Derivatives for representations of $G L(n, \mathbb{R})$ and $G L(n, \mathbb{C})$

A. Aizenbud

Massachusetts Institute of Technology

Joint with Dmitry Gourevitch and Siddhartha Sahi

http://math.mit.edu/~aizenr

The p-adic case

The p－adic case

Definition

$$
P_{n}=\left\{\left(\begin{array}{cccc}
* & \cdots & * & * \\
\vdots & \ddots & \vdots & \vdots \\
* & \cdots & * & * \\
0 & \cdots & 0 & 1
\end{array}\right)\right\} \subset G_{n}:=G L_{n}
$$

The p-adic case

Definition

$$
P_{n}=\left\{\left(\begin{array}{cccc}
* & \cdots & * & * \\
\vdots & \ddots & \vdots & \vdots \\
* & \cdots & * & * \\
0 & \cdots & 0 & 1
\end{array}\right)\right\} \subset G_{n}:=G L_{n}
$$

Theorem

The category $\mathcal{M}\left(P_{n}\right)$ of smooth P_{n} representations is equivalent to the category of G_{n-1} equivariant sheaves on \mathbb{A}^{n-1}

The p-adic case

Definition

$$
P_{n}=\left\{\left(\begin{array}{cccc}
* & \cdots & * & * \\
\vdots & \ddots & \vdots & \vdots \\
* & \cdots & * & * \\
0 & \cdots & 0 & 1
\end{array}\right)\right\} \subset G_{n}:=G L_{n}
$$

Theorem

The category $\mathcal{M}\left(P_{n}\right)$ of smooth P_{n} representations is equivalent to the category of G_{n-1} equivariant sheaves on \mathbb{A}^{n-1}

Proof.

$$
\begin{aligned}
& \mathcal{M}\left(P_{n}\right)=\mathcal{M}\left(\mathcal{H}\left(P_{n}\right)\right)=\mathcal{M}\left(\mathcal{H}\left(G_{n-1} \ltimes \mathbb{A}^{n-1}\right)\right)= \\
& \quad=\mathcal{M}\left(\mathcal{H}\left(G_{n-1}\right) \otimes \mathcal{H}\left(\mathbb{A}^{n-1}\right)\right) \cong \mathcal{M}\left(\mathcal{H}\left(G_{n-1}\right) \otimes \mathcal{S}\left(\mathbb{A}^{n-1}\right)\right)
\end{aligned}
$$

The p-adic case

The p-adic case

Corollary

We have a short exact sequence

$$
0 \rightarrow \mathcal{M}\left(P_{n-1}\right) \rightarrow \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right) \rightarrow 0
$$

The p-adic case

Corollary

We have a short exact sequence

$$
0 \rightarrow \mathcal{M}\left(P_{n-1}\right) \rightarrow \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right) \rightarrow 0
$$

Definition

- $\Phi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(P_{n-1}\right)$ - the restriction

The p-adic case

Corollary

We have a short exact sequence

$$
0 \rightarrow \mathcal{M}\left(P_{n-1}\right) \rightarrow \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right) \rightarrow 0
$$

Definition

- $\Phi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(P_{n-1}\right)$ - the restriction
- $\Psi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right)$ - the fiber

The p-adic case

Corollary

We have a short exact sequence

$$
0 \rightarrow \mathcal{M}\left(P_{n-1}\right) \rightarrow \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right) \rightarrow 0
$$

Definition

- $\Phi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(P_{n-1}\right)$ - the restriction
- $\Psi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right)$ - the fiber
- $D^{k}=\psi \circ \Phi^{k-1}$

The Harish－Chandra category

The Harish-Chandra category

Let G be a real reductive group

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K)-module. Then the following properties of π are equivalent.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K)-module. Then the following properties of π are equivalent.

- π is admissible.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K)-module. Then the following properties of π are equivalent.

- π is admissible.
- π has finite length.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K)-module. Then the following properties of π are equivalent.

- π is admissible.
- π has finite length.
- π is Z_{G}-finite.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K)-module. Then the following properties of π are equivalent.

- π is admissible.
- π has finite length.
- π is Z_{G}-finite.
- π is finitely generated over \mathfrak{n}.

The category of smooth admissible representations

The category of smooth admissible representations

Definition

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of G of moderate growth

The category of smooth admissible representations

Definition

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of G of moderate growth and by $\mathcal{M}_{H C}(G)$ the category of admissible Harish-Chandra modules.

