WF-holonomicity of constructible distributions on non-Archimedean local fields

A. Aizenbud

Weizmann Institute of Science

Joint with Raf Cluckers

http://www.wisdom.weizmann.ac.il/~aizenr/

ヘロン 人間 とくほど くほとう

■ _ _ のへ (~

Definition

<ロト <回 > < 注 > < 注 > 、

■ _ _ のへ (~

Definition

 Test functions – smooth compactly supported functions / Schwartz functions.

・ 同 ト ・ ヨ ト ・ ヨ ト …

∃ 𝒫𝔅

Definition

- Test functions smooth compactly supported functions / Schwartz functions.
- Distributions functionals on test functions.

Definition

- Test functions smooth compactly supported functions / Schwartz functions.
- Distributions functionals on test functions.

Examples

Delta function δ , its derivative δ' , any locally L^1 function, $|p|^{\lambda}$

Definition

- Test functions smooth compactly supported functions / Schwartz functions.
- Distributions functionals on test functions.

Examples

Delta function δ , its derivative δ' , any locally L^1 function, $|p|^{\lambda}$

Operations with distributions:

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

- Test functions smooth compactly supported functions / Schwartz functions.
- Distributions functionals on test functions.

Examples

Delta function δ , its derivative δ' , any locally L^1 function, $|p|^{\lambda}$

Operations with distributions:

pullback

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Test functions smooth compactly supported functions / Schwartz functions.
- Distributions functionals on test functions.

Examples

Delta function δ , its derivative δ' , any locally L^1 function, $|p|^{\lambda}$

Operations with distributions:

- pullback
- push forward

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

- Test functions smooth compactly supported functions / Schwartz functions.
- Distributions functionals on test functions.

Examples

Delta function δ , its derivative δ' , any locally L^1 function, $|p|^{\lambda}$

Operations with distributions:

- pullback
- push forward
- Fourier transform

- Test functions smooth compactly supported functions / Schwartz functions.
- Distributions functionals on test functions.

Examples

Delta function δ , its derivative δ' , any locally L^1 function, $|p|^{\lambda}$

Operations with distributions:

- pullback
- push forward
- Fourier transform
- Derivation

- Test functions smooth compactly supported functions / Schwartz functions.
- Distributions functionals on test functions.

Examples

Delta function δ , its derivative δ' , any locally L^1 function, $|p|^{\lambda}$

Operations with distributions:

- pullback
- push forward
- Fourier transform
- Derivation
- Algebraic operations: +, \cdot , \boxtimes

포 🛌 포

Definition

Holonomic distributions – distributions that satisfy lots of PDE:

프 🖌 🛪 프 🛌

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

ъ

★ 문 ► ★ 문 ► ...

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

 $\dim Char(\xi) \coloneqq \dim(Zeros(\{Sym(D)|D\xi = 0\})) = \dim V.$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

 $\dim Char(\xi) \coloneqq \dim(Zeros(\{Sym(D)|D\xi = 0\})) = \dim V.$

Theorem (Bernstein ~1970)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

 $\dim Char(\xi) \coloneqq \dim(Zeros(\{Sym(D)|D\xi = 0\})) = \dim V.$

Theorem (Bernstein ~1970)

 the class of holonomic distributions is closed under all of the operations above whenever these are defined

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

 $\dim Char(\xi) \coloneqq \dim(Zeros(\{Sym(D)|D\xi = 0\})) = \dim V.$

Theorem (Bernstein ~1970)

- the class of holonomic distributions is closed under all of the operations above whenever these are defined
- dim $Char(\xi) \ge \dim V$.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

 $\dim Char(\xi) \coloneqq \dim(Zeros(\{Sym(D)|D\xi = 0\})) = \dim V.$

Theorem (Bernstein ~1970)

- the class of holonomic distributions is closed under all of the operations above whenever these are defined
- dim $Char(\xi) \ge \dim V$.

