# Generalized Functions, Ex. 3 

## 1 Notation and Some Facts

## 2 QUESTION 1:

## 2.1 problem

Show that $C_{c}^{\infty}(\mathbb{R})$ is dance in $\operatorname{Dist}(\mathbb{R})$, both in the strong and in the weak topology.

## 2.2 solution

As the strong topology is stronger, it will be sufficient to prove for the strong topology. As the solution we suggest is quite involved, we fix some notations:

- For $k>0$ and a set $A \subseteq \mathbb{R}$, let $\rho_{A, k}(f)=\sum_{i=1}^{k}\left(\sup _{A}\left\{\left|f^{(i)}(x)\right|\right\}\right)$.
- Let $\psi_{n}$ be a partition of unity of $\mathbb{R}$ with respect to $\{(-n-1 / 2, n+1 / 2): n \in \mathbb{N}\}$. We can find such a partition with $\psi_{n+k}(x)=\psi_{n}(x-k)$, and we do so.
- For two sequences $\epsilon_{i}>0$ and $\tau_{i} \in \mathbb{N}$ we let $U_{\left\{\epsilon_{i}\right\},\left\{\tau_{i}\right\}}=\left\{f \in C_{c}^{\infty}(\mathbb{R}) \mid \rho_{(-\infty,-n] \cup[n, \infty), k_{n}}(f)<\right.$ $\left.a_{n}\right\}$. This is an open set in $C_{c}^{\infty}(\mathbb{R})$.
- Let $\chi_{n}:=\sum_{k=-n}^{n}\left(\psi_{k}\right)$. This is a "bump function".

We solve the problem in two steps.
Step 1: In the strong topology, the space of compactly supported distributions is dance in the space of all distributions.

For given a distribution $\xi$. Let $T_{k}:=\sup _{n}\left\{\left\|\chi_{n}^{(k)}\right\|_{\infty}\right\}$ (this is $<\infty$ by construction). Consider the sequence $\xi_{n}:=\chi_{n} \xi$. We claim that $\xi_{n} \xrightarrow{s} \xi$.

As $\xi$ is a continuous functional on the space $C_{[-n, n]}^{\infty}(\mathbb{R})$, it is bounded with respect to one of the norms defining its topology. So, there's must be $k_{n} \in \mathbb{N}, C_{n}>0$ such that

$$
|\xi(f)|<C_{n}\left(\rho_{k_{n},[-n, n]}(f)\right.
$$

. for every $f$ with support in $[-n, n]$.
Let $B$ be a bounded set, then for every $U=U_{\left\{\epsilon_{i}\right\},\left\{\tau_{i}\right\}}$, there is $\lambda>0$ such that $\lambda U \supseteq B$.
So it will be sufficient to prove that $\xi_{n}-\xi$ converge to 0 uniformly on $U_{\left\{\lambda \epsilon_{i}\right\},\left\{\lambda \tau_{i}\right\}}$ for some choice of sequences $\epsilon_{i}, \tau_{i}$, and every $\lambda$.

But

$$
\begin{aligned}
& \left|\xi_{n}(f)-\xi(f)\right|=\left|\xi\left(\left(\chi_{n}-1\right) f\right)\right|< \\
& <\sum_{l=-N-1}^{-n+1}\left(\left|\xi\left(\psi_{l} f\right)\right|\right)+\sum_{l=n-1}^{N+1}\left(\left|\xi\left(\psi_{l} f\right)\right|\right)< \\
& <\sum_{l=-N-1}^{-n+1}\left(C_{l} \rho_{[-l-1, l+1], k_{l}}\left(\psi_{l} f\right)\right)+\sum_{l=n-1}^{N+1}\left(C_{l} \rho_{[-l-1, l+1], k_{l}}\left(\psi_{l} f\right)\right)= \\
& =\sum_{l=-N-1}^{-n+1}\left(C_{l} \rho_{[l-1, l+2], k_{l}}\left(\psi_{l} f\right)\right)+\sum_{l=n-1}^{N+1}\left(C_{l} \rho_{[l-1, l+2], k_{l}}\left(\psi_{l} f\right)\right)
\end{aligned}
$$

