Category Theory Spring 2015 Exercise 5

Rami Aizenbud, Adam Gal

May 6, 2015

- 1. Let \mathcal{D} be a category with finite products and a terminal object. Let \mathcal{C} be the category of groups equipped with the forgetful functor to **Set**. Prove that the category of \mathcal{C} objects in \mathcal{D} is equivalent to the category of group objects in \mathcal{D} .
- 2. Prove that the category of group objects in Grp is equivalent to AbGrp.
- 3. Prove that Grp objects in Top are equivalent to Top objects in Grp.
- 4. Is the same true when replacing **Top** with the category of smooth manifolds?
- 5. Prove that the category of **Vect** objects in sheaves on X is equivalent to sheaves of vector spaces on X.
- 6. Let ${\mathcal C}$ be a category and S a set of morphisms closed on composition and containing identities.

Assume that

(a) Any corner

$$\begin{array}{c} B \xrightarrow{s} A \\ \downarrow \\ C \end{array}$$

with $s \in S$ can be completed to a square

$$\begin{array}{ccc} B & \stackrel{s}{\longrightarrow} & A \\ \downarrow & & \downarrow \\ C & \stackrel{s'}{\longrightarrow} & B' \end{array}$$

with $s' \in S$.

(b) For any $f, g: A \to B$ and $s \in S$ such that $f \circ s = g \circ s$ there is $s' \in S$ such that $s' \circ f = s' \circ g$.

Prove that the localization $S^{-1}\mathcal{C}$ exists.