Multiplicity One Theorems

A. Aizenbud

http://www.wisdom.weizmann.ac.il/ ~ aizenr/

Let F be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)
 Every $G L_{n}(F)$-invariant distribution on $G L_{n+1}(F)$ is transposition invariant.

Formulation

Let F be a local field of characteristic zero.
Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)
Every $G L_{n}(F)$-invariant distribution on $G L_{n+1}(F)$ is transposition invariant.

It has the following corollary in representation theory.

Theorem

Let π be an irreducible admissible representation of $\mathrm{GL}_{n+1}(F)$ and τ be an irreducible admissible representation of $\mathrm{GL}_{n}(F)$. Then

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{n}(F)}(\pi, \tau) \leq 1
$$

Formulation

Let F be a local field of characteristic zero.
Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)
Every $G L_{n}(F)$-invariant distribution on $G L_{n+1}(F)$ is transposition invariant.

It has the following corollary in representation theory.

Theorem

Let π be an irreducible admissible representation of $\mathrm{GL}_{n+1}(F)$ and τ be an irreducible admissible representation of $\mathrm{GL}_{n}(F)$. Then

$$
\operatorname{dim} \operatorname{Hom}_{\operatorname{GL}_{n}(F)}(\pi, \tau) \leq 1
$$

Similar theorems hold for orthogonal and unitary groups.

Distributions

Notation

Let M be a smooth manifold. We denote by $C_{c}^{\infty}(M)$ the space of smooth compactly supported functions on M. We will consider the space $\left(C_{c}^{\infty}(M)\right)^{*}$ of distributions on M. Sometimes we will also consider the space $\mathcal{S}^{*}(M)$ of Schwartz distributions on M.

Distributions

Notation

Let M be a smooth manifold. We denote by $C_{c}^{\infty}(M)$ the space of smooth compactly supported functions on M. We will consider the space $\left(C_{c}^{\infty}(M)\right)^{*}$ of distributions on M. Sometimes we will also consider the space $\mathcal{S}^{*}(M)$ of Schwartz distributions on M.

Definition

An ℓ-space is a Hausdorff locally compact totally disconnected topological space. For an ℓ-space X we denote by $\mathcal{S}(X)$ the space of compactly supported locally constant functions on X. We let $\mathcal{S}^{*}(X):=\mathcal{S}(X)^{*}$ be the space of distributions on X.

- $\tilde{G}:=G L_{n}(F) \rtimes\{1, \sigma\}$
- Define a character χ of \tilde{G} by $\chi\left(G L_{n}(F)\right)=\{1\}$, $\chi\left(\widetilde{G}-G L_{n}(F)\right)=\{-1\}$.
- $\tilde{G}:=G L_{n}(F) \rtimes\{1, \sigma\}$
- Define a character χ of \tilde{G} by $\chi\left(G L_{n}(F)\right)=\{1\}$, $\chi\left(\widetilde{G}-G L_{n}(F)\right)=\{-1\}$.

Equivalent formulation:
Theorem
$\mathcal{S}^{*}\left(G L_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.

Equivalent formulation:

Theorem

$$
\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0
$$

$$
g\left(\begin{array}{cc}
A_{n \times n} & v_{n \times 1} \\
\phi_{1 \times n} & \lambda
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
g A g^{-1} & g v \\
\left(g^{*}\right)^{-1} \phi & \lambda
\end{array}\right) \text { and }\left(\begin{array}{ll}
A & v \\
\phi & \lambda
\end{array}\right)^{t}=\left(\begin{array}{cc}
A^{t} & \phi^{t} \\
v^{t} & \lambda
\end{array}\right)
$$

Equivalent formulation:

Theorem

$$
\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\tilde{G}, \chi}=0
$$

$$
g\left(\begin{array}{cc}
A_{n \times n} & v_{n \times 1} \\
\phi_{1 \times n} & \lambda
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
g A g^{-1} & g v \\
\left(g^{*}\right)^{-1} \phi & \lambda
\end{array}\right) \text { and }\left(\begin{array}{ll}
A & v \\
\phi & \lambda
\end{array}\right)^{t}=\left(\begin{array}{cc}
A^{t} & \phi^{t} \\
v^{t} & \lambda
\end{array}\right)
$$

- $V:=F^{n}$
- $X:=s l(V) \times V \times V^{*}$

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\tilde{G}, \chi}=0$.