Now, by Liebnietz rule, $\rho_{A, k}(f g)<2^{k} \rho_{A, k}(f) \rho_{A, k}(g)$. Substitute this, with $T_{k}=\left\|\psi_{n}^{(k)}\right\|_{\infty}$ (which is clearly independent on $n$ ) we get

$$
\left|\xi_{n}(f)-\xi(f)\right|<\sum_{l=-N-1}^{-n+1}\left(C_{l} T_{k_{l}} 2^{k_{l}} \rho_{[l-1, l+2], k_{l}}(f)\right)+\sum_{l=n-1}^{N+1}\left(C_{l} T_{k_{l}} 2^{k_{l}} \rho_{[l-1, l+2], k_{l}}(f)\right) .
$$

Take $\epsilon_{l+2}=\left(e^{-l} C_{l} T_{k_{l}} 2^{k_{l}}\right)^{-1}$, and $\tau_{l+2}=k_{l}$, we get that, if $f \in \lambda U_{\left\{\epsilon_{i}\right\},\left\{\tau_{i}\right\}}$ the last sum is bounded by

$$
\begin{aligned}
& \sum_{l=-N-1}^{-n+1}\left(C_{l} T_{k_{l}} 2^{k_{l}} \rho_{[l-1, l+2], k_{l}}(f)\right)+\sum_{l=n-1}^{N+1}\left(C_{l} T_{k_{l}} 2^{k_{l}} \rho_{[l-1, l+2], k_{l}}(f)\right)< \\
& \sum_{l=-N-1}^{-n+1}\left(C_{l} T_{k_{l}} 2^{k_{l}}\left(C_{l} T_{k_{l}} 2^{k_{l}}\right)^{-1} e^{-l}\right)+\sum_{l=n-1}^{N+1}\left(C_{l} T_{k_{l}} 2^{k_{l}}\left(C_{l} T_{k_{l}} 2^{k_{l}}\right)^{-1} e^{-l}\right)< \\
& 2 \lambda\left(\sum_{l=n-1}^{N+1} e^{-l}\right)<2 \lambda \frac{e^{-n}}{1-e^{-1}} \rightarrow 0
\end{aligned}
$$

Therefore, the convergence is uniform on $B$, and the strong convergense is proved.
Step 2: $C_{c}^{\infty}(\mathbb{R})$ is dance in the space of all compactly supported distributions.
Let $\xi \in \operatorname{Dist}_{c}(\mathbb{R})$ be supported on $[-l, l]$. Let $\xi_{n}=\phi_{n} * \xi$, where $\phi_{n}(x)=n \phi(n x), \phi(x)$ a positive function supported on $[-1,1]$ with total integral 1 . These are smooth functions with compact support as convolution of smooth compactly supported function with compactly supported distribution is a smooth compactly supported function. We wish to show that $\xi_{n} \xrightarrow{s} \xi$. By definition $\xi_{n}(f)=\xi\left(\overline{g_{n} * \bar{f}}\right)$. But as $\operatorname{supp}(\xi) \subseteq[-l, l], \xi\left(\overline{g_{n} * \bar{f}}\right)=\xi\left(\chi_{l+1} \overline{g_{n} * \bar{f}}\right)$. As $\xi$ is continuous, there is $k \in \mathbb{N}$ and $C>0$ such that $|\xi(f)|<C \rho_{[-l-1, l+1], k}(f)$ for every $f$ which is supported on $[-l-1, l+1]$. Therefore, for every $f \in C_{c}^{\infty}(\mathbb{R})$,

$$
\begin{aligned}
& \left|\xi_{n}(f)-\xi(f)\right|= \\
& \left|\xi\left(\chi_{l+1}\left(\overline{g_{n} * \bar{f}}-f\right)\right)\right| \leq \\
& C \rho_{[-l-1, l+1], k}\left(\chi_{l+1}\left(\overline{g_{n} * \bar{f}}-f\right)\right)
\end{aligned}
$$

But, $\left\|\left(\overline{g_{n} * \bar{f}}-f\right)^{(k)}\right\|_{\infty} \leq 1 / n\left\|g_{n}\right\|_{1}\left\|f^{(k+1)}\right\|_{\infty}=\frac{f^{(k+1)}}{n}$ as we integrate $g_{n}$ against $f^{(k)}(x)-$ $f^{(k)}(y)$ for $|y-x|<1 / n$. Substitute this, and using Liebnitz rule again, we get
$\left|\xi_{n}(f)-\xi(f)\right|<\frac{C 2^{k} \rho_{[-l-1, l+1], k}\left(\chi_{l+1}\right) \rho_{[-l-1, l+1], k+1}(f)}{n} \rightarrow 0$. and this convergence is uniform if we bound $\rho_{[-l-1, l+1], k+1}(f)$, which we can on any bounded set.

