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The Problem

Let F be a local field of characteristic 0.

Theorem (Bernstein, Hrushovski-Kazhdan, Cluckers-Loeser)
Let W be a finite-dimensional vector space over F and p be a
polynomial on it.
Then the Fourier transform of |p| is smooth in an open dense
set U.
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The Problem

Let F be a local field of characteristic 0.

Theorem (Bernstein, Hrushovski-Kazhdan, Cluckers-Loeser,
A.-Drinfeld)
Let W be a finite-dimensional vector space over F and p be a
polynomial on it.
Then the Fourier transform of |p| is smooth in an open dense
set U. Moreover, U is explicitly described by p in
algebro-geometric terms.
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The Archimedean Case

Let X be a real (affine) algebraic manifold.

Definition
For a D(X )-module M, we set

SS(M) := Supp(gr(M)) ⊂ T ∗X

Theorem (Bernstein)

dim(SS(M)) ≥ dim(X )

Theorem (Malgrange, Kashiwara-Kawai-Sato, Gabber)

SS(M) is coisotropic.
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The Archimedean Case

Definition
A D(X )-module M is called holonomic if SS(M) is
Lagrangian, or equivalently dim SS(M) = dim(X ).

For a distribution ξ on X , we set SS(ξ) := SS(D(X )ξ)

A distribution ξ is called holonomic if SS(ξ) is Lagrangian,
or equivalently dim SS(M) = dim(X ).

Theorem (Bernstein)
If ξ is holonomic then ξ is smooth in an open dense set.
The class of holonomic distribution is closed under
(proper) direct image, (submersive) inverse image, linear
combinations and Fourier transform.
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A Stronger Version

Theorem
Let X ⊂W be a smooth closed algebraic subvariety. Let ω be
an algebraic top differential form on it. Let |ω| be the
corresponding measure on X and consider it as a distribution
on W.
Then the Fourier transform of |ω| is smooth in an open dense
set.

Theorem
Let Y be smooth algebraic variety and X ⊂ Y ×W. Let ω be an
algebraic top differential form on it.
Then the partial Fourier transform of |ω| w.r.t. W is smooth in
an open dense set.

In fact we do not require that X be closed, but rather we ask for
a certain regular behaviour of ω near the boundary of X which
will allow us to consider |ω| as a distribution on W .
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The Wave Front Set

Let X be a smooth analytic variety. Let ξ ∈ S∗(X ). The wave
front set of ξ is a subset WF (ξ) ⊂ T ∗X .

Supp(ξ) = pX (WF (ξ)) = WF (ξ) ∩ X , where pX : T ∗X → X
is the projection.
WF (ξ) is conical.
WF (ξ) ⊂ X , iff ξ is smooth.
Let V be a linear space. Let Z ⊂ V ∗ be a closed
subvariety, invariant with respect to homotheties. Let
ξ ∈ S∗(V ). Suppose that WF (ξ̂) ⊂ Z × V . Then
WF (ξ) ⊂ V × Z .
Behavior w.r.t. group action:
Let an algebraic group G act on X . Let ξ ∈ S∗(X )G,χ. Then

WF (ξ) ⊂ {(x , φ) ∈ T ∗X | ∀α ∈ g, φ(α(x)) = 0} =
⋃

y∈X

CNX
Gy .
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The Wave Front Set

Behavior w.r.t. inverse image:
Let p : Y → X be a analytic submersion. Then
WF (p∗(ξ)) ⊂ p∗(WF (ξ)).

Behavior w.r.t. direct image:
Let p : X → Y be a proper analytic submersion. Then
WF (p∗(ξ)) ⊂ p∗(WF (ξ)).
Weak integrability theorem:
Let ξ ∈ S∗(X ). Then WF (ξ) is weakly coisotropic.
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WF-Holonomic Distributions

Definition
We call a distribution ξ on an analytic manifold X
"WF-holonomic" if the following equivalent conditions are
satisfed:

WF (ξ) is included in an isotropic subvariety of T ∗(X ).
WF (ξ) is included in a Lagrangian subvariety of T ∗(X ).
There is a finite collection of smooth (locally closed)
subvarieties Ai ⊂ X such that

WF (ξ) ⊂
⋃

i

CNX
Ai
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WF Relative Version

Proposition
A WF-holonomic distribution is smooth in an open dense set.

Theorem (A.-Drinfeld)
Let Y be smooth algebraic variety and X ⊂ Y ×W. Let ω be an
algebraic top differential form on it. Then the partial Fourier
transform of |ω| w.r.t. W is WF-holonomic.
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Let X be an algebraic variety. Then there exists a resolution of
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map.
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Let Y be smooth analytic variety and f be a meromorphic
function on Y . Let Z1 := f−1(∞) and let U = Y − Z1. Let
i : U → Graph(f )→ Y × F. Let ω be a meromorphic top
differential form on Y which is regular in U. Let Z2 be the zero
set of ω. Assume that Z1 ∪ Z2 is a divisor with normal crossings.
Then the partial Fourier transform of i∗ |(ω|U)| w.r.t. F is
WF-holonomic.

Local model: f and ω are monomials.
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