$$
g\left(\begin{array}{cc}
A_{n \times n} & v_{n \times 1} \\
\phi_{1 \times n} & \lambda
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
g A g^{-1} & g v \\
\left(g^{*}\right)^{-1} \phi & \lambda
\end{array}\right) \text { and }\left(\begin{array}{ll}
A & v \\
\phi & \lambda
\end{array}\right)^{t}=\left(\begin{array}{cc}
A^{t} & \phi^{t} \\
v^{t} & \lambda
\end{array}\right)
$$

- $V:=F^{n}$
- $X:=s l(V) \times V \times V^{*}$
- \widetilde{G} acts on X by

$$
\begin{aligned}
& g(A, v, \phi)=\left(g A g^{-1}, g v,\left(g^{*}\right)^{-1} \phi\right) \\
& \sigma(A, v, \phi)=\left(A^{t}, \phi^{t}, v^{t}\right) .
\end{aligned}
$$

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.
$g\left(\begin{array}{cc}A_{n \times n} & v_{n \times 1} \\ \phi_{1 \times n} & \lambda\end{array}\right) g^{-1}=\left(\begin{array}{cc}g A g^{-1} & g v \\ \left(g^{*}\right)^{-1} \phi & \lambda\end{array}\right)$ and $\left(\begin{array}{cc}A & v \\ \phi & \lambda\end{array}\right)^{t}=\left(\begin{array}{cc}A^{t} & \phi^{t} \\ v^{t} & \lambda\end{array}\right)$

- $V:=F^{n}$
- $X:=s l(V) \times V \times V^{*}$
- \tilde{G} acts on X by

$$
\begin{aligned}
& g(A, v, \phi)=\left(g A g^{-1}, g v,\left(g^{*}\right)^{-1} \phi\right) \\
& \sigma(A, v, \phi)=\left(A^{t}, \phi^{t}, v^{t}\right) .
\end{aligned}
$$

Equivalent formulation:

Theorem

$\mathcal{S}^{*}(X)^{\tilde{\mathrm{G}}, \chi}=0$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{S}^{*}(U)^{G, \chi}=0$ and $\mathcal{S}_{X}^{*}(Z)^{G, \chi}=0$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{S}^{*}(U)^{G, \chi}=0$ and $\mathcal{S}_{X}^{*}(Z)^{G, \chi}=0$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proof.

$$
0 \rightarrow \mathcal{S}_{X}^{*}(Z)^{G, \chi} \rightarrow \mathcal{S}^{*}(X)^{G, \chi} \rightarrow \mathcal{S}^{*}(U)^{G, \chi}
$$

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{S}^{*}(U)^{G, \chi}=0$ and $\mathcal{S}_{X}^{*}(Z)^{G, \chi}=0$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proof.
$0 \rightarrow \mathcal{S}_{X}^{*}(Z)^{G, \chi} \rightarrow \mathcal{S}^{*}(X)^{G, \chi} \rightarrow \mathcal{S}^{*}(U)^{G, \chi}$.
For ℓ-spaces, $\mathcal{S}_{X}^{*}(Z)^{G, \chi} \cong \mathcal{S}^{*}(Z)^{G, \chi}$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{S}^{*}(U)^{G, \chi}=0$ and $\mathcal{S}_{X}^{*}(Z)^{G, \chi}=0$. Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Proof.

$0 \rightarrow \mathcal{S}_{\chi}^{*}(Z)^{G, \chi} \rightarrow \mathcal{S}^{*}(X)^{G, \chi} \rightarrow \mathcal{S}^{*}(U)^{G, \chi}$.
For ℓ-spaces, $\mathcal{S}_{X}^{*}(Z)^{G, \chi} \cong \mathcal{S}^{*}(Z)^{G, \chi}$.
For smooth manifolds, there is a slightly more complicated statement which takes into account transversal derivatives.

Theorem (Bernstein, Baruch, ...)

Let $\psi: X \rightarrow Z$ be a map.
Let G act on X and Z such that $\psi(g x)=g \psi(x)$.
Suppose that the action of G on Z is transitive.
Suppose that both G and $\operatorname{Stab}_{G}(z)$ are unimodular. Then

$$
\mathcal{S}^{*}(X)^{G, \chi} \cong \mathcal{S}^{*}\left(X_{z}\right)^{\operatorname{Stab}_{G}(z), \chi} .
$$

Generalized Harish-Chandra descent

Theorem

Let a reductive group G act on a smooth affine algebraic variety X. Let χ be a character of G. Suppose that for any $a \in X$ s.t. the orbit Ga is closed we have

$$
\mathcal{S}^{*}\left(N_{G a, a}^{X}\right)^{G_{a}, \chi}=0 .
$$

Then $\mathcal{S}^{*}(X)^{G, \chi}=0$.

