Generalized Functions: Homework 1

Exercise 1. Prove that there exists a function $f \in C_{c}^{\infty}(\mathbb{R})$ which isn't the zero function.

Solution: Consider the function:

$$
g= \begin{cases}e^{-\frac{1}{x}} & x>0 \\ 0 & x \leq 0\end{cases}
$$

We claim that $g \in C^{\infty}(\mathbb{R})$. Indeed, all of the derivatives of $e^{-\frac{1}{x}}$ are vanishing when $x \rightarrow 0$:

$$
\lim _{x \rightarrow 0} \frac{d^{n}}{d x^{n}} e^{-\frac{1}{x}}=\lim _{x \rightarrow 0} q(x) \cdot e^{-\frac{1}{x}}=0
$$

where $q(x)$ is a rational function of x. The function $f=g(x) \cdot g(1-x)$ is smooth, as a multiplication of two smooth functions, has compact support (the interval $[0,1])$, and is non-zero $\left(f\left(\frac{1}{2}\right)=\frac{1}{e}\right)$.

Exercise 2. Find a sequence of functions $\left\{f_{n}\right\}_{n} \in \mathbb{Z}$ (when $\left.f_{n} \in C_{c}^{\infty}(\mathbb{R}) \forall n\right)$ that weakly converges to Dirac Delta function.

Solution: Consider the sequence of function:

$$
\tilde{f}_{n}=g\left(\frac{1}{n}-x\right) \cdot g\left(\frac{1}{n}+x\right) \in C_{c}^{\infty}(\mathbb{R})
$$

where $g(x) \in C_{c}^{\infty}(\mathbb{R})$ is the function defined in the first question. Notice that the support of f_{n} is the interval $\left[-\frac{1}{n}, \frac{1}{n}\right]$. Normalizing these functions so that the integral will be equal to 1 we get:

$$
f_{n}=d(n) \tilde{f}_{n}, \quad d(n)=\left(\int_{-\infty}^{\infty} \tilde{f}_{n}(x) d x\right)^{-1}
$$

For every test function $F(x) \in C_{c}^{\infty}(\mathbb{R})$, we can write $F(x)=F(0)+x \cdot G(x)$, where $G(x) \in C_{c}^{\infty}(\mathbb{R})$. Therefore we have:

$$
\begin{aligned}
\int_{-\infty}^{\infty} F(x) \cdot f_{n}(x) d x & =\int_{-1 / n}^{1 / n} F(x) \cdot f_{n}(x) d x \\
& =\int_{-1 / n}^{1 / n} F(0) \cdot f_{n}(x) d x+\int_{-1 / n}^{1 / n} x G(x) \cdot f_{n}(x) d x \\
& =F(0)+\int_{-1 / n}^{1 / n} x G(x) \cdot f_{n}(x) d x
\end{aligned}
$$

So $\int_{-\infty}^{\infty} F(x) \cdot f_{n}(x) d x-\int_{-\infty}^{\infty} F(x) \cdot \delta(x) d x=\int_{-1 / n}^{1 / n} x G(x) \cdot f_{n}(x) d x$. Notice that $G(x)$ is bounded by some $M \in \mathbb{R}$ and thus we get:

$$
\begin{aligned}
\left|\int_{-1 / n}^{1 / n} x G(x) \cdot f_{n}(x) d x\right| & \leq \int_{-1 / n}^{1 / n}\left|x G(x) \cdot f_{n}(x)\right| d x \\
& \leq \int_{-1 / n}^{1 / n} \frac{1}{n} M \cdot f_{n}(x) d x \\
& =\frac{M}{n} \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

Therefore, the sequence of functions f_{n} weakly converges to Dirac Delta function.

Exercise 3. Find a function $F \in L_{l o c}^{1}$ for which $F^{\prime}=\delta$.
Solution: Consider Heaviside step function:

$$
\Theta= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

and let ξ_{Θ} be the functional defined by Θ. Then for every test function $\varphi \in$ $C_{c}^{\infty}(\mathbb{R})$:

$$
\begin{aligned}
\xi_{\Theta}^{\prime}(\varphi) & =-\xi_{\Theta}\left(\varphi^{\prime}\right)=-\int_{-\infty}^{\infty} \varphi^{\prime}(x) \cdot \Theta(x) d x \\
& =-\int_{0}^{\infty} \varphi^{\prime}(x) d x=-\left(\lim _{x \rightarrow \infty} \varphi(x)-\varphi(0)\right) \\
& =\varphi(0)=\delta(\varphi)
\end{aligned}
$$

Therefore, as distributions, $\Theta^{\prime}=\delta$.
Exercise 4. 1. Let U_{1}, U_{2} be open subsets of \mathbb{R}. Show that if $\left.\left.\xi\right|_{U_{1}} \equiv \xi\right|_{U_{2}} \equiv 0$ then $\left.\xi\right|_{U_{1} \cup U_{2}} \equiv 0$.
2. Show this also holds for any union of such open $\left\{U_{i}\right\}_{i \in I}$.