Theorem (Kashiwara-Kawai-Sato, Malgrange, Gaber ~1980)

Char(ξ) is co-isotropic.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

 $\dim Char(\xi) \coloneqq \dim(Zeros(\{Sym(D)|D\xi = 0\})) = \dim V.$

Theorem (Bernstein ~1970)

- the class of holonomic distributions is closed under all of the operations above whenever these are defined
- dim $Char(\xi) \ge \dim V$.

Theorem (Kashiwara-Kawai-Sato, Malgrange, Gaber ~1980)

Char(ξ) is co-isotropic.

"All the distributions which appear in nature are holonomic.",

Wave front set

ヘロン 人間 とくほど くほとう

Wave front set

Observation

 ξ is smooth iff $\hat{\xi}$ is rapidly decaying.

< 西払

프 에 에 프 어

ъ

 ξ is smooth iff $\hat{\xi}$ is rapidly decaying.

Definition

Let $\xi \in S^*(V)$ is a distribution on vector space.

ヘロン 人間 とくほ とくほ とう

E DQC

 ξ is smooth iff $\hat{\xi}$ is rapidly decaying.

Definition

Let $\xi \in S^*(V)$ is a distribution on vector space.

 We say that ξ is smooth at point x and direction v if ρξ is rapidly decaying at direction v, where ρ is a cut-off function of a small enough neighborhood of x

 ξ is smooth iff $\hat{\xi}$ is rapidly decaying.

Definition

Let $\xi \in S^*(V)$ is a distribution on vector space.

- We say that ξ is smooth at point x and direction v if ρξ is rapidly decaying at direction v, where ρ is a cut-off function of a small enough neighborhood of x
- WF(ξ) = {(x, v) ∈ T* V|ξ is not smooth at (x, v)}.

< 回 > < 回 > < 回 > … 回

 ξ is smooth iff $\hat{\xi}$ is rapidly decaying.

Definition

Let $\xi \in S^*(V)$ is a distribution on vector space.

- We say that ξ is smooth at point x and direction v if ρξ is rapidly decaying at direction v, where ρ is a cut-off function of a small enough neighborhood of x
- WF(ξ) = {(x, v) ∈ T* V|ξ is not smooth at (x, v)}.

Theorem (Hörmander ~1980)

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

ヨト くヨトー

 ξ is smooth iff $\hat{\xi}$ is rapidly decaying.

Definition

Let $\xi \in S^*(V)$ is a distribution on vector space.

- We say that ξ is smooth at point x and direction v if ρξ is rapidly decaying at direction v, where ρ is a cut-off function of a small enough neighborhood of x
- WF(ξ) = {(x, v) ∈ T* V|ξ is not smooth at (x, v)}.

Theorem (Hörmander ~1980)

• $WF(\xi)$ is invariant w.r.t. diffeomorphisms.

A D b 4 A b 4

프 에 에 프 어 - -

 ξ is smooth iff $\hat{\xi}$ is rapidly decaying.

Definition

Let $\xi \in S^*(V)$ is a distribution on vector space.

- We say that ξ is smooth at point x and direction v if ρξ is rapidly decaying at direction v, where ρ is a cut-off function of a small enough neighborhood of x
- WF(ξ) = {(x, v) ∈ T* V|ξ is not smooth at (x, v)}.

Theorem (Hörmander ~1980)

- $WF(\xi)$ is invariant w.r.t. diffeomorphisms.
- $WF(\xi) \subset Char(\xi)$.

ヘロト ヘアト ヘビト ヘビト

◆□▶ ◆御▶ ◆理≯ ◆理≯ ─ 臣 ─

Definition

Definition

 p-adic numbers are "numbers" who have a "p-cimal" presentation which is finite after the "p-cimal point" and possibly infinite before it.

<ロト <四ト <注入 <注下 <注下 <

Alternatively:

Definition

 p-adic numbers are "numbers" who have a "p-cimal" presentation which is finite after the "p-cimal point" and possibly infinite before it.