Fourier transform

Let V be a finite dimensional vector space over F and Q be a non-degenerate quadratic form on V. Let $\widehat{\xi}$ denote the Fourier transform of ξ defined using Q.

Proposition

Let G act on V linearly and preserving Q. Let $\xi \in \mathcal{S}^{*}(V)^{G, \chi}$. Then $\widehat{\xi} \in \mathcal{S}^{*}(V)^{G, \chi}$.

Fourier transform and homogeneity

－We call a distribution $\xi \in \mathcal{S}^{*}(V)$ abs－homogeneous of degree d if for any $t \in F^{\times}$，

$$
h_{t}(\xi)=u(t)|t|^{d} \xi,
$$

where h_{t} denotes the homothety action on distributions and u is some unitary character of F^{\times}．

Fourier transform and homogeneity

- We call a distribution $\xi \in \mathcal{S}^{*}(V)$ abs-homogeneous of degree d if for any $t \in F^{\times}$,

$$
h_{t}(\xi)=u(t)|t|^{d} \xi
$$

where h_{t} denotes the homothety action on distributions and u is some unitary character of F^{\times}.

Theorem (Jacquet, Rallis, Schiffmann,...)
Assume F is non-archimedean. Let $\xi \in \mathcal{S}_{V}^{*}(Z(Q))$ be s.t. $\widehat{\xi} \in \mathcal{S}_{V}^{*}(Z(Q))$. Then ξ is abs-homogeneous of degree $\frac{1}{2} \operatorname{dim} V$.

Fourier transform and homogeneity

- We call a distribution $\xi \in \mathcal{S}^{*}(V)$ abs-homogeneous of degree d if for any $t \in F^{\times}$,

$$
h_{t}(\xi)=u(t)|t|^{d} \xi
$$

where h_{t} denotes the homothety action on distributions and u is some unitary character of F^{\times}.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let $\xi \in \mathcal{S}_{V}^{*}(Z(Q))$ be s.t. $\widehat{\xi} \in \mathcal{S}_{V}^{*}(Z(Q))$. Then ξ is abs-homogeneous of degree $\frac{1}{2} \operatorname{dim} V$.

Theorem (archimedean homogeneity)

Let F be any local field. Let $L \subset \mathcal{S}_{V}^{*}(Z(Q))$ be a non-zero linear subspace s. $t . \forall \xi \in L$ we have $\widehat{\xi} \in L$ and $Q \xi \in L$.
Then there exists a non-zero distribution $\xi \in L$ which is abs-homogeneous of degree $\frac{1}{2} \operatorname{dim} V$ or of degree $\frac{1}{2} \operatorname{dim} V+1$.

Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of $T^{*} X$.

Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of $T^{*} X$.

Singular Support (=Characteristic variety)	Wave front set
Defined using D-modules	Defined using Fourier transform
Available only in the	Available in both cases
Archimedean case	

Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of $T^{*} X$.

Singular Support (=Characteristic variety)	Wave front set
Defined using D-modules	Defined using Fourier transform
Available only in the	Available in both cases
Archimedean case	

In the non-Archimedean case we define the singular support to be the Zariski closure of the wave front set.

Let X be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^{*}(X)$. Then $\overline{\operatorname{Supp}}(\xi)_{Z a r}=p_{X}(S S(\xi))$, where $p_{X}: T^{*} X \rightarrow X$ is the projection.