This completes the proof of step 3 .
We proved that $C_{c}^{\infty}(\mathbb{R})$ is dance in $\operatorname{Dist}_{c}(\mathbb{R})$ which is dance in $\operatorname{Dist}(\mathbb{R})$. So $C_{c}^{\infty}(\mathbb{R})$ is dance in $\operatorname{Dist}(\mathbb{R})$.

## 3 Question 2

### 3.1 Problem

prove that $C^{-\infty}$ is a sheaf.

## 3.2 solution

For $V \supseteq U$ and $f \in C_{c}^{\infty}(U)$, let $e x t_{U}^{V}(f)$ be the extention by 0 of $f$ from $U$ to $V$. We already saw in class that a distribution which vanish locally vanish also globally, using partition of unity. It remain to check the patching condition, namely that given a collection $\xi_{i} \in C^{-\infty}\left(U_{i}\right)$ such that $\left.\xi_{i}\right|_{U_{i} \cap U_{j}}=\left.\xi_{j}\right|_{U_{i} \cap U_{j}}$, there is $\xi \in C^{-\infty}\left(\cap_{i} U_{i}\right)$ which agree with $\xi_{i}$ on $C^{-\infty}\left(U_{i}\right)$. By compactness, we may restrict to finite covers. Let $U=U_{1} \cap \ldots \cap U_{n}$, and consider the sequence

$$
\oplus_{i<j} C_{c}^{\infty}\left(U_{i} \cap U_{j}\right) \xrightarrow{\beta} \bigoplus_{i} C_{c}^{\infty}\left(U_{i}\right) \xrightarrow{\alpha} C_{c}^{\infty}(U) \longrightarrow 0
$$

where $\alpha$ is the sum of the natural inclusions, while $\beta\left(f_{i, j}\right)=\operatorname{ext}_{U_{i} \cap U_{i}}^{U_{j}}\left(f_{i, j}\right)-e x t_{U_{i} \cap U_{i}}^{U_{i}}\left(f_{i, j}\right)$.
Let $\xi_{i}$ be a compatible collection of distributions of the $U_{i}$-s. Consider the functional $\tilde{\xi}$ : $\bigoplus_{i} C_{c}^{\infty}\left(U_{i}\right) \rightarrow \mathbb{R}$ given by the sum of the $\xi_{i}$-s. We wish to show that $\tilde{\xi}$ vanish on $\operatorname{Ker}(\alpha)$, because then linearly it will descent to $\operatorname{Im}(\alpha)=C_{c}^{\infty}(U)$, and the resulting functional will be continuous, as we can check on each $C_{K}^{\infty}(U)$ separately, and then $\alpha_{K}: \bigoplus_{i} C_{K}^{\infty}\left(U_{i}\right) \rightarrow C_{K}^{\infty}(U)$ is open by the open mapping theorem $\left(C_{K}^{\infty}(U)\right.$ is Freshet).

Note that $\tilde{\xi} \circ \beta\left(\left\{f_{i, j}\right\}\right)=\sum_{i, j} \xi_{i}\left(f_{i, j}\right)-\xi_{j}\left(f_{i, j}\right)=0$ by the compatibility of the collection $\xi_{i}$. Therefore, it will be sufficient to prove:

## Lemma 3.1 $\operatorname{Im}(\beta) \supseteq \operatorname{Ker}(\alpha)$

We do this by induction on $n$. For $n=1$, if $f_{1}+f_{2}=0$ where $\operatorname{supp}\left(f_{i}\right) \subseteq U_{i}, i=1,2$, then clearly $\operatorname{supp}\left(f_{i}\right) \subseteq U_{1} \cap U_{2}$ and we let $f_{1,2}=f_{1}$, and then $\beta\left(f_{1,2}\right)=\left(f_{1}, f_{2}\right)$.

