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Formulation

Let F be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every GL,(F)-invariant distribution on GL,.1(F) is
transposition invariant.
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Formulation

Let F be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every GL,(F)-invariant distribution on GL,.1(F) is
transposition invariant.

It has the following corollary in representation theory.

Let = be an irreducible admissible representation of GL 1 1(F)

and T be an irreducible admissible representation of GL,(F).
Then

dim Homgy,(ry(m, 7) < 1
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Formulation

Let F be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every GL,(F)-invariant distribution on GL,.1(F) is
transposition invariant.

It has the following corollary in representation theory.

Let = be an irreducible admissible representation of GL 1 1(F)

and T be an irreducible admissible representation of GL,(F).
Then

dim Homgy,(ry(m, 7) < 1

Similar theorems hold for orthogonal and unitary groups.
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Distributions

Let M be a smooth manifold. We denote by C°(M) the space
of smooth compactly supported functions on M. We will
consider the space (Cg°(M))* of distributions on M. Sometimes
we will also consider the space S*(M) of Schwartz distributions
on M.
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Distributions

Let M be a smooth manifold. We denote by C°(M) the space
of smooth compactly supported functions on M. We will
consider the space (Cg°(M))* of distributions on M. Sometimes
we will also consider the space S*(M) of Schwartz distributions
on M.

An /-space is a Hausdorff locally compact totally disconnected
topological space. For an ¢-space X we denote by S(X) the
space of compactly supported locally constant functions on X.

We let S*(X) := S(X)* be the space of distributions on X.
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o G:=GLy(F)x {1,0}
o Define a character x of G by X(GLn(F)) = {1},
x(G— GLy(F)) = {-1}.
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o G:=GLy(F)x {1,0}
o Define a character x of G by X(GLn(F)) = {1},
x(G— GLn(F)) ={-1}.

Equivalent formulation:

S*(GLps1(F))GX = 0.
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Equivalent formulation:

S*(glh1(F))Gx = 0.




Equivalent formulation:

S*(glh1(F))Gx = 0.

Amcn Vax1) 1 (GAgT' gv A v\ _ (A ¢’)
g<¢1xn A> _<(g*)‘1¢> A) and <¢ A) _<V’ A

«Q



Equivalent formulation:

5*(gh1(F))®x = 0.
Anxn Voxi1\ .1 _ (9Ag™ gv <A V>t_<At ¢’>

g<¢1xn A >g _<(g*)—1¢> )9 e a) T lv

o V.=F"
@ X:=sl(V)x VxV*




Equivalent formulation:

S*(glh1(F))Gx = 0.

Anxn vnx1> . <gAg‘1 QV) <A V>t <Af ¢’)
= and =
g<¢1xn x )9 (g) o A b A v\
o V.=F"
@ X:=sl(V)x VxV*
@ Gactson X by

(A v.¢)=(9Ag ', 9v.(g%)"9)
(A, v, ) = (AL ¢! vh).




Equivalent formulation:

S*(glh1(F))Gx = 0.

Ancn V, _ Ag—' gv A v\l /A 4
g<¢m "51>g - <(g*>g-1¢> gA) and <¢ A) - <v’ A)
e V:=F"
@ X:=sl(V)x VxV*
e Gactson X by
g(A,v,¢) = (9Ag ', gv,(9)¢)
(A, v, ) = (AL ¢! vh).
Equivalent formulation:

S*(X)8x = 0.




First tool: Stratification

A group G acts on a space X, and x is a character of G. We
want to show S*(X)Gx = 0.
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First tool: Stratification

A group G acts on a space X, and x is a character of G. We
want to show S*(X)Gx = 0.

Let U c X be an open G-invariant subsetand Z .= X — U.
Suppose that S*(U)GX = 0 and S}(Z)%X = 0. Then
S*(X)Gx = 0.
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First tool: Stratification

A group G acts on a space X, and x is a character of G. We
want to show S*(X)Gx = 0.

Let U c X be an open G-invariant subsetand Z .= X — U.
Suppose that S*(U)GX = 0 and S}(Z)%X = 0. Then
S*(X)Gx = 0.

0— SX(Z)GX — S*(X)GX — S*(U)Gx,
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First tool: Stratification

A group G acts on a space X, and x is a character of G. We
want to show S*(X)Gx = 0.