Properties and the Integrability Theorem

Let X be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^{*}(X)$. Then $\overline{\operatorname{Supp}}(\xi)_{Z a r}=p_{X}(S S(\xi))$, where $p_{X}: T^{*} X \rightarrow X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in \mathcal{S}^{*}(X)^{G, \chi}$. Then

$$
S S(\xi) \subset\left\{(x, \phi) \in T^{*} X \mid \forall \alpha \in \mathfrak{g} \quad \phi(\alpha(x))=0\right\}
$$

Properties and the Integrability Theorem

Let X be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^{*}(X)$. Then $\overline{\operatorname{Supp}}(\xi)_{Z a r}=p_{X}(S S(\xi))$, where $p_{X}: T^{*} X \rightarrow X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in \mathcal{S}^{*}(X)^{G, \chi}$. Then

$$
S S(\xi) \subset\left\{(x, \phi) \in T^{*} X \mid \forall \alpha \in \mathfrak{g} \quad \phi(\alpha(x))=0\right\}
$$

- Let V be a linear space. Let $Z \subset V^{*}$ be a closed subvariety, invariant with respect to homotheties. Let $\xi \in \mathcal{S}^{*}(V)$. Suppose that $\operatorname{Supp}(\widehat{\xi}) \subset Z$. Then $S S(\xi) \subset V \times Z$.

Properties and the Integrability Theorem

Let X be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^{*}(X)$. Then $\overline{\operatorname{Supp}}(\xi)_{Z a r}=p_{X}(S S(\xi))$, where $p_{X}: T^{*} X \rightarrow X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in \mathcal{S}^{*}(X)^{G, \chi}$. Then

$$
S S(\xi) \subset\left\{(x, \phi) \in T^{*} X \mid \forall \alpha \in \mathfrak{g} \quad \phi(\alpha(x))=0\right\}
$$

- Let V be a linear space. Let $Z \subset V^{*}$ be a closed subvariety, invariant with respect to homotheties. Let $\xi \in \mathcal{S}^{*}(V)$. Suppose that $\operatorname{Supp}(\widehat{\xi}) \subset Z$. Then $S S(\xi) \subset V \times Z$.
- Integrability theorem:

Let $\xi \in \mathcal{S}^{*}(X)$. Then $S S(\xi)$ is (weakly) coisotropic.

Coisotropic varieties

Definition

Let M be a smooth algebraic variety and ω be a symplectic form on it. Let $Z \subset M$ be an algebraic subvariety. We call it M-coisotropic if the following equivalent conditions hold.

- At every smooth point $z \in Z$ we have $T_{z} Z \supset\left(T_{z} Z\right)^{\perp}$. Here, $\left(T_{z} Z\right)^{\perp}$ denotes the orthogonal complement to $T_{z} Z$ in $T_{z} M$ with respect to ω.
- The ideal sheaf of regular functions that vanish on \bar{Z} is closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.

Coisotropic varieties

Definition

Let M be a smooth algebraic variety and ω be a symplectic form on it. Let $Z \subset M$ be an algebraic subvariety. We call it M-coisotropic if the following equivalent conditions hold.

- At every smooth point $z \in Z$ we have $T_{z} Z \supset\left(T_{z} Z\right)^{\perp}$. Here, $\left(T_{z} Z\right)^{\perp}$ denotes the orthogonal complement to $T_{z} Z$ in $T_{z} M$ with respect to ω.
- The ideal sheaf of regular functions that vanish on \bar{Z} is closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.

- Every non-empty coisotropic subvariety of M has dimension at least $\frac{\operatorname{dim} M}{2}$.

Weakly coisotropic varieties

Definition

Let X be a smooth algebraic variety. Let $Z \subset T^{*} X$ be an algebraic subvariety. We call it $T^{*} X$-weakly coisotropic if one of the following equivalent conditions holds.

- For a generic smooth point $a \in p_{X}(Z)$ and for a generic smooth point $y \in p_{X}^{-1}(a) \cap Z$ we have $C N_{p_{X}(Z), a}^{X} \subset T_{y}\left(p_{X}^{-1}(a) \cap Z\right)$.
- For any smooth point $a \in p_{X}(Z)$ the fiber $p_{X}^{-1}(a) \cap Z$ is locally invariant with respect to shifts by $C N_{p_{X}(Z), a}^{X}$.

Weakly coisotropic varieties

Definition

Let X be a smooth algebraic variety. Let $Z \subset T^{*} X$ be an algebraic subvariety. We call it $T^{*} X$-weakly coisotropic if one of the following equivalent conditions holds.

- For a generic smooth point $a \in p_{X}(Z)$ and for a generic smooth point $y \in p_{X}^{-1}(a) \cap Z$ we have $C N_{p_{X}(Z), a}^{X} \subset T_{y}\left(p_{X}^{-1}(a) \cap Z\right)$.
- For any smooth point $a \in p_{X}(Z)$ the fiber $p_{X}^{-1}(a) \cap Z$ is locally invariant with respect to shifts by $C N_{p_{X}}^{X}(Z), a$.
- Every non-empty weakly coisotropic subvariety of $T^{*} X$ has dimension at least $\operatorname{dim} X$.

