Theorem 1 Hironaka. Let X be an affine Nash manifold. Then there exists a compact affine nonsingular algebraic variety $Y \supset X$ s.t. $Y=X \cup D \cup U$ where X and U are open and $D=\bigcup_{i=1}^{k} D_{i}$ where $D_{i} \subset Y$ are closed Nash submanifolds of codimension 1 and all the intersections are normal, i.e. every $y \in Y$ has a neighborhood V with a diffeomorphism $\phi: V \rightarrow \mathbb{R}^{n}$ s.t. $\phi\left(D_{i} \cap V\right)$ is either a coordinate hyperplane or empty.

Theorem 2 Local triviality of Nash manifolds. Any Nash manifold can be covered by finite number of open submanifolds Nash diffeomorphic to \mathbb{R}^{n}.

Theorem 3 Let X be a Nash manifold. Then $H^{i}(X), H_{c}^{i}(X), H_{i}(X)$ are finite dimensional.

Theorem 4 Let X be an affine Nash manifold. Consider the De-Rham complex of X with compactly supported coefficients

$$
D R_{c}(X): 0 \rightarrow C_{c}^{\infty}\left(X, \Omega_{X}^{0}\right) \rightarrow \ldots \rightarrow C_{c}^{\infty}\left(X, \Omega_{X}^{n}\right) \rightarrow 0
$$

the De-Rham complex of X with Schwartz coefficients

$$
D R_{S}(X): 0 \rightarrow S\left(X, \Omega_{X}^{0}\right) \rightarrow \ldots \rightarrow S\left(X, \Omega_{X}^{n}\right) \rightarrow 0
$$

and the natural map $i: D R_{c}(X) \rightarrow D R_{S}(X)$.
Then i is a quasiisomorphism, i.e. it induces an isomorphism on the cohomologies.
Theorem 5 Let X be an affine Nash manifold. Consider the De-Rham complex of X with coefficients in classical generalized functions, i.e. functionals on compactly supported densities

$$
D R_{G}(X): 0 \rightarrow C^{-\infty}\left(X, \Omega_{X}^{0}\right) \rightarrow \ldots \rightarrow C^{-\infty}\left(X, \Omega_{X}^{n}\right) \rightarrow 0
$$

the De-Rham complex of X with coefficients in generalized Schwartz functions

$$
D R_{G S}(X): 0 \rightarrow C^{-\infty}\left(X, \Omega_{X}^{0}\right) \rightarrow \ldots \rightarrow C^{-\infty}\left(X, \Omega_{X}^{n}\right) \rightarrow 0,
$$

and the natural map $i: D R_{G S}(X) \rightarrow D R_{G}(X)$. Then i is a quasiisomorphism.
Theorem 6 Let X be an affine Nash manifold of dimension n. Then
$H^{i}\left(D R_{G S}(X)\right) \cong H^{i}(X)$
$H^{i}\left(D R_{S}(X)\right) \cong H_{c}^{i}(X)$
$H^{i}\left(T D R_{S}(X)\right) \cong H_{i}(X)$
and the standard pairing between $S\left(X, T \Omega_{X}^{n-i}\right)$ and $G S\left(X, \Omega_{X}^{i}\right)$ gives an isomorphism between $H^{i}\left(D R_{G S}(X)\right)$ and $\left(H^{i}\left(T D R_{S}(X)\right)\right)^{*}$.

Definition 1 Let X and Y be Nash manifolds and let E and F be Nash bundles over them. We define integration by fibers $I F: S(X \times Y, E \boxtimes F) \times G S(Y, \widetilde{F}) \rightarrow \Gamma(X, E)$ (where $\Gamma(X, E)$ is the space of all global sections of E over X) by $\operatorname{IF}(\xi, \eta)(x)=$ $\eta\left(\left.\xi\right|_{\{x\} \times Y}\right)$.

Proposition $7 \operatorname{Im}(I F) \subset S(X, E)$, and $I F: S(X \times Y, E \boxtimes F) \times G S(Y, \widetilde{F}) \rightarrow$ $S(X, E)$ is continuous.

