Generalized Functions: Homework 1

Exercise 1. Prove that there exists a function f € C°(R) which isn’t the zero
Sfunction.

Solution: Consider the function:

_ e_% x>0
9730 <0

We claim that g € C*°(R). Indeed, all of the derivatives of e~ = are vanishing

when x — 0: .

. 1 . _1

fim e = Jmae) <7 =0
where ¢(x) is a rational function of z. The function f = g(z)-g(1—=z) is smooth,
as a multiplication of two smooth functions, has compact support (the interval
[0,1]), and is non-zero (f (3) = 1).

€

Exercise 2. Find a sequence of functions {f,}, € Z (when f, € C* (R) Vn)
that weakly converges to Dirac Delta function.

Solution: Consider the sequence of function:

fnzg(;—x)-g@m) € O2(R)

where g(z) € C°(R) is the function defined in the first question. Notice that

the support of f, is the interval [—% l]. Normalizing these functions so that

‘n

the integral will be equal to 1 we get:

fo = d(m)fr, d(n) = / fole)da

o0

For every test function F(x) € C°(R), we can write F(z) = F(0) + z - G(x),
where G(z) € C2°(R). Therefore we have:

[ 1/n
—o0 —1/n
1/n 1/n
= [ PO fa)ia [ aGla) fulw)is
—1/n —1/n
1/n
~ FO)+ / 2G(2) - ful)da
—1/n



So 22, F(x): fulw)dz— [ F(x)-6(x)dz = [1) 2G(x)- fu(x)dz. Notice that

G(z) is bounded by some M € R and thus we get:

1/n 1/n

/ 2G(z) - fo(z)dx| < / |zG(x) - fn(x)| dz
1/n —1/n
1/n

—1/n
M

:7—>0
n n—oo

IN

Therefore, the sequence of functions f,, weakly converges to Dirac Delta func-
tion.

Exercise 3. Find a function F € L} for which F' = 4.

loc

Solution: Consider Heaviside step function:

o— 1 z>0
0 <0

and let £g be the functional defined by ©. Then for every test function ¢ €
C (R):

oo

&(p) = —foly)=— / o/ (2) - O()dz
=~ [ @z = (Jim pla) - ¢(0)
0
= ¢(0)=d(p)

Therefore, as distributions, ©’ = §.

Exercise 4. 1. Let Uy, Uy be open subsets of R. Show that if {|y, = &|u, =0
then &|u,uu, = 0.
2. Show this also holds for any union of such open {U;},c;.
Solution:
1. We define a smooth step function:

_ 7tan(%‘7’)

e ¢ —-1<x<1
s(z) =141 1<z
0 r<—1



and use it to write f € C (R), supp(f) = Uy UUs, as a sum f1 + fo
where supp(f;) = U;. Notice that s(nx) is a step of width ﬁ Suppose
U; = (a4, b;) are open intervals (in case U; are finite union of open intervals
the generalization is obvious; the case of infinite union is a result of section
(b) of this question). If Uy NUs = () then f; = f|y,. Otherwise, one of the
edges of U is in the interior of Us, wlog a1 € (ag,b2). Then:

fi=f-sn(z—a)), %<%(b2—a1)

and then take fo = f — fi. Notice that supp (f2) C Us, since we chose n
properly. Now, £(f) =& (f1) + € (f2) =0, i.e. &|y,uv, =0.

2. Notice that we are only interested in {U;},.; N supp (f). In addition we
can assume U; are open intervals (by splitting U; to its components). The
union {U;},.; covers supp (f), which is compact, and therefore there is a
finite sub-cover {U;; }?':1. So it is enough to present f as asum Y7, f;
where supp (f;) = Ui;. This we do as in the previous section.

Exercise 5. Find all the generalized functions £ € C;°° (R) for which supp(§) =

{0} .

Solution: For every f € C (R), supp (f) is compact, and therefore, if 0 ¢
supp (f) there exists a neighborhood of 0 in which f = 0. Therefore, for every
n, supp ((5(")) = {0}, and thus every generalized function of the form ¢ =
Sy ¢:6() where ¢; € R, has zero support. Now, suppose £ € C~, supp (£) =
{0}, then by definition, | (m\{0}) = 0. Clearly this means that £|m =

0. For every f € C (R) such that Vn, f("(0) = 0, we can define a sequence
fn(z) = winzx) - f(x), where w,(z) =1 — s(2nz + 3) - s (3 — 2nx) is a smooth
symmetric “flat bump” function, that goes down from 1 to 0 in [—2,—1] and

n’ n

up again in [1, 2] Notice that f, € C (R\{0}), and that f, — f €
C2 (R\ {0}), since at = = 0, Vk, f,(Lk) (z) = f®)(x) =0, and for z # 0, f, = f

in a neighborhood of x for n large enough. Define ¢ : C2° (R) — R to be the
vector of derivatives at zero:

B(f) = (£(0), £(0), ... f17(0),...) € R

Clearly % is linear, and &|kery = 0. Thus there exists a quotient map §~ :L—R

such that & = £ o 9.
¥

C*R) - L CR®
N
R

From this we can conclude that £(f) must be a linear function, depending only
on the derivatives of f at zero. Now notice that regarding the product topology



on R, the map ¢ is continuous (wrt the topology we defined on C¢° (R),
generated by the balls by g = {f : ’f(k) (x) — g(k)(x)| <e}):

P U) =y (U x oo x Uy x R®) =N,V

where V; are unions of balls b; ;. and thus are open. So with respect to the
product topology v is indeed continuous, and it is easy to see that if we would
“allow” infinite product of opens to be open in R, then we would get above
infinite intersection of open sets which is in general not open. Now, for an open
Velyr (R), V = Uk,g,gbk,g,s:

Y (V) =Y (Uk,g,eb,g,e) = Uk,g.e? (bk,g,e) = Uk,g,eR X .. X R x Ug g0 x R™
k—1

where Uy g.c = {f"(0) : | f®)(z) — g®) (2)] < e} = {f®(0) : | fF(0) — g™ (0)| <&}
The last equality holds since for every element f(*)(0) in the RHS, we can define

fla) = g(z) + 2 (f®(0) — ¢®)(0)) so:

FP@) gD @] = |gP @+ (100 - 9P0) - gD )

= /00 - <e

(since f*)(0) is an element of the RHS). Therefore, f*)(0) = f*)(0) is an ele-
ment of the LHS. Now, the set { f*)(0) : | f¥)(0) — g (0)| < €} is clearly open
in R, and thus ¥ (V) is open in R*>°, and v is an open map. Notice that ¢ is con-
tinuous wrt to the mentioned topology on C2° (R), and the usual topology on
R, and ¢ is open (and continuous). Therefore 5 is also continuous with respect
to the product topology on R*>° and the usual topology on R, and would not
be continuous wrt a finer topology on R*°. Notice that since L is dense in R*>,
we can extend §~ continuously to a function from R*® (from now on we regard 5

as a map from R* to R). From this we conclude that & must by finite sum of §().

Exercise 6. Show that for ¢ € C® (R) we get that & * ¢ is a smooth function.

Solution: We consider the convolution (£ * ¢) (z) = §(¢~r) Since ¢, (t) =

@(x —t) is smooth and has compact support for every x, and £ is a distribution,
Va & *¢(x) is well defined. Since ¢, = ¢(x —t) is smooth with respect to x, and



¢ is a linear functional, £ * ¢(z) is continuous.

d .
o (6% 0) () = Lim .
. Goin(t) = da(t)
= |
¢ is linear hli%g ( h )
B . pl+h—t)— ¢z —1)
- pim & ( h >
_ f(lim ¢(x+ht)¢(xt)>
¢ 18 continuous h=0 h

= §(¢/(z—t) =Exdf

This means that the function & x ¢(x) has continuous derivatives of every order
(€% ¢M), ie. €% p(x) is smooth.

Exercise 7. 1. Show that § xn = 7.
2. Show that &' xn =1n'.
3. Show the associativity: &' * (£ xn) = (8" * &) x 1.
4. Show that (£ xn) =& xn=_Ex7.

Solution:

1. By definition:

Gxm)(@) = (+0)(p)=n(0+7))

x.

@ m(e) = n(@=¢




(0 +&xm) (@) = (@& (nxo

4. Using the previous, (£ x1) =& * (€ xn) = (8' &) xn = £ 7 , and since
Exn=nx&wealsoget: (Exn) =6 x(x&) = (8*n)xE=n'E==Exn.

Exercise 8. Show that if ¢ is smooth, and supp(§) is compact, then & * @ will
still be smooth.

Solution: The difference from question 6 is that ¢ is not compactly supported,
so the integral (on unbounded domain) may diverge. However, since supp(§)
is compact, it is contained in an interval [a,b]. Thus Vg such that g|jq = 0
we have £(g) = 0. Multiplying by the step function from question 4(a) we can
write ¢ = @1 + o such that ¢1][, 5 = 0 and pa|g\[o—1,6+1] = 0. Then we have:

Exe)(x) = &(p(z 1) =E(pr(z = 1) + g2z — 1))
= {(p2(z—1))

But since 9 is compactly supported, by question 6 £ (p2(x — t)) is smooth.

Exercise 9. Let A be a differential operator with fized coefficients. Describe
the Green function without using generalized functions.