Solution:

1. We define a smooth step function:

$$
s(x)= \begin{cases}e^{-e^{-\tan \left(\frac{\pi x}{2}\right)}} & -1 \leq x \leq 1 \\ 1 & 1<x \\ 0 & x<-1\end{cases}
$$

and use it to write $f \in C_{c}^{\infty}(\mathbb{R}), \operatorname{supp}(f)=U_{1} \cup U_{2}$, as a sum $f_{1}+f_{2}$ where $\operatorname{supp}\left(f_{i}\right)=U_{i}$. Notice that $s(n x)$ is a step of width $\frac{1}{2 n}$. Suppose $U_{i}=\left(a_{i}, b_{i}\right)$ are open intervals (in case U_{i} are finite union of open intervals the generalization is obvious; the case of infinite union is a result of section (b) of this question). If $U_{1} \cap U_{2}=\emptyset$ then $f_{i}=\left.f\right|_{U_{i}}$. Otherwise, one of the edges of U_{1} is in the interior of $U_{2}, \operatorname{wlog} a_{1} \in\left(a_{2}, b_{2}\right)$. Then:

$$
f_{1} \equiv f \cdot s\left(n\left(x-a_{1}\right)\right), \quad \frac{1}{2 n}<\frac{1}{2}\left(b_{2}-a_{1}\right)
$$

and then take $f_{2}=f-f_{1}$. Notice that $\operatorname{supp}\left(f_{2}\right) \subset U_{2}$, since we chose n properly. Now, $\xi(f)=\xi\left(f_{1}\right)+\xi\left(f_{2}\right)=0$, i.e. $\left.\xi\right|_{U_{1} \cup U_{2}}=0$.
2. Notice that we are only interested in $\left\{U_{i}\right\}_{i \in I} \cap \operatorname{supp}(f)$. In addition we can assume U_{i} are open intervals (by splitting U_{i} to its components). The union $\left\{U_{i}\right\}_{i \in I}$ covers $\operatorname{supp}(f)$, which is compact, and therefore there is a finite sub-cover $\left\{U_{i j}\right\}_{j=1}^{n}$. So it is enough to present f as a sum $\sum_{j=1}^{n} f_{j}$ where $\operatorname{supp}\left(f_{j}\right)=U_{i j}$. This we do as in the previous section.

Exercise 5. Find all the generalized functions $\xi \in C_{c}^{-\infty}(\mathbb{R})$ for which $\operatorname{supp}(\xi)=$ $\{0\}$.

Solution: For every $f \in C_{c}^{\infty}(\mathbb{R}), \operatorname{supp}(f)$ is compact, and therefore, if $0 \notin$ $\operatorname{supp}(f)$ there exists a neighborhood of 0 in which $f=0$. Therefore, for every $n, \operatorname{supp}\left(\delta^{(n)}\right)=\{0\}$, and thus every generalized function of the form $\xi=$ $\sum_{i=1}^{n} c_{i} \delta^{(i)}$ where $c_{i} \in \mathbb{R}$, has zero support. Now, suppose $\xi \in C^{-\infty}, \operatorname{supp}(\xi)=$ $\{0\}$, then by definition, $\left.\xi\right|_{C_{c}^{\infty}(\mathbb{R} \backslash\{0\})}=0$. Clearly this means that $\left.\xi\right|_{C_{c}^{\infty}(\mathbb{R} \backslash\{0\})}=$ 0 . For every $f \in C_{c}^{\infty}(\mathbb{R})$ such that $\forall n, f^{(n)}(0)=0$, we can define a sequence $f_{n}(x)=w(n x) \cdot f(x)$, where $w_{n}(x)=1-s(2 n x+3) \cdot s(3-2 n x)$ is a smooth symmetric "flat bump" function, that goes down from 1 to 0 in $\left[-\frac{2}{n},-\frac{1}{n}\right]$ and up again in $\left[\frac{1}{n}, \frac{2}{n}\right]$. Notice that $f_{n} \in C_{c}^{\infty}(\mathbb{R} \backslash\{0\})$, and that $f_{n} \underset{n \rightarrow \infty}{\longrightarrow} f \in$ $\overline{C_{c}^{\infty}(\mathbb{R} \backslash\{0\})}$, since at $x=0, \forall k, f_{n}^{(k)}(x)=f^{(k)}(x)=0$, and for $x \neq 0, f_{n} \equiv f$ in a neighborhood of x for n large enough. Define $\psi: C_{c}^{\infty}(\mathbb{R}) \rightarrow \mathbb{R}^{\infty}$ to be the vector of derivatives at zero:

