
Generalized Functions: Homework 1

Exercise 1. Prove that there exists a function f ∈ C∞
c (R) which isn’t the zero

function.

Solution: Consider the function:

g =

{
e−

1
x x > 0

0 x ≤ 0

We claim that g ∈ C∞(R). Indeed, all of the derivatives of e−
1
x are vanishing

when x → 0:

lim
x→0

dn

dxn
e−

1
x = lim

x→0
q(x) ∙ e−

1
x = 0

where q(x) is a rational function of x. The function f = g(x) ∙g(1−x) is smooth,
as a multiplication of two smooth functions, has compact support (the interval
[0, 1]), and is non-zero (f

(
1
2

)
= 1

e ).

Exercise 2. Find a sequence of functions {fn}n ∈ Z (when fn ∈ C∞
c (R) ∀n)

that weakly converges to Dirac Delta function.

Solution: Consider the sequence of function:

f̃n = g

(
1
n
− x

)

∙ g

(
1
n

+ x

)

∈ C∞
c (R)

where g(x) ∈ C∞
c (R) is the function defined in the first question. Notice that

the support of fn is the interval
[
− 1

n , 1
n

]
. Normalizing these functions so that

the integral will be equal to 1 we get:

fn = d(n)f̃n, d(n) =




∞∫

−∞

f̃n(x)dx





−1

For every test function F (x) ∈ C∞
c (R), we can write F (x) = F (0) + x ∙ G(x),

where G(x) ∈ C∞
c (R). Therefore we have:

∞∫

−∞

F (x) ∙ fn(x)dx =

1/n∫

−1/n

F (x) ∙ fn(x)dx

=

1/n∫

−1/n

F (0) ∙ fn(x)dx +

1/n∫

−1/n

xG(x) ∙ fn(x)dx

= F (0) +

1/n∫

−1/n

xG(x) ∙ fn(x)dx
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So
∫∞
−∞ F (x) ∙fn(x)dx−

∫∞
−∞ F (x) ∙δ(x)dx =

∫ 1/n

−1/n
xG(x) ∙fn(x)dx. Notice that

G(x) is bounded by some M ∈ R and thus we get:
∣
∣
∣
∣
∣
∣
∣

1/n∫

−1/n

xG(x) ∙ fn(x)dx

∣
∣
∣
∣
∣
∣
∣

≤

1/n∫

−1/n

|xG(x) ∙ fn(x)| dx

≤

1/n∫

−1/n

1
n

M ∙ fn(x)dx

=
M

n
−→

n→∞
0

Therefore, the sequence of functions fn weakly converges to Dirac Delta func-
tion.

Exercise 3. Find a function F ∈ L1
loc for which F ′ = δ.

Solution: Consider Heaviside step function:

Θ =

{
1 x ≥ 0

0 x < 0

and let ξΘ be the functional defined by Θ. Then for every test function ϕ ∈
C∞

c (R):

ξ′Θ(ϕ) = −ξΘ(ϕ′) = −

∞∫

−∞

ϕ′(x) ∙ Θ(x)dx

= −

∞∫

0

ϕ′(x)dx = −
(

lim
x→∞

ϕ(x) − ϕ(0)
)

= ϕ(0) = δ(ϕ)

Therefore, as distributions, Θ′ = δ.

Exercise 4. 1. Let U1, U2 be open subsets of R. Show that if ξ|U1 ≡ ξ|U2 ≡ 0
then ξ|U1∪U2 ≡ 0.

2. Show this also holds for any union of such open {Ui}i∈I .

Solution:

1. We define a smooth step function:

s(x) =






e−e
− tan(πx

2 )
−1 ≤ x ≤ 1

1 1 < x

0 x < −1
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and use it to write f ∈ C∞
c (R) , supp(f) = U1 ∪ U2, as a sum f1 + f2

where supp(fi) = Ui. Notice that s(nx) is a step of width 1
2n . Suppose

Ui = (ai, bi) are open intervals (in case Ui are finite union of open intervals
the generalization is obvious; the case of infinite union is a result of section
(b) of this question). If U1 ∩U2 = ∅ then fi = f |Ui . Otherwise, one of the
edges of U1 is in the interior of U2, wlog a1 ∈ (a2, b2). Then:

f1 ≡ f ∙ s (n (x − a1)) ,
1
2n

<
1
2
(b2 − a1)

and then take f2 = f − f1. Notice that supp (f2) ⊂ U2, since we chose n
properly. Now, ξ(f) = ξ (f1) + ξ (f2) = 0, i.e. ξ|U1∪U2 = 0.