Consider a collection of $n+1$ sets, $U_{1}, \ldots, U_{n+1}$. Let $\left(f_{1}, \ldots, f_{n+1}\right)$ be in $\operatorname{Ker}(\alpha)$. So $f 1+\ldots+$ $f_{n+1}=0$. For a point $x \in U_{n+1}-\bigcup_{i=1}^{n} \operatorname{supp}\left(f_{i}\right)$, the only contribution to the $\operatorname{sum} f_{1}(x)+\ldots+$ $f_{n+1}(x)$ is of $f_{n+1}$, so $f_{n+1}$ vanish outside of $\bigcup_{i=1}^{n} \operatorname{supp}\left(f_{i}\right)$. This implies that $\operatorname{supp}\left(f_{n+1}\right) \subseteq$ $\bigcup_{i=1}^{n}\left(\operatorname{supp}\left(f_{i}\right) \cap U_{n+1}\right) \subseteq \bigcup_{i=1}^{n}\left(U_{i} \cap U_{n+1}\right)$. Let $\psi_{1}, \ldots, \psi_{n}, \psi$ be a partition of unity subordinate to the partition $U_{n+1}=\left(U_{1} \cap U_{n+1} \cup \ldots \cup U_{n} \cap U_{n+1}\right) \cup\left(\bigcup_{i=1}^{n} \operatorname{supp}\left(f_{i}\right)\right)^{C}$. (this means that their sum is always 1 and each is supported in the corresponding open set. We saw that such things exists). Then, $f_{n+1}=\sum_{i=1}^{n}\left(\psi_{i} f_{n+1}\right)$. taking $g_{i, n+1}=\psi_{i} f_{n+1}$ we get $\left(f_{1}, \ldots, f_{n+1}\right)-\sum_{i} \beta\left(g_{i, n+1}\right)=$ $\left(h_{1}, \ldots, h_{n}, 0\right)$ for some $h_{i} \in C_{c}^{\infty}\left(U_{i}\right)$. By induction, $\left(h_{1}, \ldots, h_{n}, 0\right)=\beta(\gamma)$ for some $\gamma$. so $\left(f_{1}, \ldots, f_{n}\right) \in \operatorname{Im}(\beta)$.

## 4 Question 3:

### 4.1 Problem:

For $U \subseteq \mathbb{R}^{n}$ open, describe explicitly $\overline{C_{c}^{\infty}(\mathbb{R})}$

### 4.2 Solution:

Answer: $\overline{C_{c}^{\infty}(\mathbb{R})}$ is the space all functions which vanish outside $U$ together with all of its derivatives.

One direction is clear. In $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ the closure of a set is the set of all limits of elements in it, as it is a direct limit of Freshet spaces. If $f_{k} \rightarrow f$ with $f_{k} \in C_{c}^{\infty}(U)$, and $J \in \mathbb{N}^{n}$, then $D_{J}\left(f_{n}\right)(x) \rightarrow D f(x)=0$ if $x \notin U$.

We shall prove the converse.
Consider the norm $\rho_{l, A}(f)=\sum_{J \in \mathbb{N}^{n},|J| \leq l}\left\|D_{J}(f)\right\|_{\infty, A}$. It follows from Liebnietz rule that

$$
\begin{equation*}
\rho_{l, A}(f g) \leq 2^{l} \rho_{l, A}(f) \rho_{l, A}(g) \tag{1}
\end{equation*}
$$

Moreover, by the residue formula of Taylor approximation in follows that for every $x, y \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\left|f(x)-f(y)-p_{l, x}(y)\right| \leq \rho_{l+1,[x, y]}(f)|x-y|^{l+1} \tag{2}
\end{equation*}
$$

where $p_{l, x}$ is the Taylor expansion of $f$ around $x$. We will prove the converse using these two estimates.

Let $f$ be a function which vanish along with all of its derivatives outside $U$. Let $K=[-1,1]^{n}$ be the unit cube.

Let $\left\{\psi_{I}(x)\right\}_{I \in \mathbb{Z}^{n}}$ be a collection of $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ functions, such that:

- $\operatorname{supp}\left(\psi_{I}\right)=\prod_{i=1}^{n}\left[-1.1+2 I_{i}, 1.1+2 I_{i}\right]$,
- $\psi_{I}(x)=\psi_{0}(x-2 I)$,
- $\sum_{I}\left(\psi_{I}(x)\right) \equiv 1$.