Definition 2 Let X and Y be Nash manifolds and let E and F be Nash bundles over them. We define $I F^{\prime}: G S(X \times Y, E \boxtimes F) \times S(Y, \widetilde{F}) \rightarrow G S(X, E)$ by $I F^{\prime}(\xi, \eta)(f)=$ $\xi(\eta \boxtimes f)$.

Theorem 8 Let X be a Nash manifold and Y be an affine Nash manifold of dimensions m and n correspondingly. Denote $F=X \times Y$. Identifying $T \Omega_{F \rightarrow X}^{i}$ with $(X \times \mathbb{R}) \boxtimes T \Omega_{Y}^{i}($ where $X \times \mathbb{R}$ is interpreted as the trivial bundle on $X)$ and Ω_{Y}^{n-i} with $\widetilde{T \Omega_{Y}^{i}}$ we get bilinear form $I F: S\left(F, T \Omega_{F \rightarrow X}^{i}\right) \times G S\left(Y, \Omega_{Y}^{n-i}\right) \rightarrow S(X)$. Then IF induces a non degenerate pairing between $H^{i}\left(T D R_{S}(F \rightarrow X)\right)$ and $H^{n-i}(Y)$ valued in $S(X)$ i.e. gives an isomorphism between $H^{i}\left(T D R_{S}(F \rightarrow X)\right)$ and $H^{n-i}(Y)^{*} \otimes S(X)$.

Theorem 9 Let X be a Nash manifold and Y be an affine Nash manifold of dimensions m and n correspondingly. Denote $F=X \times Y$. Then the bilinear form $I F^{\prime}: G S\left(F, \Omega_{F \rightarrow X}^{i}\right) \times S\left(Y, T \Omega_{Y}^{n-i}\right) \rightarrow G S(X)$ gives an isomorphism between $H^{i}\left(D R_{G S}(F \rightarrow X)\right)$ and $H_{n-i}(Y)^{*} \otimes G S(X)$.

Theorem 10 Let $p: F \rightarrow X$ be a Nash locally trivial fibration and E be a Nash bundle over X. Then $H^{k}\left(D R_{S}^{E}(F \rightarrow X)\right) \cong S\left(X, H_{c}^{k}(F \rightarrow X) \otimes E\right)$.

Theorem 11 Let $p: F \rightarrow X$ be a Nash locally trivial fibration and E be a Nash bundle over X. Then $H^{k}\left(D R_{G S}^{E}(F \rightarrow X)\right) \cong G S\left(X, H^{k}(F \rightarrow X) \otimes E\right)$.

Definition 3 Let $f: X \rightarrow Y$ be a Nash map of Nash manifolds. It is called a Nash locally trivial fibration if there exist a Nash manifold M and surjective submersive Nash map $g: M \rightarrow Y$ s.t. the basechange $h: X \times M \rightarrow M$ is trivializable, i.e. there exists a Nash manifold Z and an isomorphism $\stackrel{Y}{k}: X \underset{Y}{\times} M \rightarrow M \times Z$ s.t. $\pi \circ k=h$ where $\pi: M \times Z \rightarrow M$ is the standard projection.

Theorem 12 Let M and N be Nash manifolds and $s: M \rightarrow N$ be a surjective submersive Nash map. Then locally it has a Nash section, i.e. there exists a finite open cover $N=\bigcup_{i=1}^{k} U_{i}$ s.t. s has a Nash section on each U_{i}.

Proposition 13 Let M and N be Nash manifolds and $f: M \rightarrow N$ be a Nash submersion. Let $L \subset N$ be a Nash submanifold and $s: L \rightarrow M$ be a section of f. Then there exist a finite open Nash cover $L \subset \bigcup_{i=1}^{n} U_{i}$ and sections $s_{i}: U_{i} \rightarrow M$ of f s.t. $\left.s\right|_{L \cap U_{i}}=\left.s_{i}\right|_{L \cap U_{i}}$.