2. Notice that we are only interested in {Ui}i∈I ∩ supp (f). In addition we
can assume Ui are open intervals (by splitting Ui to its components). The
union {Ui}i∈I covers supp (f), which is compact, and therefore there is a
finite sub-cover {Uij}

n
j=1. So it is enough to present f as a sum

∑n
j=1 fj

where supp (fj) = Uij . This we do as in the previous section.

Exercise 5. Find all the generalized functions ξ ∈ C−∞
c (R) for which supp(ξ) =

{0} .

Solution: For every f ∈ C∞
c (R), supp (f) is compact, and therefore, if 0 /∈

supp (f) there exists a neighborhood of 0 in which f = 0. Therefore, for every
n, supp

(
δ(n)

)
= {0}, and thus every generalized function of the form ξ =

∑n
i=1 ciδ

(i) where ci ∈ R, has zero support. Now, suppose ξ ∈ C−∞, supp (ξ) =
{0}, then by definition, ξ|C∞

c (R\{0}) = 0. Clearly this means that ξ|
C∞

c (R\{0}) =

0. For every f ∈ C∞
c (R) such that ∀n, f (n)(0) = 0, we can define a sequence

fn(x) = w(nx) ∙ f(x), where wn(x) = 1 − s (2nx + 3) ∙ s (3 − 2nx) is a smooth
symmetric “flat bump” function, that goes down from 1 to 0 in

[
− 2

n ,− 1
n

]
and

up again in
[

1
n , 2

n

]
. Notice that fn ∈ C∞

c (R\ {0}), and that fn −→
n→∞

f ∈

C∞
c (R\ {0}), since at x = 0, ∀k, f

(k)
n (x) = f (k)(x) = 0, and for x 6= 0, fn ≡ f

in a neighborhood of x for n large enough. Define ψ : C∞
c (R) → R∞ to be the

vector of derivatives at zero:

ψ(f) = (f(0), f ′(0), .., f (n)(0), ...) ∈ R∞

Clearly ψ is linear, and ξ|ker ψ = 0. Thus there exists a quotient map ξ̃ : L → R
such that ξ = ξ̃ ◦ ψ.

C∞
c (R)

ψ
−→ L ⊂ R∞

↘ξ ↓ξ̃

R

From this we can conclude that ξ(f) must be a linear function, depending only
on the derivatives of f at zero. Now notice that regarding the product topology
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on R∞, the map ψ is continuous (wrt the topology we defined on C∞
c (R),

generated by the balls bk,g,ε =
{
f :
∣
∣f (k)(x) − g(k)(x)

∣
∣ < ε

}
):

ψ−1 (U) = ψ−1 (U1 × ... × Un × R∞) = ∩n
i=1Vi

where Vi are unions of balls bi,g,ε and thus are open. So with respect to the
product topology ψ is indeed continuous, and it is easy to see that if we would
“allow” infinite product of opens to be open in R∞, then we would get above
infinite intersection of open sets which is in general not open. Now, for an open
V ∈ C∞

c (R), V = ∪k,g,εbk,g,ε:

ψ (V ) = ψ (∪k,g,εbk,g,ε) = ∪k,g,εψ (bk,g,ε) = ∪k,g,εR× .. × R︸ ︷︷ ︸
k−1

× Uk,g,ε × R
∞

where Uk,g,ε =
{
f (k)(0) :

∣
∣f (k)(x) − g(k)(x)

∣
∣ < ε

}
=
{
f (k)(0) :

∣
∣f (k)(0) − g(k)(0)

∣
∣ < ε

}
.

The last equality holds since for every element f (k)(0) in the RHS, we can define
f̃(x) = g(x) + xk

k!