Let U c X be an open G-invariant subsetand Z .= X — U.
Suppose that S*(U)GX = 0 and S}(Z)%X = 0. Then
S*(X)Gx = 0.

0— S (Z)GX — S*(X)GX — S*(U)Gx,

For (-spaces, S}(Z)%x = $*(Z)Gx.
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First tool: Stratification

A group G acts on a space X, and x is a character of G. We
want to show S*(X)Gx = 0.

v

Let U c X be an open G-invariant subsetand Z .= X — U.
Suppose that S*(U)GX = 0 and S}(Z)%X = 0. Then

S*(X)Gx = 0.
0 — Sy(Z)8X — S*(X)Gx — S*(U)Gx. O

For (-spaces, S}(Z)%x = $*(Z)Gx.
For smooth manifolds, there is a slightly more complicated
statement which takes into account transversal derivatives.
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Frobenius descent

Theorem (Bernstein, Baruch, ...)

Lety : X — Z be a map.

Let G act on X and Z such that )(gx) = gy (x).
Suppose that the action of G on Z is transitive.

Suppose that both G and Stabg(z) are unimodular. Then

S*(X) GX ~ S*(Xz)StabG(z)’X.
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Generalized Harish-Chandra descent

Theorem

Let a reductive group G act on a smooth affine algebraic variety
X. Let x be a character of G. Suppose that for any a € X s.t.
the orbit Ga is closed we have

S*(NX, ,)GaX = 0.

Ga,a

Then S*(X)Gx = 0.
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Fourier transform

Let V be a finite dimensional vector space over F and Q be a
non-degenerate quadratic form on V. Let £ denote the Fourier
transform of ¢ defined using Q.

Proposition

Let G act on V linearly and preserving Q. Let § € S*( V)Gx,
Then & € S*(V)Gx.
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Fourier transform and homogeneity

@ We call a distribution £ € S*(V) abs-homogeneous of
degree d if forany t € F*,
hi(€) = u(B)|t| %,

where h; denotes the homothety action on distributions
and u is some unitary character of F*.



Fourier transform and homogeneity

@ We call a distribution £ € S*(V) abs-homogeneous of
degree d if forany t € F*,
hi(€) = u(B)|t| %,

where h; denotes the homothety action on distributions
and u is some unitary character of F*.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let ¢ € S,(Z(Q)) be s.t.
£es; v(Z(Q)). Then ¢ is abs-homogeneous of degree %dim V.




Fourier transform and homogeneity

@ We call a distribution £ € S*(V) abs-homogeneous of
degree d if forany t € F*,
hi(€) = u(B)|t| %,

where h; denotes the homothety action on distributions
and u is some unitary character of F*.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let¢ € S\ (Z(Q)) be s.t.
£es; v(Z(Q)). Then ¢ is abs-homogeneous of degree %dim V.

v

Theorem (archimedean homogeneity)

Let F be any local field. Let L C S},(Z(Q)) be a non-zero linear
subspace s. t. V¢ € L we have £elandQtel.

Then there exists a non-zero distribution £ € L which is
abs-homogeneous of degree %dimv or of degree %dimv + 1.




Singular Support and Wave Front Set

To a distribution £ on X one assigns two subsets of T*X.
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Singular Support and Wave Front Set

To a distribution £ on X one assigns two subsets of T*X.
Singular Support Wave front set
(=Characteristic variety)
Defined using D-modules | Defined using Fourier transform
Available only in the Available in both cases
Archimedean case
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Singular Support and Wave Front Set

To a distribution £ on X one assigns two subsets of T*X.
Singular Support Wave front set

(=Characteristic variety)

Defined using D-modules | Defined using Fourier transform
Available only in the Available in both cases

Archimedean case

In the non-Archimedean case we define the singular support to

be the Zariski closure of the wave front set.
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Properties and the Integrability Theorem

Let X be a smooth algebraic variety.