Definition

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety and $R \subset T^{*} X$ be any subvariety. We define the restriction $\left.R\right|_{Z} \subset T^{*} Z$ of R to Z by

$$
\left.R\right|_{z}:=q\left(p_{X}^{-1}(Z) \cap R\right)
$$

where $q: p_{X}^{-1}(Z) \rightarrow T^{*} Z$ is the projection.

$$
T^{*} X \supset p_{X}^{-1}(Z) \rightarrow T^{*} Z
$$

Definition

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety and $R \subset T^{*} X$ be any subvariety. We define the restriction $\left.R\right|_{Z} \subset T^{*} Z$ of R to Z by

$$
\left.R\right|_{z}:=q\left(p_{X}^{-1}(Z) \cap R\right)
$$

where $q: p_{X}^{-1}(Z) \rightarrow T^{*} Z$ is the projection.

$$
T^{*} X \supset p_{X}^{-1}(Z) \rightarrow T^{*} Z
$$

Lemma

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety. Let $R \subset T^{*} X$ be a (weakly) coisotropic variety. Then, under some transversality assumption, $\left.R\right|_{z} \subset T^{*} Z$ is a (weakly) coisotropic variety.

Harish-Chandra descent and homogeneity

Notation

$$
S:=\left\{(A, v, \phi) \in X_{n} \mid A^{n}=0 \text { and } \phi\left(A^{i} v\right)=0 \forall 0 \leq i \leq n\right\} .
$$

Harish-Chandra descent and homogeneity

Notation

$$
S:=\left\{(A, v, \phi) \in X_{n} \mid A^{n}=0 \text { and } \phi\left(A^{i} v\right)=0 \forall 0 \leq i \leq n\right\} .
$$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in S.

Notation

$$
S:=\left\{(A, v, \phi) \in X_{n} \mid A^{n}=0 \text { and } \phi\left(A^{i} v\right)=0 \forall 0 \leq i \leq n\right\} .
$$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in S.

Notation

$$
S^{\prime}:=\left\{(A, v, \phi) \in S \mid A^{n-1} v=\left(A^{*}\right)^{n-1} \phi=0\right\}
$$

Notation

$$
S:=\left\{(A, v, \phi) \in X_{n} \mid A^{n}=0 \text { and } \phi\left(A^{i} v\right)=0 \forall 0 \leq i \leq n\right\} .
$$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in S.

Notation

$$
S^{\prime}:=\left\{(A, v, \phi) \in S \mid A^{n-1} v=\left(A^{*}\right)^{n-1} \phi=0\right\}
$$

By the homogeneity theorem, the stratification method and Frobenius descent we get that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in S^{\prime}.

Reduction to the geometric statement

Notation

$$
\begin{aligned}
T^{\prime}=\{ & \left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in X \times X \mid \forall i, j \in\{1,2\} \\
& \left.\left(A_{i}, v_{j}, \phi_{j}\right) \in S^{\prime} \text { and }\left[A_{1}, A_{2}\right]+v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}=0\right\} .
\end{aligned}
$$

Reduction to the geometric statement

Notation

$$
\begin{aligned}
T^{\prime}=\{ & \left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in X \times X \mid \forall i, j \in\{1,2\} \\
& \left.\left(A_{i}, v_{j}, \phi_{j}\right) \in S^{\prime} \text { and }\left[A_{1}, A_{2}\right]+v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}=0\right\} .
\end{aligned}
$$

It is enough to show:

Theorem (The geometric statement)

There are no non-empty $X \times X$-weakly coisotropic subvarieties of T^{\prime}.

Reduction to the Key Lemma

Notation

$$
T^{\prime \prime}:=\left\{\left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in T^{\prime} \mid A_{1}^{n-1}=0\right\} .
$$

Reduction to the Key Lemma

Notation

$$
T^{\prime \prime}:=\left\{\left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in T^{\prime} \mid A_{1}^{n-1}=0\right\} .
$$

It is easy to see that there are no non-empty $X \times X$-weakly coisotropic subvarieties of $T^{\prime \prime}$.

