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The p-adic case

Definition

Pn =



∗ · · · ∗ ∗
...

. . .
...

...
∗ · · · ∗ ∗
0 · · · 0 1


 ⊂ Gn := GLn

Theorem
The categoryM(Pn) of smooth Pn representations is
equivalent to the category of Gn−1 equivariant sheaves on An−1

Proof.

M(Pn) =M(H(Pn)) =M(H(Gn−1 n An−1)) =

=M(H(Gn−1)⊗H(An−1)) ∼=M(H(Gn−1)⊗ S(An−1))
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The p-adic case

Corollary
We have a short exact sequence

0→M(Pn−1)→M(Pn)→M(Gn−1)→ 0

Definition

Φ :M(Pn)→M(Pn−1) – the restriction
Ψ :M(Pn)→M(Gn−1) – the fiber
Dk = Ψ ◦ Φk−1
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The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra and K be its maximal compact subgroup.

Definition
A (g,K )-module is a g-module π with a locally finite action of K
such the two actions are compatible.
A finitely generated (g,K )-module is called admissible if any
representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (g,K )-module. Then the following
properties of π are equivalent.

π is admissible.
π has finite length.

π is ZG-finite.

π is finitely generated over n.
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The category of smooth admissible representations

Definition
Denote byM∞(G) the category of smooth admissible Fréchet
representations of G of moderate growth and byMHC(G) the
category of admissible Harish-Chandra modules.
We denote by HC :M∞(G)→MHC(G) the functor of K -finite
vectors.

Theorem (Casselman-Wallach)

The functor HC :M∞(G)→MHC(G) is an equivalence of
categories.
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Definitions

Definition
Define a functor Φ :M(pn)→M(pn−1) by
Φ(π) := πvn,ψ ⊗ |det |−1/2.

Definition
For a pn-module π we have 3 notions of derivative:

Dk
1 (π) := Φk−1(π)⊗ |det |−1/2 = πuk−1,ψk−1 ⊗ |det |−k/2.

Clearly it has a structure of a pn−k+1 - representation.
Dk (π) = Dk

2 (π) = (Dk
1 (π))gen,vn−k+1 . Here vn−k+1 is the

nil-radical of pn−k+1 and ·gen,vn−k+1 denotes the generalized
co-invariants.
Dk

3 (π) = (Dk
1 (π))vn−k+1 .

depth(π) – the largest part in the associated partition of π
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Examples

D1
1(π) = π|Gn−1 ,

depth(π) = 1⇐⇒ π is f.d. ⇐⇒ Dk
i (π) = 0 for any k > 1.

Dn
i = (Φ)n−1 is the Whittaker functor.

depth(π) = n⇐⇒ Dn
2(π) 6= 0
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Theorem (A. - Gourevitch - Sahi)

LetMd
∞(Gn) denote the subcategory of representations of

depth ≤ d. Then

Dd
2 defines a functorMd

∞(Gn)→M∞(Gn−d ).

The functor Dd
2 :Md

∞(Gn)→M∞(Gn−d ) is exact.

For any π ∈Md
∞(Gn), Dd

2 (π) = Dd
1 (π).

Dk
2 |Md

∞(Gn) = 0 for any k > d.

Let n = n1 + ...+ nd and let χi be characters of Gni . Let
π = χ1 × ...× χd ∈Md

∞(Gn) denote the corresponding
degenerate principal series representation. Then
depth(π) = d and
Dd

1 (π) = Dd
2 (π) = Dd

3 (π) ∼= (χ1)|Gn1−1 × ...× (χd )|Gnd−1

For a unitarizable representation π

Dd
1 (π) = Dd

2 (π) = Dd
3 (π) = A(π)
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Steps in the proof

1 We prove admissibility of Dd
1 (π) in the HC-category –

MHC,d (G)

2 We deduce Dd
2 |MHC,d (G) = Dd

1 |Md (Gn).
3 We deduce Dk

i |MHC,d (Gn) = 0 for any k > d .
4 We prove exactness of Di

1 and Hausdorffness of Di
1(π) in

the smooth category
5 Using the Hausdorffness we deduce 1-3 in the smooth

category
6 Using the exactness we prove the product formula in the

smooth category
7 We deduce from the product formula that for a unitarizable

representation π

Dd
1 (π) = Dd

2 (π) = Dd
3 (π) = A(π)
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Applications

Uniqueness of degenerate Whittaker functionals for unitary
representations.

Wh(n1,...,nk )(τ) = Dnk
3 (· · · (Dn1

3 (τ)) · · · ) � Dnk
1 (· · · (Dn1

1 (τ)) · · · )
� Dnk

1 (· · · (Dn1
1 (χ1 × · · · × χd )) · · · )

Computation of adduced representations of Speh
complementary series

χ1 × χ2 × χ3 × χ4 � ∆4m

∆4m−4 � χ1|Gm−1 × χ2|Gm−1 × χ3|Gm−1 × χ4|Gm−1 =

= D4
1(χ1 × χ2 × χ3 × χ4) � D4

1(∆4m) � A(∆4m)
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Admissibility

We need – Dd
1 (π) is finitely generated over nn−d

We know – Dd
1 (π) is finitely generated over nn−d+1

We use

Annihilator variety – V(π)

Associated variety – AV (π)

AV (π) ⊂ V(π)

depth(π) = d ⇒ constrains on Vg(π)⇒
⇒ AVnn−d+1(Dd

1 (π)) ⊂ n∗n−d ⇒ Dd
1 (π) is f.g. over nn−d
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Exactness and Hausdorffness

Strategy 1 – Φ is equivalent to a restriction functor⇒ has
to be exact
Problem – we do not have the language
Strategy 2 – [CHM] method: reduction to acyclicity of
principal series and proof orbit by orbit.
Problems

1 Unlike [CHM] there are∞ orbits
2 Unlike [CHM] there are bad orbits

Solution – to introduce a class of “good" pn representations
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Good pn representations

Example

S(Pn/Q)

Key Lemma

LiΦ(S(Pn/Q)) = 0 for i > 0
Φ(S(Pn/Q)) = S(Z0) for suitable Z0 ⊂ Z := Pn/(QVn)
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The product formula

The BZ product formula:

Dk (π × τ) ∼
∑

Dl(π)× Dk−l(τ)

Problems
Not true for Dk

1,2

might be true for Dk
3 but without exactness we can’t prove

it.
we do not have appropriate language of∞ dimensional
bundles.

Compromise – prove it only for the highest derivatives and only
for characters.
Method – exactness, key lemma, induction
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