@ Let ¢ € S*(X). Then Supp(§) 7, = Px(SS(€)), where
px : T*X — Xis the projection.
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Properties and the Integrability Theorem

Let X be a smooth algebraic variety.
@ Let ¢ € S*(X). Then Supp(§) 7, = Px(SS(€)), where
px : T*X — Xis the projection.
@ Let an algebraic group G act on X. Let £ € S*(X)%X. Then

SS(§) c{(x,9) e T'X[Va eg ¢(a(x)) = 0}
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Properties and the Integrability Theorem

Let X be a smooth algebraic variety.
@ Let ¢ € S*(X). Then Supp(§) 7, = Px(SS(€)), where
px : T*X — X s the projection.
@ Let an algebraic group G act on X. Let £ € S*(X)%X. Then

SS(§) c{(x,9) e T'X[Va eg ¢(a(x)) = 0}

@ Let V be alinear space. Let Z C V* be a closed
subvariety, invariant with respect to homotheties. Let

¢ € §*(V). Suppose that Supp(§) € Z. Then
S§(¢)cVxZ
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Properties and the Integrability Theorem

Let X be a smooth algebraic variety.
@ Let ¢ € S*(X). Then Supp(§) 7, = Px(SS(€)), where
px : T*X — X s the projection.
@ Let an algebraic group G act on X. Let £ € S*(X)%X. Then

SS(§) c{(x,9) e T'X[Va eg ¢(a(x)) = 0}

@ Let V be alinear space. Let Z C V* be a closed
subvariety, invariant with respect to homotheties. Let

¢ € §*(V). Suppose that Supp(§) € Z. Then
S§(¢)cVxZ

@ Integrability theorem:
Let £ € S*(X). Then SS(¢) is (weakly) coisotropic.
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Coisotropic varieties

Definition

Let M be a smooth algebraic variety and w be a symplectic
form on it. Let Z C M be an algebraic subvariety. We call it
M-coisotropic if the following equivalent conditions hold.

@ At every smooth point z € Z we have T,Z > (T,Z)*. Here,
(T,Z)* denotes the orthogonal complement to 7,Z in T,M
with respect to w.

@ The ideal sheaf of regular functions that vanish on Z is
closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.
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Coisotropic varieties

Definition

Let M be a smooth algebraic variety and w be a symplectic
form on it. Let Z ¢ M be an algebraic subvariety. We call it
M-coisotropic if the following equivalent conditions hold.

@ At every smooth point z € Z we have T,Z DO (TZZ)l. Here,
(T.Z)* denotes the orthogonal complement to 7,Z in T,M
with respect to w.

@ The ideal sheaf of regular functions that vanish on Z is
closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.

@ Every non-empty coisotropic subvariety of M has
dimension at least 93X,
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Weakly coisotropic varieties

Definition

Let X be a smooth algebraic variety. Let Z C T*X be an
algebraic subvariety. We call it T*X-weakly coisotropic if one
of the following equivalent conditions holds.

@ For a generic smooth point a € px(Z) and for a generic
smooth point y € py'(a) N Z we have

CNY )2 € Ty(px'(a) N 2).

@ For any smooth point a € px(Z) the fiber py ' (a) N Z is
locally invariant with respect to shifts by CN;; 2).a
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Weakly coisotropic varieties

Let X be a smooth algebraic variety. Let Z C T*X be an
algebraic subvariety. We call it T*X-weakly coisotropic if one

of the following equivalent conditions holds.

@ For a generic smooth point a € px(Z) and for a generic
smooth point y € p)‘(1 (a) N Z we have
CNy (2).a € Ty(Px' (@) N 2).

@ For any smooth point a € px(Z) the fiber p)‘(1 (agnZis
locally invariant with respect to shifts by CN;; 2)

a

@ Every non-empty weakly coisotropic subvariety of 7*X has
dimension at least dim X.
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Definition

Let X be a smooth algebraic variety. Let Z c X be a smooth
subvariety and R C T*X be any subvariety. We define the
restriction R|; c T*Z of Rto Z by

Rz = q(px'(2) N R),

where q : py' (Z) — T*Z is the projection.

T*X o p ' (2) > T*Z



Definition

Let X be a smooth algebraic variety. Let Z c X be a smooth
subvariety and R C T*X be any subvariety. We define the
restriction R|; c T*Z of Rto Z by

Rz = q(px'(2) N R),

where q : py' (Z) — T*Z is the projection.

T*X o p ' (2) > T*Z

Let X be a smooth algebraic variety. Let Z C X be a smooth
subvariety. Let R C T*X be a (weakly) coisotropic variety.
Then, under some transversality assumption, R|; C T*Z is a
(weakly) coisotropic variety.




Harish-Chandra descent and homogeneity

S:={(A V,¢) € Xy|A" =0 and $(A'v) = 0V0 < i < n}.

A. Aizenbud Multiplicity One Theorems



Harish-Chandra descent and homogeneity

S:={(A V,¢) € Xy|A" =0 and $(A'v) = 0V0 < i < n}.