The category of smooth admissible representations

Definition

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of G of moderate growth and by $\mathcal{M}_{H C}(G)$ the category of admissible Harish-Chandra modules. We denote by $H C: \mathcal{M}_{\infty}(G) \rightarrow \mathcal{M}_{H C}(G)$ the functor of K-finite vectors.

The category of smooth admissible representations

Definition

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of G of moderate growth and by $\mathcal{M}_{H C}(G)$ the category of admissible Harish-Chandra modules.
We denote by $H C: \mathcal{M}_{\infty}(G) \rightarrow \mathcal{M}_{H C}(G)$ the functor of K-finite vectors.

Theorem (Casselman-Wallach)

The functor $H C: \mathcal{M}_{\infty}(G) \rightarrow \mathcal{M}_{H C}(G)$ is an equivalence of categories.

Definitions

A. Aizenbud

Derivatives for representations of $G L(n, \mathbb{R})$ and $G L(n, \mathbb{C})$

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(\mathfrak{p}_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(p_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definition

For a \mathfrak{p}_{n}-module π we have 3 notions of derivative:

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(\mathfrak{p}_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definition

For a \mathfrak{p}_{n}-module π we have 3 notions of derivative:

- $D_{1}^{k}(\pi):=\Phi^{k-1}(\pi) \otimes|\operatorname{det}|^{-1 / 2}=\pi_{\mathfrak{u}_{k-1}, \psi_{k-1}} \otimes|\operatorname{det}|^{-k / 2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(\mathfrak{p}_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definition

For a \mathfrak{p}_{n}-module π we have 3 notions of derivative:

- $D_{1}^{k}(\pi):=\Phi^{k-1}(\pi) \otimes|\operatorname{det}|^{-1 / 2}=\pi_{\mathfrak{u}_{k-1}, \psi_{k-1}} \otimes|\operatorname{det}|^{-k / 2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.
- $D^{k}(\pi)=D_{2}^{k}(\pi)=\left(D_{1}^{k}(\pi)\right)_{g e n, \mathfrak{v}_{n-k+1}}$. Here \mathfrak{v}_{n-k+1} is the nil-radical of \mathfrak{p}_{n-k+1} and \cdot gen, \mathfrak{v}_{n-k+1} denotes the generalized co-invariants.

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(\mathfrak{p}_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definition

For a \mathfrak{p}_{n}-module π we have 3 notions of derivative:

- $D_{1}^{k}(\pi):=\Phi^{k-1}(\pi) \otimes|\operatorname{det}|^{-1 / 2}=\pi_{\mathfrak{u}_{k-1}, \psi_{k-1}} \otimes|\operatorname{det}|^{-k / 2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.
- $D^{k}(\pi)=D_{2}^{k}(\pi)=\left(D_{1}^{k}(\pi)\right)_{g e n, \mathfrak{v}_{n-k+1}}$. Here \mathfrak{v}_{n-k+1} is the nil-radical of \mathfrak{p}_{n-k+1} and \cdot gen, \mathfrak{v}_{n-k+1} denotes the generalized co-invariants.
- $D_{3}^{k}(\pi)=\left(D_{1}^{k}(\pi)\right)_{\mathfrak{v}_{n-k+1}}$.

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(\mathfrak{p}_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definition

For a \mathfrak{p}_{n}-module π we have 3 notions of derivative:

- $D_{1}^{k}(\pi):=\Phi^{k-1}(\pi) \otimes|\operatorname{det}|^{-1 / 2}=\pi_{\mathfrak{u}_{k-1}, \psi_{k-1}} \otimes|\operatorname{det}|^{-k / 2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.
- $D^{k}(\pi)=D_{2}^{k}(\pi)=\left(D_{1}^{k}(\pi)\right)_{g e n, \mathfrak{v}_{n-k+1}}$. Here \mathfrak{v}_{n-k+1} is the nil-radical of \mathfrak{p}_{n-k+1} and \cdot gen, \mathfrak{v}_{n-k+1} denotes the generalized co-invariants.
- $D_{3}^{k}(\pi)=\left(D_{1}^{k}(\pi)\right)_{\mathfrak{v}_{n-k+1}}$.
- depth (π) - the largest part in the associated partition of π

Examples

Examples

- $D_{1}^{1}(\pi)=\left.\pi\right|_{G_{n-1}}$,
$\operatorname{depth}(\pi)=1 \Longleftrightarrow \pi$ is f.d. $\Longleftrightarrow D_{i}^{k}(\pi)=0$ for any $k>1$.