It is not hard to construct such a collection. For each $m>0$, consider the partition of unity obtained by rescaling this partition by $1 / m$, that is, let $\psi_{I, m}(x):=\psi_{I}(m x)$. Consider the function

$$
f_{m}(x)=\sum_{\operatorname{supp}\left(\psi_{I, m} \subseteq U\right)}\left(\psi_{I, m}(x) f(x)\right)
$$

We claim that $f_{m} \rightarrow f$. To see this, fix a compact $[-M, M]^{n}=K \supseteq \operatorname{supp}(f)$, and choose it large enough so that for every $m \in \mathbb{N}, \sum_{\operatorname{supp}\left(\psi_{I, m}\right) \subseteq K} \psi_{I, m}(x)=1, x \in \operatorname{supp}(f)$.
then $K$ contains all the supports of all the $f_{n}$-s. Let $l>0$, we have to show that

$$
\rho_{l, K}\left(f_{m}-f\right)=\rho_{l, K}\left(\sum_{\operatorname{supp}\left(\psi_{I, m}\right) \cap U^{C} \neq \emptyset}\left(\psi_{I, m} f\right)\right) \rightarrow 0 .
$$

But

$$
\begin{array}{lr}
\rho_{l, K}\left(\sum_{\operatorname{supp}\left(\psi_{I, m}\right) \cap U^{C} \neq \emptyset}\left(\psi_{I, m} f\right)\right) \leq & \text { (By Triangle Inequality) } \\
\sum_{\operatorname{supp}\left(\psi_{I, m}\right) \cap U^{C} \neq \emptyset} \rho_{l, K}\left(\psi_{I, m} f\right) \leq & \text { (By Liebnietz rule) } \\
\sum_{\operatorname{supp}\left(\psi_{I, m}\right) \cap U^{C} \neq \emptyset} 2^{l} \rho_{l, K}\left(\psi_{I, m}\right) \rho_{l, s u p p\left(\psi_{I, m}\right)}(f) &
\end{array}
$$

Now, $\rho_{l, K}\left(\psi_{I, m}\right)$ is independent of $I$, as all the $\psi$-s are translates of each other. Moreover, as it is a rescale of $\psi_{I}$, we get $\rho_{l, K}\left(\psi_{I, m}\right) \leq m^{l} \rho_{l, K}\left(\psi_{I}\right)=m^{l} C_{l}$ where $C_{l}=\rho_{l, \mathbb{R}^{n}}\left(\psi_{I}\right)$ is independent of $I$ and $K$. Moreover, using (2), we can estimate $\rho_{l, s u p p\left(\psi_{I, m}\right)}(f)$ as follows. Firstly, $\operatorname{Diam}\left(\operatorname{supp}\left(\psi_{I, m}\right)\right) \leq \frac{3}{m}$. Let $x \in \operatorname{supp}\left(\psi_{I, m}\right) \cap U^{C}$ and $y \in \operatorname{supp}\left(\psi_{I, m}\right)$. Let $J$ be a multi-index with $|J| \leq l$. Then

$$
\begin{aligned}
& \left|D_{J} f(x)\right|=\left|D_{J}(f(x))-D_{J}(f(y))-p_{N, x, D_{J} f}(y)\right| \leq \\
& \rho_{N+1, \operatorname{supp}\left(\psi_{I, m}\right)}\left(D_{J} f\right)|x-y|^{N+1} \leq \\
& \rho_{N+|J|+1, \operatorname{supp}\left(\psi_{I, m}\right)}(f) \operatorname{Diam}\left(\operatorname{supp}\left(\psi_{I, m}\right)\right)^{N-|J|+1} \leq \\
& \rho_{N+|J|+1, \operatorname{supp}\left(\psi_{I, m}\right)}(f) \operatorname{Diam}\left(\frac{3}{m}\right)^{N-|J|+1} \leq
\end{aligned}
$$

We will specify $N$ in a moment, if follows from these inequalities that $\rho_{l, \operatorname{supp}\left(\psi_{I, m}\right)}(f) \leq \rho_{N+l+1, \mathbb{R}^{n}}(f)\left(\frac{3}{m}\right)^{N-l+1}$.
Substitute these inequalities we get

