3-finite distributions on p-adic groups

A. Aizenbud

Weizmann Institute of Science

Joint with: Dmitry Gourevitch and Eitan Sayag

http://www.wisdom.weizmann.ac.il/~aizenr

The Archimedean case

æ

ヨトメヨト

< 🗇 > <

The Archimedean case

Let G be a real reductive group

프 🕨 🗆 프

Let *G* be a real reductive group and \mathfrak{g} be its (complexified) Lie algebra.

э

프 🖌 🔺 프 🛌

< 🗇 ▶

Let *G* be a real reductive group and \mathfrak{g} be its (complexified) Lie algebra. Let $\mathfrak{z}(G) := Z(U(\mathfrak{g}))$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *G* be a real reductive group and \mathfrak{g} be its (complexified) Lie algebra. Let $\mathfrak{z}(G) := Z(U(\mathfrak{g}))$.

Theorem (Harish-Chandra)

Any \mathfrak{z} -finite distribution $\xi \in \mathcal{S}^*(G)^{Ad(G)}$ is locally L^1 .

ヘロン 人間 とくほ とくほ とう

Let *G* be a real reductive group and \mathfrak{g} be its (complexified) Lie algebra. Let $\mathfrak{z}(G) := Z(U(\mathfrak{g}))$.

Theorem (Harish-Chandra)

Any \mathfrak{z} -finite distribution $\xi \in \mathcal{S}^*(G)^{Ad(G)}$ is locally L^1 .

Theorem (Harish-Chandra)

The space of \mathfrak{z} -finite distributions in $\mathcal{S}^*(G)^{Ad(G)}$ is (weakly) dense in $\mathcal{S}^*(G)^{Ad(G)}$.

ヘロン 人間 とくほ とくほ とう

The Bernstein center

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

The Bernstein center

Let *G* be a *p*-adic reductive group.

프 🖌 🛪 프 🕨

< 🗇 ▶

Definition $\mathfrak{z}(G) := Z(End_G(\mathcal{S}(G)))$

ヘロト 人間 ト ヘヨト ヘヨト

Definition

$$\mathfrak{z}(G) := Z(End_G(\mathcal{S}(G))) = End_{G \times G}(\mathcal{S}(G))$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 🖌 🛪 프 🛌

Definition

$\mathfrak{z}(G) := Z(End_G(\mathcal{S}(G))) = End_{G \times G}(\mathcal{S}(G)) = Z(\mathcal{M}(G))$

ヘロン 人間 とくほ とくほ とう

ヘロン 人間 とくほ とくほ とう

Definition

$$\mathfrak{z}(G) := Z(End_G(\mathcal{S}(G))) = End_{G \times G}(\mathcal{S}(G)) = Z(\mathcal{M}(G)) := End(Id_{\mathcal{M}(G)})$$

Theorem (Bernstein)

$$\mathfrak{z}(G) = \prod_{i \in \mathcal{B}} O((\mathbb{C}^*)^{n_i})^{W_i}$$

프 🕨 🗉 프

Definition

$$\mathfrak{z}(G) := Z(End_G(\mathcal{S}(G))) = End_{G \times G}(\mathcal{S}(G)) = Z(\mathcal{M}(G)) := End(Id_{\mathcal{M}(G)})$$

Theorem (Bernstein)

$$\mathfrak{z}(G) = \prod_{i \in \mathcal{B}} O((\mathbb{C}^*)^{n_i})^{W_i}$$

B, n_i , W_i are explicitly described in terms of cuspidal representations of Levi subgroups of G.

< 🗇 🕨

Main Results

ヘロト 人間 とくほとくほとう

Э.

Let $\xi \in S^*(G)$ be a $\mathfrak{z}(G)$ -finite distribution, and let $g \in G$.

ヘロト ヘアト ヘビト ヘビト

Let $\xi \in S^*(G)$ be a $\mathfrak{z}(G)$ -finite distribution, and let $g \in G$. Then

 $\mathit{WF}_g(\xi) \subset \mathcal{N} \subset \mathfrak{g}^*$

ヘロン 人間 とくほ とくほ とう

Let $\xi \in S^*(G)$ be a $\mathfrak{z}(G)$ -finite distribution, and let $g \in G$. Then

 $\mathit{WF}_g(\xi) \subset \mathcal{N} \subset \mathfrak{g}^*$

Theorem (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be finite type subgroups.

イロト イポト イヨト イヨト 一日

Let $\xi \in S^*(G)$ be a $\mathfrak{z}(G)$ -finite distribution, and let $g \in G$. Then

 $W\!F_g(\xi) \subset \mathcal{N} \subset \mathfrak{g}^*$

Theorem (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be finite type subgroups. Then the space of $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is dense in $\mathcal{S}^*(G)^{H_1 \times H_2}$.