Theorem 14 Any semi-algebraic surjection $f: X \rightarrow Y$ of semi-algebraic sets has a semi-algebraic section.

Theorem 15 Let $f: M \rightarrow N$ be a semi-algebraic map of Nash manifolds. Then there exists a finite stratification of M by Nash manifolds $M=\underset{i=1}{\stackrel{\leftrightarrow}{i}} M_{i}$ s.t. $\left.f\right|_{M_{i}}$ is Nash.

Definition 4 Let \mathfrak{g} be a Lie algebra of dimension n. Let ρ be its representation. Define $H^{i}(\mathfrak{g}, \rho)$ to be the cohomologies of the complex:

$$
C(\mathfrak{g}, \rho): 0 \xrightarrow{d} \rho \xrightarrow{d} \mathfrak{g}^{*} \otimes \rho \xrightarrow{d}\left(\mathfrak{g}^{*}\right)^{\wedge 2} \otimes \rho \xrightarrow{d} \ldots \xrightarrow{d}\left(\mathfrak{g}^{*}\right)^{\wedge n} \otimes \rho \xrightarrow{d} 0
$$

with the differential defined by

$$
\begin{aligned}
& d \omega\left(x_{1}, \ldots, x_{n+1}\right)=\sum_{i=1}^{n+1}(-1)^{i} \rho\left(x_{i}\right) \omega\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\right)+ \\
& +\sum_{i<j}(-1)^{i+j} \omega\left(\left[x_{i}, x_{j}\right], x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n+1}\right)
\end{aligned}
$$

where we interpret $(\mathfrak{g})^{\wedge k} \otimes \rho$ as anti-symmetric ρ-valued k-forms on \mathfrak{g}.
Remark $16 H^{i}(\mathfrak{g}, \rho)$ is the i-th derived functor of the functor $\rho \mapsto \rho^{\mathfrak{g}}$.
Theorem 17 Let G be a Nash group. Let X be a Nash G-manifold and $E \rightarrow X$ a Nash G-equivariant bundle. Let Y be a strictly simple Nash G-manifold. Suppose Y and G are cohomologically trivial (i.e. all their cohomologies except H^{0} vanish and $H^{0}=\mathbb{R}$) and affine. Denote $F=X \times Y$. Note that the bundle $E \boxtimes \Omega_{Y}^{i}$ has Nash G equivariant structure given by diagonal action. Hence the relative De-Rham complex $D R_{G S}^{E}(F \rightarrow X)$ is a complex of representations of \mathfrak{g}. Then $H^{i}(\mathfrak{g}, G S(X, E))=$ $H^{i}\left(\left(D R_{G S}^{E}(F \rightarrow X)\right)^{\mathfrak{g}}\right)$.

Proposition 18 Let G be a connected Nash group and F be a Nash G manifold with strictly simple action. Denote $X:=G \backslash F$ and let $E \rightarrow X$ be a Nash bundle. Then $\left(G S\left(F, \pi^{*}(E)\right)\right)^{\mathfrak{g}} \cong G S(X, E)$ where $\pi: F \rightarrow X$ is the standard projection.

Corollary 19 Let G be a Nash group and X be a transitive Nash G manifold. Let $x \in X$ and denote $H:=\operatorname{stab}_{G}(x)$. Consider the diagonal action of G on $X \times G$. Let $E \rightarrow X \times G$ be a G equivariant Nash bundle. Then $G S(X \times G, E)^{\mathfrak{g}} \cong$ $G S\left(\{x\} \times G,\left.E\right|_{\{x\} \times G}\right)^{\mathfrak{h}}$.

Theorem 20 Shapiro lemma. Let G be a Nash group and X be a transitive Nash G manifold. Let $x \in X$ and denote $H:=\operatorname{stab}_{G}(x)$. Let $E \rightarrow X$ be a G equivariant Nash bundle. Let V be the fiber of E in x. Suppose G and H are cohomologically trivial. Then $H^{i}(\mathfrak{g}, G S(X, E)) \cong H^{i}(\mathfrak{h}, V)$.