$$
\psi(f)=\left(f(0), f^{\prime}(0), . ., f^{(n)}(0), \ldots\right) \in \mathbb{R}^{\infty}
$$

Clearly ψ is linear, and $\left.\xi\right|_{\operatorname{ker} \psi}=0$. Thus there exists a quotient map $\tilde{\xi}: L \rightarrow \mathbb{R}$ such that $\xi=\tilde{\xi} \circ \psi$.

From this we can conclude that $\xi(f)$ must be a linear function, depending only on the derivatives of f at zero. Now notice that regarding the product topology
on \mathbb{R}^{∞}, the map ψ is continuous (wrt the topology we defined on $C_{c}^{\infty}(\mathbb{R})$, generated by the balls $\left.b_{k, g, \varepsilon}=\left\{f:\left|f^{(k)}(x)-g^{(k)}(x)\right|<\varepsilon\right\}\right)$:

$$
\psi^{-1}(U)=\psi^{-1}\left(U_{1} \times \ldots \times U_{n} \times \mathbb{R}^{\infty}\right)=\cap_{i=1}^{n} V_{i}
$$

where V_{i} are unions of balls $b_{i, g, \varepsilon}$ and thus are open. So with respect to the product topology ψ is indeed continuous, and it is easy to see that if we would "allow" infinite product of opens to be open in \mathbb{R}^{∞}, then we would get above infinite intersection of open sets which is in general not open. Now, for an open $V \in C_{c}^{\infty}(\mathbb{R}), V=\cup_{k, g, \varepsilon} b_{k, g, \varepsilon}:$

$$
\psi(V)=\psi\left(\cup_{k, g, \varepsilon} b_{k, g, \varepsilon}\right)=\cup_{k, g, \varepsilon} \psi\left(b_{k, g, \varepsilon}\right)=\cup_{k, g, \varepsilon} \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{k-1} \times U_{k, g, \varepsilon} \times \mathbb{R}^{\infty}
$$

where $U_{k, g, \epsilon}=\left\{f^{(k)}(0):\left|f^{(k)}(x)-g^{(k)}(x)\right|<\varepsilon\right\}=\left\{f^{(k)}(0):\left|f^{(k)}(0)-g^{(k)}(0)\right|<\varepsilon\right\}$.
The last equality holds since for every element $f^{(k)}(0)$ in the RHS, we can define $\tilde{f}(x)=g(x)+\frac{x^{k}}{k!}\left(f^{(k)}(0)-g^{(k)}(0)\right)$ so:

$$
\begin{aligned}
\left|\tilde{f}^{(k)}(x)-g^{(k)}(x)\right| & =\left|g^{(k)}(x)+\left(f^{(k)}(0)-g^{(k)}(0)\right)-g^{(k)}(x)\right| \\
& =\left|f^{(k)}(0)-g^{(k)}(0)\right|<\varepsilon
\end{aligned}
$$

(since $f^{(k)}(0)$ is an element of the RHS). Therefore, $f^{(k)}(0)=\tilde{f}^{(k)}(0)$ is an element of the LHS. Now, the set $\left\{f^{(k)}(0):\left|f^{(k)}(0)-g^{(k)}(0)\right|<\varepsilon\right\}$ is clearly open in \mathbb{R}, and thus $\psi(V)$ is open in \mathbb{R}^{∞}, and ψ is an open map. Notice that ξ is continuous wrt to the mentioned topology on $C_{c}^{\infty}(\mathbb{R})$, and the usual topology on \mathbb{R}, and ψ is open (and continuous). Therefore $\tilde{\xi}$ is also continuous with respect to the product topology on \mathbb{R}^{∞} and the usual topology on \mathbb{R}, and would not be continuous wrt a finer topology on \mathbb{R}^{∞}. Notice that since L is dense in \mathbb{R}^{∞}, we can extend $\tilde{\xi}$ continuously to a function from \mathbb{R}^{∞} (from now on we regard $\tilde{\xi}$ as a map from \mathbb{R}^{∞} to $\left.\mathbb{R}\right)$. From this we conclude that ξ must by finite sum of $\delta^{(n)}$.

