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Distributions

Definition
Test functions – smooth compactly supported functions /
Schwartz functions.
Distributions – functionals on test functions.

Examples

Delta function δ, its derivative δ�, any locally L1 function, SpSλ

Operations with distributions:
pullback
push forward
Fourier transform
Derivation
Algebraic operations: �, �,u
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The Archimedean case

Definition
Holonomic distributions – distributions that satisfy lots of PDE:
Let ξ > S��V� be a distribution on vector space. ξ is holonomic
iff

dimChar�ξ� �� dim�Zeros��Sym�D�SDξ � 0��� � dimV .

Theorem (Bernstein �1970)
the class of holonomic distributions is closed under all of
the operations above whenever these are defined
dimChar�ξ� C dimV.

Theorem (Kashiwara-Kawai-Sato, Malgrange, Gaber �1980)

Char�ξ� is co-isotropic.

“All the distributions which appear in nature are holonomic.”
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Wave front set

Observation

ξ is smooth iff ξ̂ is rapidly decaying.

Definition
Let ξ > S��V� is a distribution on vector space.

We say that ξ is smooth at point x and direction v if Âρξ is
rapidly decaying at direction v, where ρ is a cut-off function
of a small enough neighborhood of x
WF�ξ� � ��x ,v� > T �V Sξ is not smooth at �x ,v��.

Theorem (Hörmander �1980)

WF�ξ� is invariant w.r.t. diffeomorphisms.
WF�ξ� ` Char�ξ�.
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p-adic numbers

Definition

p-adic numbers are “numbers” who have a “p-cimal”
presentation which is finite after the “p-cimal point” and
possibly infinite before it.

Alternatively:
The field of p-adic numbers Qp is the completion of Q w.r.t. the
p-adic norm:

Vpk m
n

V � p�k , where: gcd�p,n� � gcd�p,m� � 1.

Although we consider p-adic numbers as arguments, the
values of our functions are always complex.
Smooth functions on Qp are locally constant functions.
Rapidly decaying functions are functions with compact support
This gives us the notion of distribution.
Instead of using the periodic exponent eix one uses a fixed
additive character ψ�x�.
This gives us the notion of Fourier transform and wave front
set.

/ No action of differential operators on distributions.
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Wave front holonomicity

Theorem (A. 2008)

WF�ξ� includes Lagrangian, in particular dimWF�ξ� C dimV.

Definition
ξ is WF-holonomic if WF�ξ� is isotropic. In particular
dimWF�ξ� � dimV.

Theorem (A.-Drinfeld 2011)
Many distributions with algebraic description (and their
Fourier transforms) are WF-holonomic.
WF-holonomicity is stable under proper push-forward and
submersive pull-back.

/WF-holonomicity is not stable under Fourier transform.
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Constructible functions

Functions that have a nice formula.
Examples

Absolute value of a rational function.

Valuation (log of the absolute value) of a rational function.

ψ composed with a rational function.

Characteristic function of a ball.

Definition
The algebra of constructible functions is the algebra generated by
(generalizations of) the above examples.

non-example: 1
log .

Theorem (Clukers-Loeser 2005)

The class of constructible functions is closed under the above
operations, whenever defined.

“All the functions which appear in nature are constructible”
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(p-adic) Wavelet transform

Definition
Let F be a p-adic (more generally non-Archimedean local) field.
Define:

WL � S
��V�� Cª�V � F��

WL�ξ��a,b� �� `ξ,1B�a,SbS�e

It is easy to see that WL is 1-1.
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Constructible distributions

Definition
ξ is constructible iff WL�ξ� is constructible.

Theorem (Cluckers-Halupczok-Loeser-Raibaut, 2018)
The class of constructible distributions is closed under all
the above operations, whenever defined.
Constructible distributions are smooth almost everywhere.

“All the distributions which appear in nature are constructible”
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Main Result

Theorem (A.-Cluckers 2019)
Constructible distributions are WF-holonomic .

Main ingredients of the proof.
Regularization: a constructible distribution can be
extended from an open set.
Resolution of singularities in the constructible (in fact,
definable) setting.
Key-Lemma: a smooth constructible function on an open
set can be extended to an holonomic constructible
distribution.
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Idea of the proof.

ξSU is smooth for open dense U.
Extend ξSU to an holonomic constructible distribution ξ�.
Let η � ξ� � ξ . We have dimsupp�η� @ dimV .
Resolve Z � supp�η� by a smooth manifold:

p � M � Z

.
Let Z �

` Z open dense s.t. p�1�Z �� � Z �.
Extend p��ηSZ �� to constructible distribution µ on M.
By the induction assumption, µ is WF-holonomic.
Thus p��µ� is constructible WF-holonomic.
By the induction assumption p��µ� � η is WF-holonomic.
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The Key Lemma

Key Lemma

Let f be a constructible function on an open (definable) set U ` V.
Then f can be extended to a constructible WF-holonomic distribution
on V .

Idea of the Proof.

WLOG we can assume that the function f has the form:
ψ�p1�Sp2Sval�p3�

Using resolution of singularities we may assume that U is the
complement of the coordinate hyper planes and pi � uimi , where
ui are units and mi are monomials.

/ While u2 and u3 can be ignored, u1 cannot.
Instead we can swallow it in m1.
Now we prove the Key lemma for the complement of the origin.
We are using an inductive assumption both about the Key
lemma and the main theorem.
Adding 1 point does not affect WF-holonomicity.
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