$$
\begin{aligned}
& \rho_{l, K}\left(f_{m}-f\right) \leq \\
& \sum_{\operatorname{supp}\left(\psi_{I, m}\right) \cap U^{C} \neq \emptyset} 2^{l} C_{l} m^{l} \rho_{N+l+1, \mathbb{R}^{n}}(f)\left(\frac{3}{m}\right)^{N-l+1}= \\
& \sum_{{\operatorname{supp}\left(\psi_{I, m}\right) \cap U^{C} \neq \emptyset} 2^{l} C_{l} 3^{N-l+1} m^{2 l-N-1} \rho_{N+l+1, \mathbb{R}^{n}}(f) \leq \quad\left(\text { As }\left|\left\{I: \operatorname{supp}\left(\psi_{I, m}\right) \cap \operatorname{supp} f \neq \emptyset\right\}\right| \leq(M m)^{n}\right)}^{M^{n} m^{n} 2^{l} C_{l} 3^{N-l+1} m^{2 l-N-1} \rho_{N+l+1, \mathbb{R}^{n}}(f)=} \\
& C m^{2 l+n-N-1}
\end{aligned}
$$

Where $C$ is a constant which doesn't depend on $m$ (but it may depends on every other parameter, e.g. $l, N, f \ldots$... Choose $N=2 l+n+100$, the tail of the last inequality descent to 0 . So $f_{m} \rightarrow f$ in the $\rho_{l, K}$ norm, and it follows that $f_{m} \rightarrow f$ in the topology of $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.

## 5 Question 4:

### 5.1 Problem

a. Find an example of a distribution $\xi \in C_{\mathbb{R}^{K}}^{-\infty}\left(\mathbb{R}^{n}\right)$, which is not in $\bigcup_{i=1}^{\infty} F_{i}$,
b. Show that locally $C_{\mathbb{R}^{K}}^{-\infty}\left(\mathbb{R}^{n}\right)=\bigcup_{i=1}^{\infty} F_{i}$.

### 5.2 Solution

a. Let $\xi=\sum_{i=1}^{\infty} \partial_{x_{2}}^{i} \delta_{(i, 0, \ldots, 0)}$. This distribution is clearly supported on $\mathbb{R}^{k}$ (even on $\mathbb{R}^{1}$ ), but for every $i \in \mathbb{N}$, this distribution don't vanish on $x_{2}^{i+1} \prod_{j=2}^{n} \phi\left(x_{j}\right) \phi\left(x_{1}-i\right) \in F^{i}\left(\mathbb{R}^{k}, \mathbb{R}^{n}\right)$ where $\phi$ is as usual a bump function around 0 , equal 1 in a neighborhood of 0 and supported in $[-1,1]$.
b. Let $\xi \in C_{\mathbb{R}^{K}}^{-\infty}\left(\mathbb{R}^{n}\right)$, and let $p \in \mathbb{R}^{k}$. We wish to find $p \in U \subseteq \mathbb{R}^{n}, i \in \mathbb{N}$ and $\xi^{\prime} \in F^{i}\left(\mathbb{R}^{k}, \mathbb{R}^{n}\right)$ such that $\left.\xi^{\prime}\right|_{U}=\left.\xi\right|_{U}$. Let $B$ be a closed ball centered at $p$. As $\xi$ is a continuous functional on the Freshet space $C_{B}^{\infty}\left(\mathbb{R}^{n}\right)$, there is $N \in \mathbb{N}$ and $C>0$ such that

$$
\forall f \in C_{B}^{\infty}\left(\mathbb{R}^{n}\right), \quad|\xi(f)| \leq C \sum_{|J| \leq N}\left\|D_{J}(f)\right\|_{\infty} .
$$

Consider again the bump function $\phi$. Let $f \in F^{2 N+2}\left(\mathbb{R}^{k}, \mathbb{R}^{n}\right) \cap C_{B}^{\infty}\left(\mathbb{R}^{n}\right)$, and let $f_{m}=$ $\prod_{j=k+1}^{n} \phi\left(m x_{j}\right) f$. Then $\xi\left(f_{m}\right)=\xi(f)$ because $\xi$ is supported on $\mathbb{R}^{k}$. On the other hand, it is not hard to see (using the same estimations as in question 3) that $\left\|D_{J}\left(f_{m}\right)\right\| m \xrightarrow{\rightarrow} \infty$ for every $J$ with $|J|<2 N+2$, (informally, this is because each derivation of $\phi$ contribute $m$ to the norm while $\left|D_{J}(f)\right|=o\left(m^{-N-2}\right)$ ). I follows that $\xi(f)=\xi\left(f_{m}\right) \rightarrow 0$ and as $\xi$ is continuous, $\xi(f)=0$. Now let $\xi^{\prime}(x)=\phi\left((\operatorname{Diam}(B)|x-p|)^{2}\right) \xi(x)$, we have by the consideration above $\xi^{\prime} \in F_{2 N+2}$ while $\left.\xi\right|_{1 / 2 B}=\xi_{1 / 2 B}^{\prime}$. This proves that $\xi$ is locally $F_{2 N+2}$ near $p$.