Exercise 6. Show that for $\phi \in C_{c}^{\infty}(\mathbb{R})$ we get that $\xi * \phi$ is a smooth function.
Solution: We consider the convolution $(\xi * \phi)(x)=\xi\left(\tilde{\phi}_{x}\right)$. Since $\tilde{\phi}_{x}(t)=$ $\phi(x-t)$ is smooth and has compact support for every x, and ξ is a distribution, $\forall x \xi * \phi(x)$ is well defined. Since $\tilde{\phi}_{x}=\phi(x-t)$ is smooth with respect to x, and
ξ is a linear functional, $\xi * \phi(x)$ is continuous.

$$
\begin{array}{ccc}
\frac{d}{d x}(\xi * \phi)(x) & = & \lim _{h \rightarrow 0} \frac{\xi\left(\tilde{\phi}_{x+h}(t)\right)-\xi\left(\tilde{\phi}_{x}(t)\right)}{h} \\
= & \lim _{h \rightarrow 0} \xi\left(\frac{\tilde{\phi}_{x+h}(t)-\tilde{\phi}_{x}(t)}{h}\right) \\
\xi \text { is linear } & = & \lim _{h \rightarrow 0} \xi\left(\frac{\phi(x+h-t)-\phi(x-t)}{h}\right) \\
& = & \xi\left(\lim _{h \rightarrow 0} \frac{\phi(x+h-t)-\phi(x-t)}{h}\right) \\
\xi \text { is continuous } & = & \xi\left(\phi^{\prime}(x-t)\right)=\xi * \phi^{\prime}
\end{array}
$$

This means that the function $\xi * \phi(x)$ has continuous derivatives of every order $\left(\xi * \phi^{(n)}\right)$, i.e. $\xi * \phi(x)$ is smooth

Exercise 7. 1. Show that $\delta * \eta=\eta$.
2. Show that $\delta^{\prime} * \eta=\eta^{\prime}$.
3. Show the associativity: $\delta^{\prime} *(\xi * \eta)=\left(\delta^{\prime} * \xi\right) * \eta$.
4. Show that $(\xi * \eta)^{\prime}=\xi^{\prime} * \eta=\xi * \eta^{\prime}$.

Solution:

1. By definition:

$$
\begin{aligned}
(\delta * \eta)(\varphi) & =(\eta * \delta)(\varphi)=\eta(\overline{(\delta * \bar{\varphi})}) \\
& =\eta\left(\overline{\delta\left(\overline{\tilde{\varphi}_{x}}\right)}\right)=\eta(\overline{\overline{\varphi(x)}}) \\
& =\eta(\varphi)
\end{aligned}
$$

Notice that above, δ receives a function of t and η receives a function of x.
2.

$$
\begin{aligned}
\left(\delta^{\prime} * \eta\right)(\varphi) & =\eta\left(\overline{\left(\delta^{\prime} * \bar{\varphi}\right)}\right) \\
& =\eta\left(\overline{\delta^{\prime}\left(\overline{\tilde{\varphi}_{x}}\right)}\right)=\eta\left(-\overline{\overline{\varphi^{\prime}(x)}}\right) \\
& =\eta\left(-\varphi^{\prime}\right)=-\eta\left(\varphi^{\prime}\right) \\
& =\eta^{\prime}(\varphi)
\end{aligned}
$$

3.

$$
\begin{aligned}
\left(\left(\delta^{\prime} * \xi\right) * \eta\right)(\varphi) & =\left(\delta^{\prime} * \xi\right)(\overline{(\eta * \bar{\varphi})}) \\
& =\delta^{\prime}(\overline{(\xi *(\eta * \bar{\varphi}))}) \\
& =\delta^{\prime} *(\xi(\overline{(\eta * \bar{\varphi})})) \\
& =\left(\delta^{\prime} *(\xi * \eta)\right)(\varphi)
\end{aligned}
$$

4. Using the previous, $(\xi * \eta)^{\prime}=\delta^{\prime} *(\xi * \eta)=\left(\delta^{\prime} * \xi\right) * \eta=\xi^{\prime} * \eta$, and since $\xi * \eta=\eta * \xi$ we also get: $(\xi * \eta)^{\prime}=\delta^{\prime} *(\eta * \xi)=\left(\delta^{\prime} * \eta\right) * \xi=\eta^{\prime} * \xi=\xi * \eta^{\prime}$.