Alternatively:

 The field of p-adic numbers Q_p is the completion of Q w.r.t. the p-adic norm:

$$\left|p^{k}\frac{m}{n}\right|=p^{-k},$$
 where: $gcd(p,n)=gcd(p,m)=1.$

Definition

 p-adic numbers are "numbers" who have a "p-cimal" presentation which is finite after the "p-cimal point" and possibly infinite before it.

Alternatively:

 The field of p-adic numbers Q_p is the completion of Q w.r.t. the p-adic norm:

$$\left|p^k \frac{m}{n}\right| = p^{-k}$$
, where: $gcd(p, n) = gcd(p, m) = 1$.

 Although we consider p-adic numbers as arguments, the values of our functions are always complex.

Definition

 p-adic numbers are "numbers" who have a "p-cimal" presentation which is finite after the "p-cimal point" and possibly infinite before it.

Alternatively:

 The field of p-adic numbers Q_p is the completion of Q w.r.t. the p-adic norm:

$$\left|p^k \frac{m}{n}\right| = p^{-k}$$
, where: $gcd(p, n) = gcd(p, m) = 1$.

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \mathbb{Q}_p are locally constant functions.

Definition

 p-adic numbers are "numbers" who have a "p-cimal" presentation which is finite after the "p-cimal point" and possibly infinite before it.

Alternatively:

 The field of p-adic numbers Q_p is the completion of Q w.r.t. the p-adic norm:

$$\left|p^k\frac{m}{n}\right| = p^{-k}, \text{ where: } gcd(p,n) = gcd(p,m) = 1.$$

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \mathbb{Q}_p are locally constant functions.
- Rapidly decaying functions are functions with compact support

<ロト <四ト <注入 <注下 <注下 <

Definition

 p-adic numbers are "numbers" who have a "p-cimal" presentation which is finite after the "p-cimal point" and possibly infinite before it.

Alternatively:

 The field of p-adic numbers Q_p is the completion of Q w.r.t. the p-adic norm:

$$\left|p^k\frac{m}{n}\right| = p^{-k}, \text{ where: } gcd(p,n) = gcd(p,m) = 1.$$

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \mathbb{Q}_p are locally constant functions.
- Rapidly decaying functions are functions with compact support

<ロト <四ト <注入 <注下 <注下 <

This gives us the notion of distribution.
p-adic numbers

Definition

 p-adic numbers are "numbers" who have a "p-cimal" presentation which is finite after the "p-cimal point" and possibly infinite before it.

Alternatively:

 The field of p-adic numbers Q_p is the completion of Q w.r.t. the p-adic norm:

$$\left|p^k\frac{m}{n}\right| = p^{-k}, \text{ where: } gcd(p,n) = gcd(p,m) = 1.$$

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \mathbb{Q}_p are locally constant functions.
- Rapidly decaying functions are functions with compact support

- This gives us the notion of distribution.
- Instead of using the periodic exponent e^{ix} one uses a fixed additive character ψ(x).

p-adic numbers

Definition

 p-adic numbers are "numbers" who have a "p-cimal" presentation which is finite after the "p-cimal point" and possibly infinite before it.

Alternatively:

• The field of p-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} w.r.t. the p-adic norm:

$$\left|p^k\frac{m}{n}\right| = p^{-k}, \text{ where: } gcd(p,n) = gcd(p,m) = 1.$$

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \mathbb{Q}_p are locally constant functions.
- Rapidly decaying functions are functions with compact support
- This gives us the notion of distribution.
- Instead of using the periodic exponent e^{ix} one uses a fixed additive character ψ(x).
- This gives us the notion of Fourier transform and wave front set.

<ロト <回ト < 国ト < 国ト < 国ト 三 国

p-adic numbers

Definition

 p-adic numbers are "numbers" who have a "p-cimal" presentation which is finite after the "p-cimal point" and possibly infinite before it.

Alternatively:

• The field of p-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} w.r.t. the p-adic norm:

$$\left|p^k\frac{m}{n}\right| = p^{-k}, \text{ where: } gcd(p,n) = gcd(p,m) = 1.$$

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \mathbb{Q}_p are locally constant functions.
- Rapidly decaying functions are functions with compact support
- This gives us the notion of distribution.
- Instead of using the periodic exponent e^{ix} one uses a fixed additive character ψ(x).
- This gives us the notion of Fourier transform and wave front set.
- On action of differential operators on distributions.

Wave front holonomicity

● ▶ ● ●

 $WF(\xi)$ includes Lagrangian, in particular dim $WF(\xi) \ge \dim V$.

ヘロン 人間 とくほ とくほ とう

■ のへで

 $WF(\xi)$ includes Lagrangian, in particular dim $WF(\xi) \ge \dim V$.

Definition

 ξ is WF-holonomic if WF(ξ) is isotropic. In particular dim WF(ξ) = dim V.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 $WF(\xi)$ includes Lagrangian, in particular dim $WF(\xi) \ge \dim V$.

Definition

 ξ is WF-holonomic if WF(ξ) is isotropic. In particular dim WF(ξ) = dim V.

Theorem (A.-Drinfeld 2011)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

 $WF(\xi)$ includes Lagrangian, in particular dim $WF(\xi) \ge \dim V$.

Definition

 ξ is WF-holonomic if WF(ξ) is isotropic. In particular dim WF(ξ) = dim V.

Theorem (A.-Drinfeld 2011)

 Many distributions with algebraic description (and their Fourier transforms) are WF-holonomic.

ヘロン 人間 とくほ とくほ とう

= 990

 $WF(\xi)$ includes Lagrangian, in particular dim $WF(\xi) \ge \dim V$.

Definition

 ξ is WF-holonomic if WF(ξ) is isotropic. In particular dim WF(ξ) = dim V.

Theorem (A.-Drinfeld 2011)

- Many distributions with algebraic description (and their Fourier transforms) are WF-holonomic.
- WF-holonomicity is stable under proper push-forward and submersive pull-back.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 $WF(\xi)$ includes Lagrangian, in particular dim $WF(\xi) \ge \dim V$.

Definition

 ξ is WF-holonomic if WF(ξ) is isotropic. In particular dim WF(ξ) = dim V.

Theorem (A.-Drinfeld 2011)

- Many distributions with algebraic description (and their Fourier transforms) are WF-holonomic.
- WF-holonomicity is stable under proper push-forward and submersive pull-back.

© WF-holonomicity is not stable under Fourier transform.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ → □ ● → ○ へ ⊙

Functions that have a nice formula.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Functions that have a nice formula.

Functions that have a nice formula.

Examples

• Absolute value of a rational function.

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.

《曰》 《聞》 《臣》 《臣》 三臣 …

• ψ composed with a rational function.

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
- Characteristic function of a ball.

Definition

The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.

<ロト <回ト < 注入 < 注入 = 正

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
- Characteristic function of a ball.

Definition

The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.

non-example: $\frac{1}{\log}$.

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
- Characteristic function of a ball.

Definition

The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.

non-example: $\frac{1}{\log}$.

Theorem (Clukers-Loeser 2005)

The class of constructible functions is closed under the above operations, whenever defined.

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
- Characteristic function of a ball.

Definition

The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.

non-example: $\frac{1}{\log}$.

Theorem (Clukers-Loeser 2005)

The class of constructible functions is closed under the above operations, whenever defined.

()

"All the functions which appear in nature are constructible"

(p-adic) Wavelet transform

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ .

æ

Let F be a p-adic (more generally non-Archimedean local) field.

(雪) (ヨ) (ヨ)

Let F be a p-adic (more generally non-Archimedean local) field. Define:

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let F be a p-adic (more generally non-Archimedean local) field. Define:

$$WL: \mathcal{S}^*(V) \to C^{\infty}(V \times F^{\times})$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let F be a p-adic (more generally non-Archimedean local) field. Define:

$$WL: \mathcal{S}^*(V) \to C^{\infty}(V \times F^{\times})$$

$$WL(\xi)(a,b) \coloneqq \langle \xi, \mathbf{1}_{B(a,|b|)} \rangle$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let F be a p-adic (more generally non-Archimedean local) field. Define:

$$WL: \mathcal{S}^*(V) \to C^{\infty}(V \times F^{\times})$$

$$WL(\xi)(a,b) \coloneqq \langle \xi, \mathbf{1}_{B(a,|b|)} \rangle$$

It is easy to see that WL is 1-1.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Constructible distributions

문 🕨 👘 🖻

 ξ is constructible iff $WL(\xi)$ is constructible.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

 ξ is constructible iff $WL(\xi)$ is constructible.

Theorem (Cluckers-Halupczok-Loeser-Raibaut, 2018)

ヘロン 人間 とくほ とくほ とう

= 990

 ξ is constructible iff $WL(\xi)$ is constructible.

Theorem (Cluckers-Halupczok-Loeser-Raibaut, 2018)

• The class of constructible distributions is closed under all the above operations, whenever defined.

(日本) (日本) (日本)

 ξ is constructible iff $WL(\xi)$ is constructible.

Theorem (Cluckers-Halupczok-Loeser-Raibaut, 2018)

- The class of constructible distributions is closed under all the above operations, whenever defined.
- Constructible distributions are smooth almost everywhere.

(日本) (日本) (日本)

э.

 ξ is constructible iff $WL(\xi)$ is constructible.

Theorem (Cluckers-Halupczok-Loeser-Raibaut, 2018)

- The class of constructible distributions is closed under all the above operations, whenever defined.
- Constructible distributions are smooth almost everywhere.

"All the distributions which appear in nature are constructible"

個 とく ヨ とく ヨ とう

э.

Main Result

ヘロト 人間 とくほとく ほとう

き のへで

Theorem (A.-Cluckers 2019)

Constructible distributions are WF-holonomic .

イロト イポト イヨト イヨト

Theorem (A.-Cluckers 2019)

Constructible distributions are WF-holonomic .

Main ingredients of the proof.

・ロン ・聞と ・ ほと ・ ほとう

E DQC

Theorem (A.-Cluckers 2019)

Constructible distributions are WF-holonomic .

Main ingredients of the proof.

• *Regularization:* a constructible distribution can be extended from an open set.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ
Theorem (A.-Cluckers 2019)

Constructible distributions are WF-holonomic .

Main ingredients of the proof.

- *Regularization:* a constructible distribution can be extended from an open set.
- Resolution of singularities in the constructible (in fact, definable) setting.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (A.-Cluckers 2019)

Constructible distributions are WF-holonomic .

Main ingredients of the proof.

- *Regularization:* a constructible distribution can be extended from an open set.
- Resolution of singularities in the constructible (in fact, definable) setting.
- *Key-Lemma:* a smooth constructible function on an open set can be extended to an holonomic constructible distribution.

ヘロン 人間 とくほ とくほ とう

• $\xi|_U$ is smooth for open dense *U*.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

- $\xi|_U$ is smooth for open dense *U*.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ' .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $\xi|_U$ is smooth for open dense *U*.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ' .
- Let $\eta = \xi' \xi$. We have dim $supp(\eta) < \dim V$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

.

- $\xi|_U$ is smooth for open dense *U*.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ' .
- Let $\eta = \xi' \xi$. We have dim $supp(\eta) < \dim V$.
- Resolve $Z = supp(\eta)$ by a smooth manifold:

 $p: M \to Z$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

.

- $\xi|_U$ is smooth for open dense *U*.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ' .
- Let $\eta = \xi' \xi$. We have dim $supp(\eta) < \dim V$.
- Resolve $Z = supp(\eta)$ by a smooth manifold:

 $p: M \to Z$

• Let $Z' \subset Z$ open dense s.t. $p^{-1}(Z') \cong Z'$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

.

- $\xi|_U$ is smooth for open dense *U*.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ' .
- Let $\eta = \xi' \xi$. We have dim $supp(\eta) < \dim V$.
- Resolve $Z = supp(\eta)$ by a smooth manifold:

$$p: M \to Z$$

- Let $Z' \subset Z$ open dense s.t. $p^{-1}(Z') \cong Z'$.
- Extend p^{*}(η|_{Z'}) to constructible distribution μ on M.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

.

