Category Theory Spring 2015 Exercise 2

Rami Aizenbud, Adam Gal

April 5, 2015

Note on submission: Questions marked with [S] are important and for submission and grading. Questions marked with * are somewhat more difficult, usually requiring things that did not appear in the course - these are good exercises but not required for grading. Of course you may submit the other questions as well.

Categories:

- Set category of sets
- Grp category of groups
- AbGrp category of abelian groups
- \mathbf{UCalg}_{\Bbbk} category of unital commutative algebras over \Bbbk
- Top category of topological spaces
- Ban category of Banach spaces
- \mathbf{Vect}_{\Bbbk} category of vector spaces over \Bbbk
- \mathbb{C}^{\times} mod category of modules over \mathbb{C}^{\times}
- Open(T) category of open sets of the topological space T.
- 1. **[S]** Which of the above categories are additive and which are also abelian?
- 2. [S] For those that are abelian, compute the Grothendieck group.
- 3. * Find a category \mathcal{C} with 0 s.t. for any X, Y we have some isomorphism $X \times Y \cong X \sqcup Y$ but \mathcal{C} is not semi-additive.
- 4. Find a semi-additive category which is not additive.
- 5. Let \mathcal{C} be a category and $X \in \mathcal{C}$. Denote $\operatorname{Sub}(X)$ the category of subobjects of X. Show that for any $U, V \in \operatorname{Sub}(X)$ we have $\# \operatorname{Hom}_{\operatorname{Sub}(X)}(U, V) \leq 1$. We will see that this means that $\operatorname{Sub}(X)$ is a poset.
- 6. **[S]** Show that the following definitions of Ker(f) are equivalent:

- (a) The equalizer of f with the zero map.
- (b) The fiber product of f with the zero map (from 0).
- (c) A subobject that maps to 0 via f and is terminal with this property.
- 7. Show that in a semi-additive category, the addition structure defines a structure of commutative monoid on the Hom spaces, and that composition is a bi-additive map

$$\operatorname{Hom}(X,Y) \times \operatorname{Hom}(Y,Z) \to \operatorname{Hom}(X,Z)$$

- 8. [S] Show that in an abelian category, for any morphism f, Im(f) = Ker(Coker(f)) (equality here means that the RHS satisfies the condition defining the LHS).
- 9. **[S]** Show that in an abelian category a morphism is an isomorphism iff it is a monomorphism and an epimorphism.