Exercise 8. Show that if φ is smooth, and $\operatorname{supp}(\xi)$ is compact, then $\xi * \varphi$ will still be smooth.

Solution: The difference from question 6 is that φ is not compactly supported, so the integral (on unbounded domain) may diverge. However, since supp (ξ) is compact, it is contained in an interval $[a, b]$. Thus $\forall g$ such that $\left.g\right|_{[a, b]}=0$ we have $\xi(g)=0$. Multiplying by the step function from question 4(a) we can write $\varphi=\varphi_{1}+\varphi_{2}$ such that $\left.\varphi_{1}\right|_{[a, b]}=0$ and $\left.\varphi_{2}\right|_{\mathbb{R} \backslash[a-1, b+1]}=0$. Then we have:

$$
\begin{aligned}
(\xi * \varphi)(x) & =\xi(\varphi(x-t))=\xi\left(\varphi_{1}(x-t)+\varphi_{2}(x-t)\right) \\
& =\xi\left(\varphi_{2}(x-t)\right)
\end{aligned}
$$

But since φ_{2} is compactly supported, by question $6 \xi\left(\varphi_{2}(x-t)\right)$ is smooth.

Exercise 9. Let A be a differential operator with fixed coefficients. Describe the Green function without using generalized functions.

Solution: We defined the Green function in class as the solution $A G(t)=\delta_{0}$ so when $t \neq 0, A G(t)=0$. Notice that the Green function has to have a jump on it's nth derivative (where n is the order of A), since the integral in a small neighborhood of zero does not vanish. Specifically, Suppose $A=a(x) \partial^{n}+\ldots$, then:

$$
\begin{gathered}
\int_{-\varepsilon}^{\varepsilon} A G d x=\int_{-\varepsilon}^{\varepsilon} a(x) \partial^{n} G+\ldots d x=\int_{-\varepsilon}^{\varepsilon} \delta(x) d x=1 \\
\Rightarrow G^{(n)}\left(0_{+}\right)-G^{(n)}\left(0_{-}\right)=\frac{1}{a(0)}(*)
\end{gathered}
$$

Notice that G that satisfy $(*)$ indeed acts like a green function: Let $G(t)$ be a
function such that $\forall t \neq 0, A G(t)=0$, and such that $(*)$ holds, then:

$$
\begin{aligned}
A(G * f)(x) & =\left(a(x) \frac{d^{n}}{d x^{n}}+\ldots\right)\left(\int_{-\infty}^{\infty} G(x-t) f(t) d t\right) \\
& =\int_{-\infty}^{\infty}\left(a(x) \frac{d^{n}}{d x^{n}}+\ldots\right) G(x-t) f(t) d t \\
& =\int_{-\infty}^{\infty}\left(a(x) G^{(n)}(x-t)+\ldots\right) f(t) d t \\
& =\lim _{\varepsilon \rightarrow 0} \int_{x-\varepsilon}^{x+\varepsilon}\left(a(x) G^{(n)}(x-t)+\ldots\right) f(t) d t \\
& =a(0)\left(G^{(n)}\left(0_{+}\right)-G^{(n)}\left(0_{-}\right)\right) f(x) \\
& =\frac{a(0)}{a(0)} f(x)=f(x)
\end{aligned}
$$

Exercise 10. Solve the equation $\Delta f=\delta_{0}$.
Solution: Since δ_{0} is radial symmetric (its values depend only on the radius and not on the direction) the solution would be radial symmetric too: $f=f(r)$. Now, writing δ_{0} in spherical coordinates we must divide by the area element, so that the integral would stay 1 :

$$
\hat{\delta}(r)=\frac{\delta(r)}{4 \pi r^{2}}
$$

Writing the Laplace operator also in spherical coordinates we get the equation:

$$
f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)=\frac{\delta(r)}{4 \pi r^{2}}
$$

and we got an ODE.