(
f (k)(0) − g(k)(0)

)
so:

∣
∣
∣f̃ (k)(x) − g(k)(x)

∣
∣
∣ =

∣
∣
∣g(k)(x) +

(
f (k)(0) − g(k)(0)

)
− g(k)(x)

∣
∣
∣

=
∣
∣
∣f (k)(0) − g(k)(0)

∣
∣
∣ < ε

(since f (k)(0) is an element of the RHS). Therefore, f (k)(0) = f̃ (k)(0) is an ele-
ment of the LHS. Now, the set

{
f (k)(0) :

∣
∣f (k)(0) − g(k)(0)

∣
∣ < ε

}
is clearly open

in R, and thus ψ(V ) is open in R∞, and ψ is an open map. Notice that ξ is con-
tinuous wrt to the mentioned topology on C∞

c (R), and the usual topology on
R, and ψ is open (and continuous). Therefore ξ̃ is also continuous with respect
to the product topology on R∞ and the usual topology on R, and would not
be continuous wrt a finer topology on R∞. Notice that since L is dense in R∞,
we can extend ξ̃ continuously to a function from R∞ (from now on we regard ξ̃
as a map from R∞ to R). From this we conclude that ξ must by finite sum of δ(n).

Exercise 6. Show that for φ ∈ C∞
c (R) we get that ξ ∗ φ is a smooth function.

Solution: We consider the convolution (ξ ∗ φ) (x) = ξ
(
φ̃x

)
. Since φ̃x(t) =

φ(x− t) is smooth and has compact support for every x, and ξ is a distribution,
∀x ξ ∗φ(x) is well defined. Since φ̃x = φ(x− t) is smooth with respect to x, and
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ξ is a linear functional, ξ ∗ φ(x) is continuous.

d

dx
(ξ ∗ φ) (x) = lim

h→0

ξ
(
φ̃x+h(t)

)
− ξ

(
φ̃x(t)

)

h

=
ξ is linear

lim
h→0

ξ

(
φ̃x+h(t) − φ̃x(t)

h

)

= lim
h→0

ξ

(
φ(x + h − t) − φ(x − t)

h

)

=
ξ is continuous

ξ

(

lim
h→0

φ(x + h − t) − φ(x − t)
h

)

= ξ (φ′(x − t)) = ξ ∗ φ′

This means that the function ξ ∗ φ(x) has continuous derivatives of every order
(ξ ∗ φ(n)), i.e. ξ ∗ φ(x) is smooth.

Exercise 7. 1. Show that δ ∗ η = η.

2. Show that δ′ ∗ η = η′.

3. Show the associativity: δ′ ∗ (ξ ∗ η) = (δ′ ∗ ξ) ∗ η.

4. Show that (ξ ∗ η)′ = ξ′ ∗ η = ξ ∗ η′.

Solution:

1. By definition:

(δ ∗ η) (ϕ) = (η ∗ δ) (ϕ) = η
(
(δ ∗ ϕ̄)

)

= η
(
δ( ˉ̃ϕx)

)
= η

(
ϕ(x)

)

= η (ϕ)

Notice that above, δ receives a function of t and η receives a function of
x.

2.

(δ′ ∗ η) (ϕ) = η
(
(δ′ ∗ ϕ̄)

)

= η
(
δ′( ˉ̃ϕx)

)
= η

(
−ϕ′(x)

)

= η (−ϕ′) = −η (ϕ′)

= η′ (ϕ)
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3.

((δ′ ∗ ξ) ∗ η) (ϕ) = (δ′ ∗ ξ)
(
(η ∗ ϕ̄)

)

= δ′
(
(ξ ∗ (η ∗ ϕ̄))

)

= δ′ ∗
(
ξ
(
(η ∗ ϕ̄)

))

= (δ′ ∗ (ξ ∗ η)) (ϕ)

4. Using the previous, (ξ ∗ η)′ = δ′ ∗ (ξ ∗ η) = (δ′ ∗ ξ) ∗ η = ξ′ ∗ η , and since
ξ ∗η = η ∗ ξ we also get: (ξ ∗ η)′ = δ′ ∗ (η ∗ ξ) = (δ′ ∗ η)∗ ξ = η′ ∗ ξ = ξ ∗η′.

