SS(ξ) ⊂ V × Z .
Integrability theorem:
Let ξ ∈ S∗(X ). Then SS(ξ) is (weakly) coisotropic.

A. Aizenbud Multiplicity One Theorems



Coisotropic varieties

Definition
Let M be a smooth algebraic variety and ω be a symplectic
form on it. Let Z ⊂ M be an algebraic subvariety. We call it
M-coisotropic if the following equivalent conditions hold.

At every smooth point z ∈ Z we have TzZ ⊃ (TzZ )⊥. Here,
(TzZ )⊥ denotes the orthogonal complement to TzZ in TzM
with respect to ω.
The ideal sheaf of regular functions that vanish on Z is
closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.

Every non-empty coisotropic subvariety of M has
dimension at least dim M

2 .
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Weakly coisotropic varieties

Definition
Let X be a smooth algebraic variety. Let Z ⊂ T ∗X be an
algebraic subvariety. We call it T ∗X -weakly coisotropic if one
of the following equivalent conditions holds.

For a generic smooth point a ∈ pX (Z ) and for a generic
smooth point y ∈ p−1

X (a) ∩ Z we have
CNX

pX (Z ),a ⊂ Ty (p−1
X (a) ∩ Z ).

For any smooth point a ∈ pX (Z ) the fiber p−1
X (a) ∩ Z is

locally invariant with respect to shifts by CNX
pX (Z ),a.

Every non-empty weakly coisotropic subvariety of T ∗X has
dimension at least dim X .
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Definition
Let X be a smooth algebraic variety. Let Z ⊂ X be a smooth
subvariety and R ⊂ T ∗X be any subvariety. We define the
restriction R|Z ⊂ T ∗Z of R to Z by

R|Z := q(p−1
X (Z ) ∩ R),

where q : p−1
X (Z )→ T ∗Z is the projection.

T ∗X ⊃ p−1
X (Z ) � T ∗Z

Lemma

Let X be a smooth algebraic variety. Let Z ⊂ X be a smooth
subvariety. Let R ⊂ T ∗X be a (weakly) coisotropic variety.
Then, under some transversality assumption, R|Z ⊂ T ∗Z is a
(weakly) coisotropic variety.
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Harish-Chandra descent and homogeneity

Notation

S := {(A, v , φ) ∈ Xn|An = 0 and φ(Aiv) = 0∀0 ≤ i ≤ n}.

By Harish-Chandra descent we can assume that any
ξ ∈ S∗(X )G̃,χ is supported in S.

Notation

S′ := {(A, v , φ) ∈ S|An−1v = (A∗)n−1φ = 0}.

By the homogeneity theorem, the stratification method and
Frobenius descent we get that any ξ ∈ S∗(X )G̃,χ is supported in
S′.
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Reduction to the geometric statement

Notation

T ′ = {((A1, v1, φ1), (A2, v2, φ2)) ∈ X × X | ∀i , j ∈ {1,2}
(Ai , vj , φj) ∈ S′ and [A1,A2] + v1 ⊗ φ2 − v2 ⊗ φ1 = 0}.

It is enough to show:

Theorem (The geometric statement)

There are no non-empty X × X-weakly coisotropic subvarieties
of T ′.
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Reduction to the Key Lemma

Notation

T ′′ := {((A1, v1, φ1), (A2, v2, φ2)) ∈ T ′|An−1
1 = 0}.

It is easy to see that there are no non-empty X × X -weakly
coisotropic subvarieties of T ′′.

Notation
Let A ∈ sl(V ) be a nilpotent Jordan block. Denote
RA := (T ′ − T ′′)|{A}×V×V∗ .

It is enough to show:

Lemma (Key Lemma)
There are no non-empty V × V ∗ × V × V ∗-weakly coisotropic
subvarieties of RA.
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Proof of the Key Lemma

Notation

QA := S′ ∩ ({A} × V × V ∗) =
n−1⋃
i=1

(KerAi)× (Ker(A∗)n−i)

It is easy to see that RA ⊂ QA ×QA and QA ×QA =
⋃n−1

i,j=1 Lij ,
where

Lij := (KerAi)× (Ker(A∗)n−i)× (KerAj)× (Ker(A∗)n−j).

It is easy to see that any weakly coisotropic subvariety of
QA ×QA is contained in

⋃n−1
i=1 Lii . Hence it is enough to show

that for any 0 < i < n, we have dim RA ∩ Lii < 2n. Let f ∈ O(Lii)
be the polynomial defined by

f (v1, φ1, v2, φ2) := (v1)i(φ2)i+1 − (v2)i(φ1)i+1.

It is enough to show that f (RA ∩ Lii) = {0}.
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Proof of the Key Lemma

Let (v1, φ1, v2, φ2) ∈ Lii . Let M := v1 ⊗ φ2 − v2 ⊗ φ1.

Clearly, M
is of the form

M =

(
0i×i ∗

0(n−i)×i 0(n−i)×(n−i)

)
.

We know that there exists a nilpotent B satisfying [A,B] = M.
Hence this B is upper nilpotent, which implies Mi,i+1 = 0 and
hence f (v1, φ1, v2, φ2) = 0.
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