$$
\begin{aligned}
\frac{\delta(r)}{4 \pi} & =r^{2} f^{\prime \prime}+2 r f^{\prime}=\left(r^{2} f^{\prime}\right)^{\prime} \\
r^{2} f^{\prime} & =\int \frac{\delta(r)}{4 \pi} d r=\frac{1}{4 \pi} \\
f & =\int \frac{1}{4 \pi r^{2}} d r=-\frac{1}{4 \pi r}
\end{aligned}
$$

We prove that $g(r)=-\frac{1}{4 \pi r}$ is indeed a solution of $\Delta f=\delta_{0}$. We actually need to prove that for any $f, \Delta(g * f)(x)=f(x)$. By properties of convolutions (easy change of variables) we get:

$$
\Delta(g * f)(\mathbf{r})=\nabla \cdot \nabla(g * f)(\mathbf{r})=(\nabla g * \nabla f)(\mathbf{r})
$$

So we wish to estimate the integral:

$$
\int_{\mathbb{R}^{3}}\left(\nabla g\left(r^{\prime}\right)\right) \cdot\left(\nabla f\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right) d \mathbf{r}^{\prime}=\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{3} \backslash B(0, \varepsilon)}\left(\nabla g\left(r^{\prime}\right)\right) \cdot\left(\nabla f\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right) d \mathbf{r}^{\prime}
$$

Notice that for a vector function G and a scalar function f it holds that: G. $\nabla f=\nabla(G \cdot f)-f \cdot \nabla G$. In our case $G=\nabla g$ so we get that $\nabla g \cdot \nabla f=$ $\nabla(f \cdot \nabla g)-f \cdot \Delta g$. Using the Divergence theorem we get:

$$
\begin{aligned}
\Delta(g * f)(\mathbf{r}) & =\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{3} \backslash B(0, \varepsilon)}\left(\nabla g\left(r^{\prime}\right)\right) \cdot\left(\nabla f\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right) d \mathbf{r}^{\prime} \\
& =\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{3} \backslash B(0, \varepsilon)} \nabla\left(f\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \cdot \nabla g\left(r^{\prime}\right)\right) d \mathbf{r}^{\prime}-\int_{\mathbb{R}^{3} \backslash B(0, \varepsilon)} f\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \cdot \Delta g\left(r^{\prime}\right) d \mathbf{r}^{\prime} \\
& =\lim _{\varepsilon \rightarrow 0} \int_{\partial B(0, \varepsilon)} f\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \cdot \nabla g\left(r^{\prime}\right) \cdot \hat{r}^{\prime} d S-\int_{\mathbb{R}^{3} \backslash B(0, \varepsilon)} f\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \cdot\left(\frac{1}{r^{\prime 2}} \frac{\partial}{\partial r^{\prime}} r^{\prime 2} \frac{\partial}{\partial r^{\prime}}\right) g\left(r^{\prime}\right) d \mathbf{r}^{\prime} \\
& =\lim _{\varepsilon \rightarrow 0} \int_{\partial B(0, \varepsilon)} f\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \cdot \frac{1}{4 \pi r^{\prime 2}} r^{\prime 2} \sin \theta^{\prime} d \theta^{\prime} d \varphi^{\prime}-0 \\
& =\frac{1}{4 \pi} \lim _{\varepsilon \rightarrow 0} \int_{\partial B(0, \varepsilon)} f\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \sin \theta^{\prime} d \theta^{\prime} d \varphi^{\prime} \\
& =\frac{1}{4 \pi} \lim _{\varepsilon \rightarrow 0} \int_{\partial B(0, \varepsilon)}\left(f(\mathbf{r})+\mathbf{r}^{\prime} \tilde{f}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right) \sin \theta^{\prime} d \theta^{\prime} d \varphi^{\prime} \\
& =\frac{f(\mathbf{r})}{4 \pi} \lim _{\varepsilon \rightarrow 0} \int_{\partial B(0, \varepsilon)}^{\sin } \theta^{\prime} d \theta^{\prime} d \varphi^{\prime}+\frac{1}{4 \pi} \lim _{\varepsilon \rightarrow 0} \int_{\partial B(0, \varepsilon)} \varepsilon \tilde{f}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \sin \theta^{\prime} d \theta^{\prime} d \varphi^{\prime} \\
& =\frac{f(\mathbf{r})}{4 \pi} 4 \pi+\frac{\varepsilon}{4 \pi} \lim _{\varepsilon \rightarrow 0} \int_{\partial B(0, \varepsilon)} \tilde{f}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \sin \theta^{\prime} d \theta^{\prime} d \varphi^{\prime}=f(\mathbf{r})+0 .
\end{aligned}
$$

Exercise 11. Find the order and the leading coefficients for every pole of $\xi_{\lambda} \equiv$ x_{+}^{λ}.