Reduction to the Key Lemma

Notation

$$
T^{\prime \prime}:=\left\{\left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in T^{\prime} \mid A_{1}^{n-1}=0\right\} .
$$

It is easy to see that there are no non-empty $X \times X$-weakly coisotropic subvarieties of $T^{\prime \prime}$.

Notation

Let $A \in s l(V)$ be a nilpotent Jordan block. Denote $R_{A}:=\left.\left(T^{\prime}-T^{\prime \prime}\right)\right|_{\{A\} \times V \times V^{*}}$.

Reduction to the Key Lemma

Notation

$$
T^{\prime \prime}:=\left\{\left(\left(A_{1}, v_{1}, \phi_{1}\right),\left(A_{2}, v_{2}, \phi_{2}\right)\right) \in T^{\prime} \mid A_{1}^{n-1}=0\right\}
$$

It is easy to see that there are no non-empty $X \times X$-weakly coisotropic subvarieties of $T^{\prime \prime}$.

Notation

Let $A \in s I(V)$ be a nilpotent Jordan block. Denote $R_{A}:=\left.\left(T^{\prime}-T^{\prime \prime}\right)\right|_{\{A\} \times V \times V *}$.

It is enough to show:

Lemma (Key Lemma)

There are no non-empty $V \times V^{*} \times V \times V^{*}$-weakly coisotropic subvarieties of R_{A}.

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$ and $Q_{A} \times Q_{A}=\bigcup_{i, j=1}^{n-1} L_{i j}$, where

$$
L_{i j}:=\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right) \times\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-j}\right) .
$$

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$ and $Q_{A} \times Q_{A}=\bigcup_{i, j=1}^{n-1} L_{i j}$, where

$$
L_{i j}:=\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right) \times\left(\operatorname{Ker} A^{j}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-j}\right) .
$$

It is easy to see that any weakly coisotropic subvariety of $Q_{A} \times Q_{A}$ is contained in $\bigcup_{i=1}^{n-1} L_{i j}$.

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$ and $Q_{A} \times Q_{A}=\bigcup_{i, j=1}^{n-1} L_{i j}$, where

$$
L_{i j}:=\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right) \times\left(\operatorname{Ker} A^{j}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-j}\right) .
$$

It is easy to see that any weakly coisotropic subvariety of $Q_{A} \times Q_{A}$ is contained in $\bigcup_{i=1}^{n-1} L_{i j}$. Hence it is enough to show that for any $0<i<n$, we have $\operatorname{dim} R_{A} \cap L_{i i}<2 n$.

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$ and $Q_{A} \times Q_{A}=\bigcup_{i, j=1}^{n-1} L_{i j}$, where

$$
L_{i j}:=\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right) \times\left(\operatorname{Ker} A^{j}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-j}\right) .
$$

It is easy to see that any weakly coisotropic subvariety of $Q_{A} \times Q_{A}$ is contained in $\bigcup_{i=1}^{n-1} L_{i j}$. Hence it is enough to show that for any $0<i<n$, we have $\operatorname{dim} R_{A} \cap L_{i i}<2 n$. Let $f \in \mathcal{O}\left(L_{i i}\right)$ be the polynomial defined by

$$
f\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right):=\left(v_{1}\right)_{i}\left(\phi_{2}\right)_{i+1}-\left(v_{2}\right)_{i}\left(\phi_{1}\right)_{i+1} .
$$

Proof of the Key Lemma

Notation

$$
Q_{A}:=S^{\prime} \cap\left(\{A\} \times V \times V^{*}\right)=\bigcup_{i=1}^{n-1}\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right)
$$

It is easy to see that $R_{A} \subset Q_{A} \times Q_{A}$ and $Q_{A} \times Q_{A}=\bigcup_{i, j=1}^{n-1} L_{i j}$, where

$$
L_{i j}:=\left(\operatorname{Ker} A^{i}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-i}\right) \times\left(\operatorname{Ker} A^{j}\right) \times\left(\operatorname{Ker}\left(A^{*}\right)^{n-j}\right) .
$$

It is easy to see that any weakly coisotropic subvariety of $Q_{A} \times Q_{A}$ is contained in $\bigcup_{i=1}^{n-1} L_{i j}$. Hence it is enough to show that for any $0<i<n$, we have $\operatorname{dim} R_{A} \cap L_{i i}<2 n$. Let $f \in \mathcal{O}\left(L_{i i}\right)$ be the polynomial defined by

$$
f\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right):=\left(v_{1}\right)_{i}\left(\phi_{2}\right)_{i+1}-\left(v_{2}\right)_{i}\left(\phi_{1}\right)_{i+1} .
$$

It is enough to show that $f\left(R_{A} \cap L_{i i}\right)=\{0\}$.