Examples

- $D_{1}^{1}(\pi)=\left.\pi\right|_{G_{n-1}}$,
$\operatorname{depth}(\pi)=1 \Longleftrightarrow \pi$ is f.d. $\Longleftrightarrow D_{i}^{k}(\pi)=0$ for any $k>1$.
- $D_{i}^{n}=(\Phi)^{n-1}$ is the Whittaker functor.

$$
\operatorname{depth}(\pi)=n \Longleftrightarrow D_{2}^{n}(\pi) \neq 0
$$

Theorem (A. - Gourevitch - Sahi)

Theorem (A. - Gourevitch - Sahi)
Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

Theorem (A. - Gourevitch - Sahi)
Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D_{2}^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.

Theorem (A. - Gourevitch - Sahi)
Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D_{2}^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D_{2}^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.

Theorem (A. - Gourevitch - Sahi)
Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D_{2}^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D_{2}^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D_{2}^{d}(\pi)=D_{1}^{d}(\pi)$.

Theorem (A. - Gourevitch - Sahi)
Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D_{2}^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D_{2}^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D_{2}^{d}(\pi)=D_{1}^{d}(\pi)$.
- $\left.D_{2}^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.

Theorem (A. - Gourevitch - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D_{2}^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D_{2}^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D_{2}^{d}(\pi)=D_{1}^{d}(\pi)$.
- $\left.D_{2}^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- Let $n=n_{1}+\ldots+n_{d}$

Theorem (A. - Gourevitch - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D_{2}^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D_{2}^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D_{2}^{d}(\pi)=D_{1}^{d}(\pi)$.
- $\left.D_{2}^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$.

Theorem (A. - Gourevitch - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D_{2}^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D_{2}^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D_{2}^{d}(\pi)=D_{1}^{d}(\pi)$.
- $\left.D_{2}^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$. Let $\pi=\chi_{1} \times \ldots \times \chi_{d} \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the corresponding degenerate principal series representation.

Theorem (A. - Gourevitch - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D_{2}^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D_{2}^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D_{2}^{d}(\pi)=D_{1}^{d}(\pi)$.
- $\left.D_{2}^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$. Let $\pi=\chi_{1} \times \ldots \times \chi_{d} \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the corresponding degenerate principal series representation. Then $\operatorname{depth}(\pi)=d$ and $D_{1}^{d}(\pi)=D_{2}^{d}(\pi)=\left.D_{3}^{d}(\pi) \cong\left(\chi_{1}\right)\right|_{G_{n_{1}-1}} \times \ldots \times\left.\left(\chi_{d}\right)\right|_{G_{n_{d}-1}}$

Theorem (A. - Gourevitch - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D_{2}^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D_{2}^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D_{2}^{d}(\pi)=D_{1}^{d}(\pi)$.
- $\left.D_{2}^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$. Let $\pi=\chi_{1} \times \ldots \times \chi_{d} \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the corresponding degenerate principal series representation. Then $\operatorname{depth}(\pi)=d$ and $D_{1}^{d}(\pi)=D_{2}^{d}(\pi)=\left.D_{3}^{d}(\pi) \cong\left(\chi_{1}\right)\right|_{G_{n_{1}-1}} \times \ldots \times\left.\left(\chi_{d}\right)\right|_{G_{n_{d}-1}}$
- For a unitarizable representation π

$$
D_{1}^{d}(\pi)=D_{2}^{d}(\pi)=D_{3}^{d}(\pi)=A(\pi)
$$

Steps in the proof

Steps in the proof

(1) We prove admissibility of $D_{1}^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$

Steps in the proof

(1) We prove admissibility of $D_{1}^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$
(2) We deduce $\left.D_{2}^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.D_{1}^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.

Steps in the proof

(1) We prove admissibility of $D_{1}^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$
(2) We deduce $\left.D_{2}^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.D_{1}^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.
(3) We deduce $\left.D_{i}^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=0$ for any $k>d$.