ヘロト ヘアト ヘビト ヘビト

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated,

ヘロト ヘアト ヘビト ヘビト

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

ヘロト 人間 ト ヘヨト ヘヨト

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

For any Bernstein block *i* ∈ B the direct summand S(G/H)_i is finitely generated representation of G.

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block *i* ∈ B the direct summand S(G/H)_i is finitely generated representation of G.
- Equivalently,

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block *i* ∈ B the direct summand S(G/H)_i is finitely generated representation of G.
- Equivalently, for any compact open subgroup K ⊂ G the module S(G/H)^K is finitely generated over H_K(G).

イロト イ理ト イヨト イヨト

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block *i* ∈ B the direct summand S(G/H)_i is finitely generated representation of G.
- Equivalently, for any compact open subgroup K ⊂ G the module S(G/H)^K is finitely generated over H_K(G).

Theorem (A.-Avni-Gourevitch)

Let $H \subset G$ be a (unimodular, spherical) subgroup.

< ロ > < 同 > < 臣 > < 臣 > -

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block *i* ∈ B the direct summand S(G/H)_i is finitely generated representation of G.
- Equivalently, for any compact open subgroup K ⊂ G the module S(G/H)^K is finitely generated over H_K(G).

Theorem (A.-Avni-Gourevitch)

Let $H \subset G$ be a (unimodular, spherical) subgroup. Assume that $\dim(\pi^*)^H < \infty$ for any irreducible representation $\pi \in \mathcal{M}(G)$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block *i* ∈ B the direct summand S(G/H)_i is finitely generated representation of G.
- Equivalently, for any compact open subgroup K ⊂ G the module S(G/H)^K is finitely generated over H_K(G).

Theorem (A.-Avni-Gourevitch)

Let $H \subset G$ be a (unimodular, spherical) subgroup. Assume that $\dim(\pi^*)^H < \infty$ for any irreducible representation $\pi \in \mathcal{M}(G)$. Then $H \subset G$ has finite type.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Definition

A subgroup $H \subset G$ has finite type if S(G/H) is block-wise finitely generated, i.e.

- For any Bernstein block *i* ∈ B the direct summand S(G/H)_i is finitely generated representation of G.
- Equivalently, for any compact open subgroup K ⊂ G the module S(G/H)^K is finitely generated over H_K(G).

Theorem (A.-Avni-Gourevitch)

Let $H \subset G$ be a (unimodular, spherical) subgroup. Assume that $\dim(\pi^*)^H < \infty$ for any irreducible representation $\pi \in \mathcal{M}(G)$. Then $H \subset G$ has finite type.

Theorem (Sakellaridis-Venkatesh, Delorme)

Many spherical pairs (including all symmetric pairs) satisfy: $\dim(\pi^*)^H < \infty$

Proof of density

<ロト <回 > < 注 > < 注 > 、

æ

Let A be a commutative unital algebra finitely generated over an algebraically closed field.

э

프 🖌 🛪 프 🛌

< 🗇 🕨

Let A be a commutative unital algebra finitely generated over an algebraically closed field. Let M be a finitely generated module over A.

Let A be a commutative unital algebra finitely generated over an algebraically closed field. Let M be a finitely generated module over A. Then the space of A-finite elements of M^* is dense in M^* .

Let A be a commutative unital algebra finitely generated over an algebraically closed field. Let M be a finitely generated module over A. Then the space of A-finite elements of M^* is dense in M^* .

Proof.

By the Nullstellensatz it is enough to show that

$$\bigcap_{m\in specm(A)}\bigcap_{i}m^{i}M=0.$$

Let A be a commutative unital algebra finitely generated over an algebraically closed field. Let M be a finitely generated module over A. Then the space of A-finite elements of M^* is dense in M^* .

Proof.

By the Nullstellensatz it is enough to show that

$$\bigcap_{m\in specm(A)}\bigcap_{i}m^{i}M=0.$$

This follows from the Artin-Rees lemma.

Lemma (Baby model)

Let A be a commutative unital algebra finitely generated over an algebraically closed field. Let M be a finitely generated module over A. Then the space of A-finite elements of M^* is dense in M^* .

Proof.

By the Nullstellensatz it is enough to show that

$$\bigcap_{m\in specm(A)}\bigcap_{i}m^{i}M=0.$$

This follows from the Artin-Rees lemma.

The theorem is reduced to the baby model using the theory of Bernstein center.

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → のへの

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

 $\xi_{\pi,\nu_1,\nu_2}(f) := \nu_1(\pi(f)(\nu_2))$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,v_1,v_2}(f) := v_1(\pi(f)(v_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,\nu_1,\nu_2}(f) := \nu_1(\pi(f)(\nu_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, v_1, v_2} , for some π, v_1, v_2 .

