Category Theory Spring 2015 Exercise 4

Rami Aizenbud, Adam Gal

April 26, 2015

- 1. **[S]** Deduce from the weak Nullstellensatz ("A field finitely generated over \mathbb{C} as algebra is equal to \mathbb{C} ") an equivalence between complex affine algebraic varieties and commutative unital algebras finitely generated over \mathbb{C} .
- 2. Prove Yoneda's lemma.
- 3. Prove that Grothendieck sheaves are equivalent to Leray sheaves (on a fixed variety X).
- 4. Write adjoints on both sides (when they exist) for the following functors. When the adjoint functor has an adjoint on the other side write it as well.
 - (a) **[S]** Forgetful functors
 - i. From Top to Set
 - ii. From compact top. spaces to T4 top. spaces
 - iii. From Vect to Set
 - iv. From AbGrp to Grp
 - v. From the category of pairs (A, S) of a commutative algebra and a subset of invertible elements to the category of pairs (A, S) of a commutative algebra and a subset of (general) elements.
 - (b) The pullback functor Φ^* : $Mod_A \to Mod_B$ where $\Phi : B \to A$ is a morphism of algebras/groups.
 - (c) The functor of invariants from G-reps to **Vect** for some group G.
 - (d) The functors $X \mapsto \text{Hom}(X, A)$ and $X \mapsto \text{Hom}(A, X)$. For fixed $A \in \text{Mod}_R$, R an algebra.
- 5. **[S]** Show that a functor which has a left (right) adjoint commutes with all (co)limits.