Steps in the proof

(1) We prove admissibility of $D_{1}^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$
(2) We deduce $\left.D_{2}^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.D_{1}^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.
(3) We deduce $\left.D_{i}^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=0$ for any $k>d$.
(4) We prove exactness of D_{1}^{i} and Hausdorffness of $D_{1}^{i}(\pi)$ in the smooth category

Steps in the proof

(1) We prove admissibility of $D_{1}^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$
(2) We deduce $\left.D_{2}^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.D_{1}^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.
(3) We deduce $\left.D_{i}^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=0$ for any $k>d$.
(4) We prove exactness of D_{1}^{i} and Hausdorffness of $D_{1}^{i}(\pi)$ in the smooth category
(5) Using the Hausdorffness we deduce 1-3 in the smooth category

Steps in the proof

(1) We prove admissibility of $D_{1}^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$
(2) We deduce $\left.D_{2}^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.D_{1}^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.
(3) We deduce $\left.D_{i}^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=0$ for any $k>d$.
(4) We prove exactness of D_{1}^{i} and Hausdorffness of $D_{1}^{i}(\pi)$ in the smooth category
(5) Using the Hausdorffness we deduce 1-3 in the smooth category
(6) Using the exactness we prove the product formula in the smooth category

Steps in the proof

(1) We prove admissibility of $D_{1}^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$
(2) We deduce $\left.D_{2}^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.D_{1}^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.
(3) We deduce $\left.D_{i}^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=0$ for any $k>d$.
(9) We prove exactness of D_{1}^{i} and Hausdorffness of $D_{1}^{i}(\pi)$ in the smooth category
(6) Using the Hausdorffness we deduce 1-3 in the smooth category
(0) Using the exactness we prove the product formula in the smooth category
(3) We deduce from the product formula that for a unitarizable representation π

$$
D_{1}^{d}(\pi)=D_{2}^{d}(\pi)=D_{3}^{d}(\pi)=A(\pi)
$$

Applications

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations.

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations.

$$
\begin{aligned}
& W h_{\left(n_{1}, \ldots, n_{k}\right)}(\tau)=D_{3}^{n_{k}}\left(\cdots\left(D_{3}^{n_{1}}(\tau)\right) \cdots\right) 世 D_{1}^{n_{k}}\left(\cdots\left(D_{1}^{n_{1}}(\tau)\right) \cdots\right) \\
& \leftarrow D_{1}^{n_{k}}\left(\cdots\left(D_{1}^{n_{1}}\left(\chi_{1} \times \cdots \times \chi_{d}\right)\right) \cdots\right)
\end{aligned}
$$

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations.

$$
\begin{aligned}
& W h_{\left(n_{1}, \ldots, n_{k}\right)}(\tau)=D_{3}^{n_{k}}\left(\cdots\left(D_{3}^{n_{1}}(\tau)\right) \cdots\right) \leftarrow D_{1}^{n_{k}}\left(\cdots\left(D_{1}^{n_{1}}(\tau)\right) \cdots\right) \\
& \leftarrow D_{1}^{n_{k}}\left(\cdots\left(D_{1}^{n_{1}}\left(\chi_{1} \times \cdots \times \chi_{d}\right)\right) \cdots\right)
\end{aligned}
$$

- Computation of adduced representations of Speh complementary series

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations.

$$
\begin{aligned}
& W h_{\left(n_{1}, \ldots, n_{k}\right)}(\tau)=D_{3}^{n_{k}}\left(\cdots\left(D_{3}^{n_{1}}(\tau)\right) \cdots\right) \leftarrow D_{1}^{n_{k}}\left(\cdots\left(D_{1}^{n_{1}}(\tau)\right) \cdots\right) \\
& \leftarrow D_{1}^{n_{k}}\left(\cdots\left(D_{1}^{n_{1}}\left(\chi_{1} \times \cdots \times \chi_{d}\right)\right) \cdots\right)
\end{aligned}
$$

- Computation of adduced representations of Speh complementary series

$$
\chi_{1} \times \chi_{2} \times \chi_{3} \times \chi_{4} \rightarrow \Delta_{4 m}
$$

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations.

$$
\begin{aligned}
W h_{\left(n_{1}, \ldots, n_{k}\right)}(\tau)=D_{3}^{n_{k}} & \left(\cdots\left(D_{3}^{n_{1}}(\tau)\right) \cdots\right) \\
& \leftarrow D_{1}^{n_{k}}\left(\cdots\left(D_{1}^{n_{1}}\left(\chi_{1} \times \cdots \times \chi_{d}\right)\right) \cdots\right)
\end{aligned}
$$