Exercise 8. Show that if ϕ is smooth, and supp(ξ) is compact, then ξ ∗ ϕ will
still be smooth.

Solution: The difference from question 6 is that ϕ is not compactly supported,
so the integral (on unbounded domain) may diverge. However, since supp(ξ)
is compact, it is contained in an interval [a, b]. Thus ∀g such that g|[a,b] = 0
we have ξ(g) = 0. Multiplying by the step function from question 4(a) we can
write ϕ = ϕ1 + ϕ2 such that ϕ1|[a,b] = 0 and ϕ2|R\[a−1,b+1] = 0. Then we have:

(ξ ∗ ϕ) (x) = ξ (ϕ(x − t)) = ξ (ϕ1(x − t) + ϕ2(x − t))

= ξ (ϕ2(x − t))

But since ϕ2 is compactly supported, by question 6 ξ (ϕ2(x − t)) is smooth.

Exercise 9. Let A be a differential operator with fixed coefficients. Describe
the Green function without using generalized functions.

Solution: We defined the Green function in class as the solution AG(t) = δ0so
when t 6= 0, AG(t) = 0. Notice that the Green function has to have a jump
on it’s nth derivative (where n is the order of A), since the integral in a small
neighborhood of zero does not vanish. Specifically, Suppose A = a(x)∂n + ...,
then:

ε∫

−ε

AGdx =

ε∫

−ε

a(x)∂nG + ...dx =

ε∫

−ε

δ(x)dx = 1

⇒ G(n)(0+) − G(n)(0−) =
1

a(0)
(∗)

Notice that G that satisfy (∗) indeed acts like a green function: Let G(t) be a
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function such that ∀t 6= 0, AG(t) = 0, and such that (∗) holds, then:

A (G ∗ f) (x) =

(

a(x)
dn

dxn
+ ...

)



∞∫

−∞

G(x − t)f(t)dt





=

∞∫

−∞

(

a(x)
dn

dxn
+ ...

)

G(x − t)f(t)dt

=

∞∫

−∞

(
a(x)G(n)(x − t) + ...

)
f(t)dt

= lim
ε→0

x+ε∫

x−ε

(
a(x)G(n)(x − t) + ...

)
f(t)dt

= a(0)
(
G(n)(0+) − G(n)(0−)

)
f(x)

=
a(0)
a(0)

f(x) = f(x)

Exercise 10. Solve the equation Δf = δ0.

Solution: Since δ0 is radial symmetric (its values depend only on the radius
and not on the direction) the solution would be radial symmetric too: f = f(r).
Now, writing δ0 in spherical coordinates we must divide by the area element, so
that the integral would stay 1:

δ̂(r) =
δ(r)
4πr2

Writing the Laplace operator also in spherical coordinates we get the equation:

f ′′(r) +
2
r
f ′(r) =

δ(r)
4πr2

and we got an ODE.

δ(r)
4π

= r2f ′′ + 2rf ′ =
(
r2f ′

)′

r2f ′ =
∫

δ(r)
4π

dr =
1
4π

f =
∫

1
4πr2

dr = −
1

4πr

We prove that g(r) = − 1
4πr is indeed a solution of Δf = δ0. We actually need

to prove that for any f , Δ (g ∗ f) (x) = f(x). By properties of convolutions
(easy change of variables) we get:

Δ (g ∗ f) (r) = ∇ ∙ ∇ (g ∗ f) (r) = (∇g ∗ ∇f) (r)
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So we wish to estimate the integral:
∫

R3

(∇g(r′)) ∙ (∇f(r − r′)) dr′ = lim
ε→0

∫

R3\B(0,ε)

(∇g(r′)) ∙ (∇f(r − r′)) dr′.