By Harish-Chandra descent we can assume that any
¢ € 8*(X)%x is supported in S.

A. Aizenbud Multiplicity One Theorems



Harish-Chandra descent and homogeneity

S:={(A V,¢) € Xy|A" =0 and $(A'v) = 0V0 < i < n}.

By Harish-Chandra descent we can assume that any
¢ € 8*(X)%x is supported in S.

S :={(A v,¢) € SIA v = (A)"1p =0}.
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Harish-Chandra descent and homogeneity

S:={(A V,¢) € Xy|A" =0 and $(A'v) = 0V0 < i < n}.

By Harish-Chandra descent we can assume that any
¢ € 8*(X)%x is supported in S.

S :={(A v,¢) € SIA v = (A)"1p =0}.

By the homogeneity theorem, the stratification method and

Frobenius descent we get that any ¢ € S*(X)E’VX is supported in
S
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Reduction to the geometric statement

T = {((A1,v1, 1), (A2, v2,42)) € X x X|Vi,j € {1,2}
(Ai, v, ¢j) € S and [A1, Aol + Vi ® ¢ — Vo ® ¢1 = O}
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Reduction to the geometric statement

T = {((A1,v1, 1), (A2, v2,42)) € X x X|Vi,j € {1,2}
(Ai, v, ¢j) € S and [A1, Aol + Vi ® ¢ — Vo ® ¢1 = O}

It is enough to show:

Theorem (The geometric statement)

There are no non-empty X x X-weakly coisotropic subvarieties
of T'.
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Reduction to the Key Lemma

T" = {((A1,v1, 1), (A2, V2, $2)) € T'|AT" = 0}.
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Reduction to the Key Lemma

T" = {((A1,v1, 1), (A2, V2, $2)) € T'|AT" = 0}.

It is easy to see that there are no non-empty X x X-weakly
coisotropic subvarieties of T”.
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Reduction to the Key Lemma

T" = {((A1,v1, 1), (A2, V2, $2)) € T'|AT" = 0}.

It is easy to see that there are no non-empty X x X-weakly
coisotropic subvarieties of T”.

Let A € sl(V) be a nilpotent Jordan block. Denote
Ra:= (T - T//)’{A}x Vx V-
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Reduction to the Key Lemma

T" = {((A1,v1, 1), (A2, V2, $2)) € T'|AT" = 0}.

It is easy to see that there are no non-empty X x X-weakly
coisotropic subvarieties of T”.

Let A € sl(V) be a nilpotent Jordan block. Denote
Ra:= (T - T//)’{A}x Vx V-

It is enough to show:

Lemma (Key Lemma)

There are no non-empty V x V* x V x V*-weakly coisotropic
subvarieties of Ry.
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Proof of the Key Lemma

n—1
Qa =8 N ({A} x V x V) = | J(KerA') x (Ker(A*)"™)
i=1
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Proof of the Key Lemma

n—1
Qa =8 N ({A} x V x V) = | J(KerA') x (Ker(A*)"™)
i=1

It is easy to see that R4 C Qa x Qa
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Proof of the Key Lemma

n—1

Qa =8 N ({A} x V x V*) = | J (KerA) x (Ker(A")"™")

i=1

Itis easy to see that Ra C Qa x Qa and Qa x Qa = Ui, L,
where

Lj := (KerA') x (Ker(A*)"™) x (KerA) x (Ker(A*)").
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Proof of the Key Lemma

n—1
Qa =8 N ({A} x V x V) = | J(KerA') x (Ker(A*)"™)
i=1

Itis easy to see that Ra C Qa x Qa and Qa x Qa = Ui, L,
where

Lj := (KerA') x (Ker(A*)"™) x (KerA) x (Ker(A*)").

It is easy to see that any weakly coisotropic subvariety of
Qa x Qa is contained in J7 L.
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Proof of the Key Lemma

n—1
Qa =8 N ({A} x V x V) = | J(KerA') x (Ker(A*)"™)

i=1

Itis easy to see that Ra C Qa x Qa and Qa x Qa = Ui, L,
where

Lj := (KerA') x (Ker(A*)"™) x (KerA) x (Ker(A*)").