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,\nu_1,\nu_2}(f) := \nu_1(\pi(f)(\nu_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, v_1, v_2} , for some π, v_1, v_2 .

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Lemma (A.-Gourevitch-Sayag)

Let $H \subset G$ be of finite type.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,\nu_1,\nu_2}(f) := \nu_1(\pi(f)(\nu_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, v_1, v_2} , for some π, v_1, v_2 .

Lemma (A.-Gourevitch-Sayag)

Let $H \subset G$ be of finite type. Let $\xi \in S^*(G/H)$ be a $\mathfrak{z}(G)$ -finite distribution.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,\nu_1,\nu_2}(f) := \nu_1(\pi(f)(\nu_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, v_1, v_2} , for some π, v_1, v_2 .

Lemma (A.-Gourevitch-Sayag)

Let $H \subset G$ be of finite type. Let $\xi \in S^*(G/H)$ be a $\mathfrak{z}(G)$ -finite distribution. Then $S(G)\xi$ is admissible.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,\nu_1,\nu_2}(f) := \nu_1(\pi(f)(\nu_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, v_1, v_2} , for some π, v_1, v_2 .

Lemma (A.-Gourevitch-Sayag)

Let $H \subset G$ be of finite type. Let $\xi \in S^*(G/H)$ be a $\mathfrak{z}(G)$ -finite distribution. Then $S(G)\xi$ is admissible.

Corollary (A.-Gourevitch-Sayag)

For any $\mathfrak{Z}(G)$ -finite distribution on G, the $G \times G$ representation $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.

Definition

Let $H_1, H_2 \subset G$. Let π be an admissible representation of G. Let $v_1 \in (\pi^*)^{H_1}$ and $v_2 \in (\tilde{\pi}^*)^{H_2}$. Define $\xi_{\pi, v_1, v_2} \in \mathcal{S}^*(G)$ by

$$\xi_{\pi,\nu_1,\nu_2}(f) := \nu_1(\pi(f)(\nu_2))$$

Proposition (A.-Gourevitch-Sayag)

Let $H_1, H_2 \subset G$ be of finite type. Then any $\mathfrak{z}(G)$ -finite distribution in $\mathcal{S}^*(G)^{H_1 \times H_2}$ is a spherical character ξ_{π, v_1, v_2} , for some π, v_1, v_2 .

Lemma (A.-Gourevitch-Sayag)

Let $H \subset G$ be of finite type. Let $\xi \in S^*(G/H)$ be a $\mathfrak{z}(G)$ -finite distribution. Then $S(G)\xi$ is admissible.

Corollary (A.-Gourevitch-Sayag)

For any $\mathfrak{Z}(G)$ -finite distribution on G, the $G \times G$ representation $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.

Wave font set

ヘロト 人間 とくほとくほとう

æ

Let V be a (p-adic) vector space.

ヘロア 人間 アメヨア 人口 ア

æ

Let V be a (p-adic) vector space.

Let *f* ∈ *C*[∞](*V*). We say that *f* vanishes along *v* if ∃ a neighborhood *U* ∋ *v* and a constant *N* s.t. ∀λ > *N*, *u* ∈ *U*, we have *f*(λ*u*) = 0.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Let V be a (p-adic) vector space.

- Let *f* ∈ *C*[∞](*V*). We say that *f* vanishes along *v* if ∃ a neighborhood *U* ∋ *v* and a constant *N* s.t. ∀λ > *N*, *u* ∈ *U*, we have *f*(λ*u*) = 0.
- let ξ ∈ S*(V). We say that ξ is smooth at (x, v) ∈ T*V = V × V* if

 $\exists f \in \mathcal{S}(V)$ with $f(x) \neq 0$ s.t. $\widehat{f\xi}$ vanish along v

Let V be a (p-adic) vector space.

- Let *f* ∈ *C*[∞](*V*). We say that *f* vanishes along *v* if ∃ a neighborhood *U* ∋ *v* and a constant *N* s.t. ∀λ > *N*, *u* ∈ *U*, we have *f*(λ*u*) = 0.
- let $\xi \in S^*(V)$. We say that ξ is smooth at $(x, v) \in T^*V = V \times V^*$ if

 $\exists f \in \mathcal{S}(V)$ with $f(x) \neq 0$ s.t. $\widehat{f\xi}$ vanish along v

WF(ξ) ⊂ T*V and WF_x(ξ) ⊂ T^{*}_xV is defined to be the complement to the set of (x, v) as above.

くロト (過) (目) (日)

Let V be a (p-adic) vector space.

