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The Archimedean case

Let G be a real reductive group and g be its (complexified) Lie
algebra. Let z(G) := Z (U(g)).

Theorem (Harish-Chandra)

Any z-finite distribution ξ ∈ S∗(G)Ad(G) is locally L1.

Theorem (Harish-Chandra)

The space of z-finite distributions in S∗(G)Ad(G) is (weakly)
dense in S∗(G)Ad(G).
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The Bernstein center

Let G be a p-adic reductive group.

Definition
z(G) := Z (EndG(S(G))) = EndG×G(S(G)) = Z (M(G)) :=
End(IdM(G))

Theorem (Bernstein)

z(G) =
∏
i∈B

O((C∗)ni )Wi

B,ni ,Wi are explicitly described in terms of cuspidal
representations of Levi subgroups of G.
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Main Results

Theorem (A.-Gourevitch-Sayag)

Let ξ ∈ S∗(G) be a z(G)-finite distribution, and let g ∈ G. Then

WFg(ξ) ⊂ N ⊂ g∗

Theorem (A.-Gourevitch-Sayag)

Let H1,H2 ⊂ G be finite type subgroups. Then the space of
z(G)-finite distribution in S∗(G)H1×H2 is dense in S∗(G)H1×H2 .
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Finite type representations

Definition
A subgroup H ⊂ G has finite type if S(G/H) is block-wise
finitely generated, i.e.

For any Bernstein block i ∈ B the direct summand S(G/H)i
is finitely generated representation of G.
Equivalently, for any compact open subgroup K ⊂ G the
module S(G/H)K is finitely generated over HK (G).

Theorem (A.-Avni-Gourevitch)
Let H ⊂ G be a (unimodular, spherical) subgroup. Assume that
dim(π∗)H <∞ for any irreducible representation π ∈M(G).
Then H ⊂ G has finite type.

Theorem (Sakellaridis-Venkatesh, Delorme)
Many spherical pairs (including all symmetric pairs) satisfy:
dim(π∗)H <∞
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Proof of density

Lemma (Baby model)
Let A be a commutative unital algebra finitely generated over
an algebraically closed field. Let M be a finitely generated
module over A. Then the space of A-finite elements of M∗ is
dense in M∗.

Proof.
By the Nullstellensatz it is enough to show that⋂

m∈specm(A)

⋂
i

miM = 0.

This follows from the Artin-Rees lemma.

The theorem is reduced to the baby model using the theory of
Bernstein center.
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Spherical character

Definition
Let H1,H2 ⊂ G. Let π be an admissible representation of G. Let
v1 ∈ (π∗)H1 and v2 ∈ (π̃∗)H2 . Define ξπ,v1,v2 ∈ S∗(G) by

ξπ,v1,v2(f ) := v1(π(f )(v2))

Proposition (A.-Gourevitch-Sayag)

Let H1,H2 ⊂ G be of finite type. Then any z(G)-finite distribution
in S∗(G)H1×H2 is a spherical character ξπ,v1,v2 , for some π, v1, v2.

Lemma (A.-Gourevitch-Sayag)

Let H ⊂ G be of finite type. Let ξ ∈ S∗(G/H) be a z(G)-finite
distribution.Then S(G)ξ is admissible.

Corollary (A.-Gourevitch-Sayag)

For any z(G)-finite distribution on G, the G ×G representation
S(G) ∗ ξ ∗ S(G) is admissible.
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Wave font set

Definition (Hormander, Heifetz)
Let V be a (p-adic) vector space.

Let f ∈ C∞(V ). We say that f vanishes along v if ∃ a
neighborhood U 3 v and a constant N s.t. ∀λ > N,u ∈ U,
we have f (λu) = 0.
let ξ ∈ S∗(V ). We say that ξ is smooth at
(x , v) ∈ T ∗V = V × V ∗ if

∃f ∈ S(V ) with f (x) 6= 0 s.t. f̂ ξ vanish alongv

WF (ξ) ⊂ T ∗V and WFx(ξ) ⊂ T ∗x V is defined to be the
complement to the set of (x , v) as above.
One can extend this definition to (analytic) manifolds.
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Fuzzy Balls

For any large enough ball b in g∗ one can define an element
eb ∈ H(G). If this ball is as small as possible than the ball is
called fuzzy. If a fuzzy ball intersects the nilpotent cone it is
called nilpotent.

Theorem (Sayag)

Let π be an admissible representation of G. Then there are
only finitely many non-nilpotent fuzzy balls s.t. π(eb) 6= 0.
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Proof of the condition on the wave front set

S(G) ∗ ξ ∗ S(G) is admissible.
eb ∗ S(G) ∗ ξ ∗ S(G) ∗ ec = 0 for many fuzzy balls b, c.
eb ∗ ξ ∗ ec = 0 for many fuzzy balls b, c.
(
∑

b∈X eb) ∗ ξ ∗ (
∑

b∈X eb) = 0 for many sets of fuzzy balls.
eB ∗ ξ ∗ eB = 0 for many large balls B.
exp∗(eB ∗ ξ ∗ eB) = 0 for many large balls B.
For small enough neighborhood U of 1:
0 = exp∗((eB∗ξ∗eB)|U) = exp∗(eB)∗exp∗(ξ|U)∗exp∗(eB) =

exp∗(eB) ∗ exp∗(ξ|U) = 1̂B ∗ exp∗(ξ|U) = F(1B · ̂exp∗(ξ|U))
WF0(exp∗(ξ|U)) ⊂ N
WF1(ξ) ⊂ N
WFg(ξ) ⊂ N
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