## 6 Question 5

## 6.1 problem:

a. Show that the filtration $F_{i}\left(\mathbb{R}^{n}\right)_{\mathbb{R}^{k}}$ of $C^{-\infty}\left(\mathbb{R}^{n}\right)$ is invariant under diffeomorphisms preserving $\mathbb{R}^{k}$.
b. show that the splitting $F_{i}=F_{i-1} \oplus \quad \bigoplus \quad D_{J} C^{-\infty}\left(\mathbb{R}^{k}\right)$ is not invariant under diffeomorphisms.

## 6.2 solution:

a. Let $\phi:\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right) \rightarrow\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$ ne a diffeomorphism. It will clearly be sufficient to show that $\phi^{*}\left(F_{\mathbb{R}^{k}}^{i}\left(\mathbb{R}^{n}\right)\right) \subseteq \phi^{*}\left(F_{\mathbb{R}^{k}}^{i}\left(\mathbb{R}^{n}\right)\right)$. Let $D_{J}$ be a differential operator of degree $\leq i$, and assume $\left.D_{J} f\right|_{\mathbb{R}} ^{k}=0$. We have to show that $\left.D_{J}(f \circ \phi)\right|_{\mathbb{R}} ^{k}=0$. Write $D_{J}=\partial_{x_{i_{1}}} \ldots \partial_{x_{i_{i}}}$. Then

$$
\begin{aligned}
& D_{J}(f \circ \phi)(x)=\partial_{x_{i_{1}}} \ldots \partial_{x_{l-1}} d \phi(x)\left(\partial_{x_{i_{l}}}\right)(f)(\phi(x))= \\
& \partial_{x_{i_{1}}} \ldots \partial_{x_{l-1}}\left(\sum_{k} a_{k}(x) \partial_{x_{k}} f(\phi(x))\right)= \\
& \sum_{k} \partial_{x_{i_{1}} \ldots \partial_{x_{l-1}}}\left(a_{k}(x) \partial_{x_{k}} f(\phi(x))\right)=(\text { By Liebnietz }) \\
& \sum_{k} \sum_{I \subseteq i_{1}, \ldots, i_{l-1}} C_{I} D_{I} a_{k}(x) D_{I^{C} \cap\left\{i_{1}, \ldots, i_{l}\right\}}(f(\phi(x)))
\end{aligned}
$$

Where $C_{I}$ are some binomial coefficients.
Now, $\partial_{x_{i_{l}}} f$ is in $F^{i-1}$. By induction (the case $\mathrm{i}=0$ is trivial...) $\partial_{x_{i_{l}}} f \circ \phi$ is also in $F^{i-1}$. We conclude that all the summands in the sum above vanish, so $D_{J}(f \circ \phi)=0$ and $f \circ \phi \in F^{i}$.
b. A counter example: Let $n=1, k=0, \phi(x)=x+x^{3}$. Then

$$
\begin{aligned}
& <\delta^{\prime \prime \prime},(f \circ \phi)>=\left.\left(f\left(x+x^{3}\right)\right)^{\prime \prime \prime}\right|_{x=0}= \\
& {\left.\left[\left(1+3 x^{2}\right) f^{\prime}\left(x+x^{3}\right)\right]^{\prime \prime}\right|_{x=0}=\left.\left[\left(1+3 x^{2}\right)^{2} f^{\prime \prime}\left(x+x^{3}\right)+6 x f^{\prime}\left(x+x^{3}\right)\right]^{\prime}\right|_{x=0}=} \\
& f^{\prime \prime \prime}(0)+12 f^{\prime \prime}(0)+6 f^{\prime}(0)
\end{aligned}
$$

and therefore $\psi_{*}\left(\delta^{\prime \prime \prime}\right)=\delta^{\prime \prime \prime}+12 \delta^{\prime \prime}+6 \delta^{\prime}$. Thuse the space span $\delta^{\prime \prime \prime}$ is not invariant under diffeomorphisms preserving the origin.