It is easy to see that any weakly coisotropic subvariety of
Qa x Q4 is contained in U,f’;ﬂ L;. Hence it is enough to show
that for any 0 < i < n, we have dim Ry N L;; < 2n.
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Proof of the Key Lemma

n—1
Qa =8 N ({A} x V x V) = | J(KerA') x (Ker(A*)"™)
i=1

Itis easy to see that Ra C Qa x Qa and Qa x Qa = Ui, L,
where

Lj := (KerA') x (Ker(A*)"™) x (KerA) x (Ker(A*)").

It is easy to see that any weakly coisotropic subvariety of

Qa x Q4 is contained in U,f’;ﬂ L;. Hence it is enough to show
that for any 0 < i < n, we have dimRa N L; < 2n. Let f € O(L;)
be the polynomial defined by

f(v1, 01, Vo, ¢2) := (V1) i(@2)it1 — (V2)i(P1)is1-
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Proof of the Key Lemma

n—1
Qa =8 N ({A} x V x V) = | J(KerA') x (Ker(A*)"™)
i=1

Itis easy to see that Ra C Qa x Qa and Qa x Qa = Ui, L,
where
Lj := (KerA') x (Ker(A*)"™) x (KerA) x (Ker(A*)").

It is easy to see that any weakly coisotropic subvariety of

Qa x Q4 is contained in U,f’;ﬂ L;. Hence it is enough to show
that for any 0 < i < n, we have dimRa N L; < 2n. Let f € O(L;)
be the polynomial defined by

f(v1, 91, Vo, ¢2) = (V1)i(@2)iv1 — (V2)i(#1)it1-
It is enough to show that f(Ra N L) = {0}.
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Proof of the Key Lemma

Let (v4, 1, Vo, ¢2) € Lji. Let M := vy @ 2 — Vo ® ¢y4.
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Proof of the Key Lemma

Let (vq, ¢1, Vo, ¢2) € Lj. Let M := v{ ® ¢o — Vo ® ¢4. Clearly, M
is of the form

M— < Ojxi * > .
On—iyxi  O(n=iyx(n—i)
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Proof of the Key Lemma

Let (vq, ¢1, Vo, ¢2) € Lj. Let M := v{ ® ¢o — Vo ® ¢4. Clearly, M
is of the form

M— < Ojxi * > _
On—iyxi  O(n=iyx(n—i)

We know that there exists a nilpotent B satisfying [A, B] = M.
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Proof of the Key Lemma

Let (vq, ¢1, Vo, ¢2) € Lj. Let M := v{ ® ¢o — Vo ® ¢4. Clearly, M
is of the form

M— < Ojxi * > _
On—iyxi  O(n=iyx(n—i)

We know that there exists a nilpotent B satisfying [A, B] = M.
Hence this B is upper nilpotent, which implies M; ;1 =0
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Proof of the Key Lemma

Let (vq, ¢1, Vo, ¢2) € Lj. Let M := v{ ® ¢o — Vo ® ¢4. Clearly, M
is of the form

M= < Ojxi * > _
On—iyxi  O(n=iyx(n—i)
We know that there exists a nilpotent B satisfying [A, B] = M.

Hence this B is upper nilpotent, which implies M; ;.1 = 0 and
hence f(vy, #1, v2, ¢2) = 0.
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Summary

Flowchart

sl(V) x V x v*
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Summary

Flowchart

H.Ch.
descent

sl(V) x V x v*
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Flowchart

S/( V) < V x V* H.Ch. Fourier transformand

descent homogeneity theorem
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Summary

Flowchart

y Fourier transform and

descent homogeneity theorem integrability theorem

!

S/( V) < V x V* H.Ch. Fourier transform and
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Flowchart

y Fourier transform and

descent homogeneity theorem integrability theorem

!

S/( V) < V x V* H.Ch. Fourier transform and

T — T
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Summary

Flowchart

, Fourier transform and ;

descent homogeneity theorem integrability theorem

S/( V) < V x V* H.Ch. Fourier transform and

restriction
Ry <—

T — T
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Summary

Flowchart

S/( V) < V x V* H.Ch. Fourier trarisform and 4, F.our/er tr'a.nsform and .,
descent homogeneity theorem integrability theorem
RaCUL; restriction
Lin Ra Ra T-T
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Flowchart

H.Ch. Fourier transform and Fourier transform and
sl(V) x V x v* : = = !
descent homogeneity theorem integrability theorem
f(RaNL;})=0 RaCU Lj restriction
) =— L,',' n RA RA T —T"
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