Proof of the Key Lemma

Let $\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right) \in L_{i j}$. Let $M:=v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}$.

Proof of the Key Lemma

Let $\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right) \in L_{i j}$. Let $M:=v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}$. Clearly, M is of the form

$$
M=\left(\begin{array}{cc}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times(n-i)}
\end{array}\right) .
$$

Proof of the Key Lemma

Let $\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right) \in L_{i j}$. Let $M:=v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}$. Clearly, M is of the form

$$
M=\left(\begin{array}{cc}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times(n-i)}
\end{array}\right) .
$$

We know that there exists a nilpotent B satisfying $[A, B]=M$.

Proof of the Key Lemma

Let $\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right) \in L_{i i}$. Let $M:=v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}$. Clearly, M is of the form

$$
M=\left(\begin{array}{cc}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times(n-i)}
\end{array}\right) .
$$

We know that there exists a nilpotent B satisfying $[A, B]=M$. Hence this B is upper nilpotent, which implies $M_{i, i+1}=0$

Proof of the Key Lemma

Let $\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right) \in L_{i j}$. Let $M:=v_{1} \otimes \phi_{2}-v_{2} \otimes \phi_{1}$. Clearly, M is of the form

$$
M=\left(\begin{array}{cc}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times(n-i)}
\end{array}\right) .
$$

We know that there exists a nilpotent B satisfying $[A, B]=M$. Hence this B is upper nilpotent, which implies $M_{i, i+1}=0$ and hence $f\left(v_{1}, \phi_{1}, v_{2}, \phi_{2}\right)=0$.

Summary

Flowchart

$$
s l(V) \times V \times V^{*}
$$

Summary

Flowchart

$$
s I(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S
$$

Summary

Flowchart

$$
s l(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { Fourier transform and }]{\text { homogeneity theorem }} S^{\prime}
$$

Summary

Flowchart

$$
S l(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { hourier transform and }]{\text { homeneity theorem }} S^{\prime} \xrightarrow[\text { integrability theorem }]{\text { Fourier transform and }} T^{\prime}
$$

Summary

Flowchart

$$
S I(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { homogeneity theorem }]{\text { Fourier transform and }} S^{\prime} \xrightarrow[\text { integrability theorem }]{\text { Fourier transform and }} T^{\prime}
$$

Summary

Flowchart

$$
\begin{gathered}
s l(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { homogeneity theorem }]{\text { Fourier transform and }} S^{\prime} \xrightarrow[\text { integrability theorem }]{\substack{\text { Fourier transform and }}} T^{\prime} \\
R_{A}<\stackrel{\text { restriction }}{ } T^{\prime}-T^{\prime \prime}
\end{gathered}
$$

Summary

Flowchart

$$
\begin{gathered}
s l(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { homogeneity theorem }]{\text { Fourier transform and }} S^{\prime} \xrightarrow[\text { integrability theorem }]{\stackrel{\text { Fourier transform and }}{ }} T^{\prime} \\
L_{i i} \cap R_{A} \leftarrow \stackrel{R_{A} \subset \cup L_{i j}}{\leftarrow} R_{A} \stackrel{\text { restriction }}{\leftarrow} T^{\prime}-T^{\prime \prime}
\end{gathered}
$$

Summary

Flowchart

$$
\begin{aligned}
& S I(V) \times V \times V^{*} \xrightarrow[\text { descent }]{\text { H.Ch. }} S \xrightarrow[\text { homogeneity theorem }]{\text { Fourier transform and }} S^{\prime} \xrightarrow[\text { integrability theorem }]{\text { Fourier transform and }} T^{\prime} \\
& \emptyset<{ }^{f\left(R_{A} \cap L_{i i}\right)=0} L_{i i} \cap R_{A} \leftarrow^{R_{A} \subset \cup L_{i j}} R_{A}<\stackrel{\text { restriction }}{ } T^{\prime}-T^{\prime \prime}
\end{aligned}
$$