- $\xi|_U$ is smooth for open dense *U*.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ' .
- Let $\eta = \xi' \xi$. We have dim $supp(\eta) < \dim V$.
- Resolve $Z = supp(\eta)$ by a smooth manifold:

$$p: M \to Z$$

- Let $Z' \subset Z$ open dense s.t. $p^{-1}(Z') \cong Z'$.
- Extend p^{*}(η|_{Z'}) to constructible distribution μ on M.
- By the induction assumption, μ is WF-holonomic.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

.

- $\xi|_U$ is smooth for open dense *U*.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ' .
- Let $\eta = \xi' \xi$. We have dim $supp(\eta) < \dim V$.
- Resolve $Z = supp(\eta)$ by a smooth manifold:

$$p: M \to Z$$

- Let $Z' \subset Z$ open dense s.t. $p^{-1}(Z') \cong Z'$.
- Extend p^{*}(η|_{Z'}) to constructible distribution μ on M.
- By the induction assumption, μ is WF-holonomic.
- Thus $p_*(\mu)$ is constructible WF-holonomic.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

.

- $\xi|_U$ is smooth for open dense *U*.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ' .
- Let $\eta = \xi' \xi$. We have dim $supp(\eta) < \dim V$.
- Resolve $Z = supp(\eta)$ by a smooth manifold:

$$p: M \to Z$$

- Let $Z' \subset Z$ open dense s.t. $p^{-1}(Z') \cong Z'$.
- Extend p^{*}(η|_{Z'}) to constructible distribution μ on M.
- By the induction assumption, μ is WF-holonomic.
- Thus $p_*(\mu)$ is constructible WF-holonomic.
- By the induction assumption $p_*(\mu) \eta$ is WF-holonomic.

・ 同 ト ・ ヨ ト ・ ヨ ト

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

Idea of the Proof.

WLOG we can assume that the function *f* has the form:
 ψ(p₁)|p₂|val(p₃)

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

- WLOG we can assume that the function *f* has the form:
 ψ(p₁)|p₂|val(p₃)
- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and p_i = u_im_i, where u_i are units and m_i are monomials.

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

- WLOG we can assume that the function *f* has the form:
 ψ(p₁)|p₂|val(p₃)
- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and p_i = u_im_i, where u_i are units and m_i are monomials.
- \odot While u_2 and u_3 can be ignored, u_1 cannot.

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

- WLOG we can assume that the function *f* has the form:
 ψ(p₁)|p₂|val(p₃)
- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and p_i = u_im_i, where u_i are units and m_i are monomials.
- \odot While u_2 and u_3 can be ignored, u_1 cannot.
- Instead we can swallow it in m₁.

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

- WLOG we can assume that the function *f* has the form:
 ψ(p₁)|p₂|val(p₃)
- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and p_i = u_im_i, where u_i are units and m_i are monomials.
- \odot While u_2 and u_3 can be ignored, u_1 cannot.
- Instead we can swallow it in m_1 .
- Now we prove the Key lemma for the complement of the origin.

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

- WLOG we can assume that the function *f* has the form:
 ψ(p₁)|p₂|val(p₃)
- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and p_i = u_im_i, where u_i are units and m_i are monomials.
- \odot While u_2 and u_3 can be ignored, u_1 cannot.
- Instead we can swallow it in m₁.
- Now we prove the Key lemma for the complement of the origin.
- We are using an inductive assumption both about the Key lemma and the main theorem.

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

- WLOG we can assume that the function *f* has the form:
 ψ(p₁)|p₂|val(p₃)
- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and p_i = u_im_i, where u_i are units and m_i are monomials.
- \odot While u_2 and u_3 can be ignored, u_1 cannot.
- Instead we can swallow it in m_1 .
- Now we prove the Key lemma for the complement of the origin.
- We are using an inductive assumption both about the Key lemma and the main theorem.
- Adding 1 point does not affect WF-holonomicity.