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Theorem

The category M(P,) of smooth P, representations is
equivalent to the category of G,_ equivariant sheaves on A"’

Proof.

M(Pn) = M(H(Pp)) = M(H(Gp—1 A”_1)) —
= M(H(Gn_1) ® H(A"")) = M(H(Gn_1) ® S(A™))
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We have a short exact sequence

00— M(Pn_1) = M(Pp) - M(Gp_1) — 0
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The p-adic case

We have a short exact sequence

00— M(Pn_1) = M(Pp) - M(Gp_1) — 0

Definition

@ ¢: M(Py) — M(Pp_4) — the restriction
o DK = Wo k-1
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The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra and K be its maximal compact subgroup.

Definition

A (g, K)-module is a g-module = with a locally finite action of K
such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any
representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let 7 be a finitely generated (g, K)-module. Then the following
properties of = are equivalent.

@ 7 is admissible.
@ 1w has finite length.

@ 1 is Zg-finite.

@ 7 is finitely generated over n.
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Denote by M, (G) the category of smooth admissible Fréchet
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The category of smooth admissible representations

Definition

Denote by M, (G) the category of smooth admissible Fréchet
representations of G of moderate growth and by M y¢(G) the
category of admissible Harish-Chandra modules.

We denote by HC : M.(G) — Myc(G) the functor of K-finite
vectors.

Theorem (Casselman-Wallach)

The functor HC : M.(G) — Mpc(G) is an equivalence of
categories.
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Definitions

Define a functor ® : M(p,) — M(pnp_1) by
O(7) = To,y ® |dlet| =12,
For a p,-module = we have 3 notions of derivative:
@ Di(r) :== ok (7) @ |det| =12 = my, _, y,_, ® |det|K/2.
Clearly it has a structure of a p,_x.1 - representation.
® D(r) = D&(m) = (D¥(7))gen,o, .- Here vp_, 1 is the
nil-radical of p,_x1 and -gen,v, .., denotes the generalized
co-invariants.
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Definitions

Define a functor ® : M(p,) — M(pnp_1) by
(1) 1= Ty, 4 @ |det| /2.

For a p,-module = we have 3 notions of derivative:

@ Di(r) :== ok (7) @ |det| =12 = my, _, y,_, ® |det|K/2.
Clearly it has a structure of a p,_x.1 - representation.

® D(r) = D&(m) = (D¥(7))gen,o, .- Here vp_, 1 is the
nil-radical of p,_x1 and -gen,v, .., denotes the generalized
co-invariants.

@ Di(r) = (D4(m))o, y1-

@ depth(m) —the largest part in the associated partition of =
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o D11(7T) :7T|Gn_1,

depth(r) =1 <= nisfd. <= Df(x) =0forany k > 1.
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o D11(7T) :7T|Gn_1,

depth(r) =1 <= nisfd. <= Df(x) =0forany k > 1.

@ D! = ()" is the Whittaker functor.

]

depth(m) = n <= DJ(r) # 0
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Theorem (A. - Gourevitch - Sahi)

Let M9 (G,,) denote the subcategory of representations of
depth < d. Then

e DY defines a functor M2 (Gpn) — Moo(Gn_q)-
@ The functor DS : M3(Gp) — Moo(Gn_q) is exact.
@ Forany m € M3, (Gy), DI(n) = DY ().

® Df|d (G, =0 forany k > d.

@ Letn=ny + ...+ ng and let x; be characters of Gp,. Let
T =X X ... X xg € M2 (Gp,) denote the corresponding
degenerate principal series representation. Then
depth(m) = d and
Df(m) = D§ () = D§(m) = (x1)lG, s * - * (xd)lGy, -

@ For a unitarizable representation =

D{(x) = D§(r) = D(r) = A(r)
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Steps in the proof

@ We prove admissibility of D{(r) in the HC-category —
Mtc.d(G)

@ We deduce Df| a1, 4(6) = Df | ry(Gn)-

© We deduce Df| s, (G, = 0 forany k > d.

@ We prove exactness of D} and Hausdorffness of D} (r) in
the smooth category

©@ Using the Hausdorffness we deduce 1-3 in the smooth
category

© Using the exactness we prove the product formula in the
smooth category

@ We deduce from the product formula that for a unitarizable
representation

DY(r) = D(x) = D§(x) = A(r)
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Applications

@ Uniqueness of degenerate Whittaker functionals for unitary
representations.

Whin,. ) (T) = (- (D (7)) )« DP¥(--+ (D] (7)) )
DI (DR (xt %+ X xa)) )

@ Computation of adduced representations of Speh
complementary series

X1 X X2 X X3 X X4 = Dam

Asm—4 « x1la,_, X x2lG,_, X X3lG,_, X XalG,_, =
= D}(x1 % x2 X X3 X x4) = D{(Dam) — A(Dam)
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We need — D¢ () is finitely generated over n,_g4
We know — DY(r) is finitely generated over n,_g., 1
We use

@ Annihilator variety — V()

@ Associated variety — AV(n)

® AV(w) C V(n)

A. Aizenbud Derivatives for representations of GL(n, R) and GL(n, C)



Admissibility

We need — D¢ () is finitely generated over n,_g4
We know — DY(r) is finitely generated over n,_g., 1
We use

@ Annihilator variety — V()

@ Associated variety — AV(n)

® AV(w) C V(n)

depth(m) = d = constrains on Vy(7) =
= AV,

' ger (DS (7)) C iy = DY(n) is f.g. over n, 4
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Exactness and Hausdorffness

@ Strategy 1 — @ is equivalent to a restriction functor = has
to be exact
Problem — we do not have the language

@ Strategy 2 — [CHM] method: reduction to acyclicity of
principal series and proof orbit by orbit.
Problems

@ Unlike [CHM] there are oo orbits
@ Unlike [CHM] there are bad orbits

Solution — to introduce a class of “good" p, representations
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Good p, representations

S(Pn/Q)

® L'd(S(Pn/Q))=0fori>0
® ®(S(Py/Q)) = S(Z) for suitable Zy C Z := P,/(QV,)
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The product formula

The BZ product formula:

K(m x 1) ZDI(W x DK=!(7)

A. Aizenbud Derivatives for representations of GL(n, R) and GL(n, C)



The product formula

The BZ product formula:
(mxT) Z D'(x) x D*=!(7)

Problems

A. Aizenbud Derivatives for representations of GL(n, R) and GL(n, C)



The product formula

The BZ product formula:
(mxT) Z D'(x) x D*=!(7)

Problems
@ Not true for Df,z

A. Aizenbud Derivatives for representations of GL(n, R) and GL(n, C)



The product formula

The BZ product formula:
(mxT) Z D'(x) x D*=!(7)

Problems
@ Not true for Df,

@ might be true for D but without exactness we can’t prove
it.
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The BZ product formula:
(mxT) Z D'(x) x D*=!(7)

Problems
@ Not true for Dk,
@ might be true for D but without exactness we can’t prove
it.
@ we do not have appropriate language of oo dimensional
bundles.

Compromise — prove it only for the highest derivatives and only
for characters.
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The product formula

The BZ product formula:
(mxT) Z D'(x) x D*=!(7)

Problems
@ Not true for Dk,
@ might be true for D but without exactness we can’t prove
it.
@ we do not have appropriate language of oo dimensional
bundles.

Compromise — prove it only for the highest derivatives and only
for characters.
Method — exactness, key lemma, induction
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