Solution: We defined the Green function in class as the solution AG(t) = dgso
when ¢t # 0, AG(t) = 0. Notice that the Green function has to have a jump
on it’s nth derivative (where n is the order of A), since the integral in a small
neighborhood of zero does not vanish. Specifically, Suppose A = a(x)0™ + ...,
then:

/Ade = /a(z)@"G + ...dx = /5(x)dx =1
= GU(0,) — GM(0-) = % (+)

Notice that G that satisfy () indeed acts like a green function: Let G(¢) be a



function such that V¢ # 0, AG(t) = 0, and such that (*) holds, then:

160w = (s ) [ [ et

-/ <a(x)j;+ ) Gl — ) f(t)dt

— /(a(ag)G(")(m—t)—F )f(t)dt
- x+e

= lm (a(x)G(")(x—t)Jr )f(t)df

Exercise 10. Solve the equation Af = dg.

Solution: Since g is radial symmetric (its values depend only on the radius
and not on the direction) the solution would be radial symmetric too: f = f(r).
Now, writing dg in spherical coordinates we must divide by the area element, so
that the integral would stay 1:

5=

Writing the Laplace operator also in spherical coordinates we get the equation:

7+ 2ry = 20

47r?

and we got an ODE.

o(r /

% — T2f” + 27“f/ — (TZfI)
a(r) 1
200 7 _
= / 47 dr 47

1 1
= et
We prove that g(r) = —4717 is indeed a solution of A f = §y. We actually need

to prove that for any f, A(gx* f)(x) = f(x). By properties of convolutions
(easy change of variables) we get:

Afg*f)(r)=V-V(gx[)(r)=(Vg*Vf)(r)



So we wish to estimate the integral:

/ (Vg(r)) - (Vf(xr — 1)) dr’ = lim (Vg(r') - (Vf(x—1))dr’.

—0 E
i € R3\ B(0,¢)
Notice that for a vector function G and a scalar function f it holds that: G -

Vf=V(G-f)— f-VG. In our case G = Vg so we get that Vg - Vf =
V(f-Vg)— f-Ag. Using the Divergence theorem we get:

A(gf)(r) = lim / (Vg(r')) - (V(x —r')) dr’

84)0
R3\ B(0,¢)
— lir% / V(f(r—1') -Vg(r'))dr' — / fr—1')-Ag(r")dr’
E—
R3\B(0,¢) RE\B(0,¢)
1 0 0
Y . / . W T — — 2 "dr'
_ ili% / f(r=r')-Vg(r') - rdS / fr—1) (7"2 il 8r,)g(r )dr
0B(0,¢) R3\ B(0,¢)
— liH(l) / f(r—r") r Zsin0'do’'dy’ —
E—
9B(0,e)
= Eshi% / f(r—1")sin0'do’'dy’
9B(0,e)
= L (f(r) +r' f(r— r’)) sin ¢'df’dy’
4T e—0 v
9B(0,e)
I (R / sin 0/d6/di + - Tim ef(r —1')sin0'dg’dy’
4m =0 4m e=0
dB(0,e) 9B(0,¢)
_ fr) £ _ -
= 3 EASYyp _|_ 11 fr r')sin0'dd’dy’ = f(r) +
T

BB(O €)

Exercise 11. Find the order and the leading coefficients for every pole of £y =
A
xy.

Solution: Take f € C(R), then we can write it as a power series f =
™ (0)
Yoo

n—0 " ". In addition, since f has compact support, we may have singu-



larities only near z = 0 (the integral [ 2 f(x)dz converges VYA) so:

() =

n!

L Lo
Ppwye = [ ") gy
0 n=0

o _

1
> £(n) (0
— Z f ( )/x)‘+7ld:v
= n!
- 0

oo (n) (O) xA+n+1

- 31 :
nl A+n+1°

n=0
_ i f™Mo) 1
N oy nl A+n+1

From this we can see that all of the poles are of order 1 and the residue of the

. (n—1)
pole \,, = —n is f(n71§? .

Exercise 12. Find an analytic continuation for Py = py (x1,...x,)" in the case
3
p(CU» Y, Z) = Zi:l xzza"

Solution: Consider the differential operator V2 = 3", 8872?:
A
. N A Ry
Vopy(xy,..xn)” = Z@ ria
i=1 1 \j=1
A—1

3.5 3

_ _ 2

- Z P 22z, ija
i=1 j=1

A—1 A—2

3 3 3
= Z 2\ Z x?a + 4N\ — 1)a? Zx?a
i=1 j=1 j=1

= 6 AN —1) (p+a)p*?
— BAPv_1 + 4\ — D)Py_1 + 4A(A — 1)aPy_s
V2P — (2X\ +4)%) Py _
L g VR @0 R
AA(A = 1)a

Exercise 13. Find an analytic continuation for py(x1,..,2z,)" in the case

plx,y,z) = 2* +y* — 2.



Solution: Consider the differential operator L = 8872? + 83—;? — g—;:

0? _ _
@14(11, ) = (2)\p’\ Vg —1)a2p? 2)
Lpi(21,..2,)" = 2031+ 4NN = 1) (2% + 92 - 22) p* 2
= 2 M A - 1)pr !t
= (AN -2)\) P,
LPy

Py =
T BT @

10