Notice that for a vector function G and a scalar function f it holds that: G ∙
∇f = ∇ (G ∙ f) − f ∙ ∇G. In our case G = ∇g so we get that ∇g ∙ ∇f =
∇ (f ∙ ∇g) − f ∙ Δg. Using the Divergence theorem we get:

Δ (g ∗ f) (r) = lim
ε→0

∫

R3\B(0,ε)

(∇g(r′)) ∙ (∇f(r − r′)) dr′

= lim
ε→0

∫

R3\B(0,ε)

∇ (f(r − r′) ∙ ∇g(r′)) dr′ −
∫

R3\B(0,ε)

f(r − r′) ∙ Δg(r′)dr′

= lim
ε→0

∫

∂B(0,ε)

f(r − r′) ∙ ∇g(r′) ∙ r̂′dS −
∫

R3\B(0,ε)

f(r − r′) ∙

(
1
r′2

∂

∂r′
r′2

∂

∂r′

)

g(r′)dr′

= lim
ε→0

∫

∂B(0,ε)

f(r − r′) ∙
1

4πr′2
r′2 sin θ′dθ′dϕ′ − 0

=
1
4π

lim
ε→0

∫

∂B(0,ε)

f(r − r′) sin θ′dθ′dϕ′

=
1
4π

lim
ε→0

∫

∂B(0,ε)

(
f(r) + r′f̃(r − r′)

)
sin θ′dθ′dϕ′

=
f(r)
4π

lim
ε→0

∫

∂B(0,ε)

sin θ′dθ′dϕ′ +
1
4π

lim
ε→0

∫

∂B(0,ε)

εf̃(r − r′) sin θ′dθ′dϕ′

=
f(r)
4π

4π +
ε

4π
lim
ε→0

∫

∂B(0,ε)

f̃(r − r′) sin θ′dθ′dϕ′ = f(r) + 0.

Exercise 11. Find the order and the leading coefficients for every pole of ξλ ≡
xλ

+.

Solution: Take f ∈ C∞
c (R), then we can write it as a power series f =

∑∞
n=0

f(n)(0)
n! xn. In addition, since f has compact support, we may have singu-
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larities only near x = 0 (the integral
∫∞
1

xλf(x)dx converges ∀λ) so:

ξλ (f) =

1∫

0

xλf(x)dx =

1∫

0

xλ
∞∑

n=0

f (n)(0)
n!

xndx

=
∞∑

n=0

f (n)(0)
n!

1∫

0

xλ+ndx

=
∞∑

n=0

f (n)(0)
n!

xλ+n+1

λ + n + 1
|10

=
∞∑

n=0

f (n)(0)
n!

1
λ + n + 1

From this we can see that all of the poles are of order 1 and the residue of the

pole λn = −n is f(n−1)(0)
(n−1)! .

Exercise 12. Find an analytic continuation for Pλ = p+(x1, ...xn)λ in the case
p(x, y, z) ≡

∑3
i=1 x2

i a.

Solution: Consider the differential operator ∇2 =
∑

i
∂2

∂x2
i
:

∇2p+(x1, ...xn)λ =
3∑

i=1

∂2

∂x2
i




3∑

j=1

x2
ja





λ

=
3∑

i=1

∂

∂xi




2λxi




3∑

j=1

x2
ja





λ−1





=
3∑

i=1

2λ




3∑

j=1

x2
ja





λ−1

+ 4λ(λ − 1)x2
i




3∑

j=1

x2
ja





λ−2

= 6λpλ−1 + 4λ(λ − 1) (p + a) pλ−2

= 6λPλ−1 + 4λ(λ − 1)Pλ−1 + 4λ(λ − 1)aPλ−2

⇒ Pλ−2 =
∇2Pλ −

(
2λ + 4λ2

)
Pλ−1

4λ(λ − 1)a

Exercise 13. Find an analytic continuation for p+(x1, .., xn)λ in the case
p(x, y, z) ≡ x2 + y2 − z2.
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Solution: Consider the differential operator L = ∂2

∂x2
i

+ ∂2

∂y2
i
− ∂2

∂zi
:

∂2

∂x2
i

p+(x1, ...xn)λ =
(
2λpλ−1 + 4λ(λ − 1)x2pλ−2

)

Lp+(x1, ...xn)λ = 2λpλ−1 + 4λ(λ − 1)
(
x2 + y2 − z2

)
pλ−2

= 2λpλ−1 + 4λ(λ − 1)pλ−1

=
(
4λ2 − 2λ

)
Pλ−1

⇒ Pλ−1 =
LPλ

(4λ − 2)λ
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