Solution: Take $f \in C_{c}^{\infty}(\mathbb{R})$, then we can write it as a power series $f=$ $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$. In addition, since f has compact support, we may have singu-
larities only near $x=0$ (the integral $\int_{1}^{\infty} x^{\lambda} f(x) d x$ converges $\forall \lambda$) so:

$$
\begin{aligned}
\xi_{\lambda}(f) & =\int_{0}^{1} x^{\lambda} f(x) d x=\int_{0}^{1} x^{\lambda} \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} d x \\
& =\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \int_{0}^{1} x^{\lambda+n} d x \\
& =\left.\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \frac{x^{\lambda+n+1}}{\lambda+n+1}\right|_{0} ^{1} \\
& =\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \frac{1}{\lambda+n+1}
\end{aligned}
$$

From this we can see that all of the poles are of order 1 and the residue of the pole $\lambda_{n}=-n$ is $\frac{f^{(n-1)}(0)}{(n-1)!}$.

Exercise 12. Find an analytic continuation for $P_{\lambda}=p_{+}\left(x_{1}, \ldots x_{n}\right)^{\lambda}$ in the case $p(x, y, z) \equiv \sum_{i=1}^{3} x_{i}^{2} a$.

Solution: Consider the differential operator $\nabla^{2}=\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}$:

$$
\begin{aligned}
\nabla^{2} p_{+}\left(x_{1}, \ldots x_{n}\right)^{\lambda} & =\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}}\left(\sum_{j=1}^{3} x_{j}^{2} a\right)^{\lambda} \\
& =\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}}\left(2 \lambda x_{i}\left(\sum_{j=1}^{3} x_{j}^{2} a\right)^{\lambda-1}\right) \\
& =\sum_{i=1}^{3} 2 \lambda\left(\sum_{j=1}^{3} x_{j}^{2} a\right)^{\lambda-1}+4 \lambda(\lambda-1) x_{i}^{2}\left(\sum_{j=1}^{3} x_{j}^{2} a\right)^{\lambda-2} \\
& =6 \lambda p^{\lambda-1}+4 \lambda(\lambda-1)(p+a) p^{\lambda-2} \\
& =6 \lambda P_{\lambda-1}+4 \lambda(\lambda-1) P_{\lambda-1}+4 \lambda(\lambda-1) a P_{\lambda-2} \\
& \Rightarrow P_{\lambda-2}=\frac{\nabla^{2} P_{\lambda}-\left(2 \lambda+4 \lambda^{2}\right) P_{\lambda-1}}{4 \lambda(\lambda-1) a}
\end{aligned}
$$

Exercise 13. Find an analytic continuation for $p_{+}\left(x_{1}, . ., x_{n}\right)^{\lambda}$ in the case $p(x, y, z) \equiv x^{2}+y^{2}-z^{2}$.

Solution: Consider the differential operator $L=\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial y_{i}^{2}}-\frac{\partial^{2}}{\partial z_{i}}$:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x_{i}^{2}} p_{+}\left(x_{1}, \ldots x_{n}\right)^{\lambda} & =\left(2 \lambda p^{\lambda-1}+4 \lambda(\lambda-1) x^{2} p^{\lambda-2}\right) \\
L p_{+}\left(x_{1}, \ldots x_{n}\right)^{\lambda} & =2 \lambda p^{\lambda-1}+4 \lambda(\lambda-1)\left(x^{2}+y^{2}-z^{2}\right) p^{\lambda-2} \\
& =2 \lambda p^{\lambda-1}+4 \lambda(\lambda-1) p^{\lambda-1} \\
& =\left(4 \lambda^{2}-2 \lambda\right) P_{\lambda-1} \\
& \Rightarrow P_{\lambda-1}=\frac{L P_{\lambda}}{(4 \lambda-2) \lambda}
\end{aligned}
$$