- Computation of adduced representations of Speh complementary series

$$
\chi_{1} \times \chi_{2} \times \chi_{3} \times \chi_{4} \rightarrow \Delta_{4 m}
$$

$$
\begin{aligned}
\Delta_{4 m-4} & \left.\leftarrow \chi_{1}\right|_{G_{m-1}} \times\left.\chi_{2}\right|_{G_{m-1}} \times\left.\chi_{3}\right|_{G_{m-1}} \times\left.\chi_{4}\right|_{G_{m-1}}= \\
& =D_{1}^{4}\left(\chi_{1} \times \chi_{2} \times \chi_{3} \times \chi_{4}\right) \rightarrow D_{1}^{4}\left(\Delta_{4 m}\right) \rightarrow A\left(\Delta_{4 m}\right)
\end{aligned}
$$

Admissibility

Admissibility

We need $-D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}

Admissibility

We need $-D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}

Admissibility

We need $-D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}
We use

Admissibility

We need $-D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}
We use

- Annihilator variety $-\mathcal{V}(\pi)$

Admissibility

We need $-D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}
We use

- Annihilator variety $-\mathcal{V}(\pi)$
- Associated variety - $A V(\pi)$

Admissibility

We need $-D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}
We use

- Annihilator variety $-\mathcal{V}(\pi)$
- Associated variety - $A V(\pi)$
- $A V(\pi) \subset \mathcal{V}(\pi)$

Admissibility

We need $-D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $D_{1}^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}
We use

- Annihilator variety $-\mathcal{V}(\pi)$
- Associated variety - $A V(\pi)$
- $A V(\pi) \subset \mathcal{V}(\pi)$
$\operatorname{depth}(\pi)=d \Rightarrow$ constrains on $\mathcal{V}_{\mathfrak{g}}(\pi) \Rightarrow$

$$
\Rightarrow A V_{\mathfrak{n}_{n-d+1}}\left(D_{1}^{d}(\pi)\right) \subset \mathfrak{n}_{n-d}^{*} \Rightarrow D_{1}^{d}(\pi) \text { is f.g. over } \mathfrak{n}_{n-d}
$$

Exactness and Hausdorffness

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language
- Strategy 2 - [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit.

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language
- Strategy 2 - [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit. Problems

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language
- Strategy 2 - [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit. Problems
(1) Unlike $[\mathrm{CHM}]$ there are ∞ orbits

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language
- Strategy 2 - [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit. Problems
(1) Unlike $[\mathrm{CHM}]$ there are ∞ orbits
(2) Unlike $[\mathrm{CHM}]$ there are bad orbits

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language
- Strategy 2 - [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit. Problems
(1) Unlike [CHM] there are ∞ orbits
(2) Unlike [CHM] there are bad orbits

Solution - to introduce a class of "good" p_{n} representations

Good \mathfrak{p}_{n} representations

Good \mathfrak{p}_{n} representations

Example

$$
\mathcal{S}\left(P_{n} / Q\right)
$$

Good \mathfrak{p}_{n} representations

Example

$$
\mathcal{S}\left(P_{n} / Q\right)
$$

Key Lemma

- $L^{i} \Phi\left(\mathcal{S}\left(P_{n} / Q\right)\right)=0$ for $i>0$

Good \mathfrak{p}_{n} representations

Example

$$
\mathcal{S}\left(P_{n} / Q\right)
$$

Key Lemma

- $L^{i} \Phi\left(\mathcal{S}\left(P_{n} / Q\right)\right)=0$ for $i>0$
- $\Phi\left(\mathcal{S}\left(P_{n} / Q\right)\right)=\mathcal{S}\left(Z_{0}\right)$ for suitable $Z_{0} \subset Z:=P_{n} /\left(Q V_{n}\right)$

The product formula

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

- Not true for $D_{1,2}^{k}$

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

- Not true for $D_{1,2}^{k}$
- might be true for D_{3}^{k} but without exactness we can't prove it.

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

- Not true for $D_{1,2}^{k}$
- might be true for D_{3}^{k} but without exactness we can't prove it.
- we do not have appropriate language of ∞ dimensional bundles.

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

- Not true for $D_{1,2}^{k}$
- might be true for D_{3}^{k} but without exactness we can't prove it.
- we do not have appropriate language of ∞ dimensional bundles.
Compromise - prove it only for the highest derivatives and only for characters.

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

- Not true for $D_{1,2}^{k}$
- might be true for D_{3}^{k} but without exactness we can't prove it.
- we do not have appropriate language of ∞ dimensional bundles.
Compromise - prove it only for the highest derivatives and only for characters.
Method - exactness, key lemma, induction