- Let *f* ∈ *C*[∞](*V*). We say that *f* vanishes along *v* if ∃ a neighborhood *U* ∋ *v* and a constant *N* s.t. ∀λ > *N*, *u* ∈ *U*, we have *f*(λ*u*) = 0.
- let $\xi \in S^*(V)$. We say that ξ is smooth at $(x, v) \in T^*V = V \times V^*$ if

 $\exists f \in \mathcal{S}(V)$ with $f(x) \neq 0$ s.t. $\widehat{f\xi}$ vanish along v

- WF(ξ) ⊂ T*V and WF_x(ξ) ⊂ T^{*}_xV is defined to be the complement to the set of (x, v) as above.
- One can extend this definition to (analytic) manifolds.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Fuzzy Balls

ヘロト 人間 とくほとくほとう

Ξ.

For any large enough ball *b* in \mathfrak{g}^* one can define an element $e_b \in \mathcal{H}(G)$.

ヘロト 人間 とくほとくほとう

ъ

For any large enough ball *b* in \mathfrak{g}^* one can define an element $e_b \in \mathcal{H}(G)$. If this ball is as small as possible than the ball is called fuzzy.

ヘロト ヘ戸ト ヘヨト ヘヨト

For any large enough ball *b* in \mathfrak{g}^* one can define an element $e_b \in \mathcal{H}(G)$. If this ball is as small as possible than the ball is called fuzzy. If a fuzzy ball intersects the nilpotent cone it is called nilpotent.

< ロ > < 同 > < 臣 > < 臣 > -

For any large enough ball *b* in \mathfrak{g}^* one can define an element $e_b \in \mathcal{H}(G)$. If this ball is as small as possible than the ball is called fuzzy. If a fuzzy ball intersects the nilpotent cone it is called nilpotent.

Theorem (Sayag)

Let π be an admissible representation of G.

For any large enough ball *b* in \mathfrak{g}^* one can define an element $e_b \in \mathcal{H}(G)$. If this ball is as small as possible than the ball is called fuzzy. If a fuzzy ball intersects the nilpotent cone it is called nilpotent.

Theorem (Sayag)

Let π be an admissible representation of G. Then there are only finitely many non-nilpotent fuzzy balls s.t. $\pi(e_b) \neq 0$.

ヘロト ヘ戸ト ヘヨト ヘヨト

э

→ < Ξ →</p>

• $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.

э

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls *B*.

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls *B*.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls *B*.

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls *B*.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls *B*.
- For small enough neighborhood U of 1:
 0 = exp*((e_B*ξ*e_B)|_U)

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls *B*.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls *B*.
- For small enough neighborhood U of 1:
 0 = exp*((e_B*ξ*e_B)|_U) = exp*(e_B)*exp*(ξ|_U)*exp*(e_B)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls *B*.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls *B*.

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls *B*.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls *B*.

• For small enough neighborhood
$$U$$
 of 1:

$$0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U) = \widehat{1_B} * exp^*(\xi|_U)$$

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls *B*.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls *B*.

• For small enough neighborhood
$$U$$
 of 1:

$$0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U) = \widehat{1_B} * exp^*(\xi|_U) = \mathcal{F}(1_B \cdot exp^*(\xi|_U))$$

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls *B*.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls *B*.
- For small enough neighborhood U of 1: $0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U) = \widehat{1_B} * exp^*(\xi|_U) = \mathcal{F}(1_B \cdot exp^*(\xi|_U))$
- $WF_0(exp^*(\xi|_U)) \subset \mathcal{N}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls *B*.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls *B*.
- For small enough neighborhood U of 1: $0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U) = \widehat{1_B} * exp^*(\xi|_U) = \mathcal{F}(1_B \cdot exp^*(\xi|_U))$
- $WF_0(exp^*(\xi|_U)) \subset \mathcal{N}$
- $WF_1(\xi) \subset \mathcal{N}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $\mathcal{S}(G) * \xi * \mathcal{S}(G)$ is admissible.
- $e_b * S(G) * \xi * S(G) * e_c = 0$ for many fuzzy balls b, c.
- $e_b * \xi * e_c = 0$ for many fuzzy balls b, c.
- $(\sum_{b \in X} e_b) * \xi * (\sum_{b \in X} e_b) = 0$ for many sets of fuzzy balls.
- $e_B * \xi * e_B = 0$ for many large balls *B*.
- $exp^*(e_B * \xi * e_B) = 0$ for many large balls *B*.
- For small enough neighborhood U of 1: $0 = exp^*((e_B * \xi * e_B)|_U) = exp^*(e_B) * exp^*(\xi|_U) * exp^*(e_B) = exp^*(e_B) * exp^*(\xi|_U) = \widehat{1_B} * exp^*(\xi|_U) = \mathcal{F}(1_B \cdot exp^*(\xi|_U))$
- $WF_0(exp^*(\xi|_U)) \subset \mathcal{N}$
- $WF_1(\xi) \subset \mathcal{N}$
- $WF_g(\xi) \subset \mathcal{N}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □