Generalized Functions: Homework 1

Exercise 1. Prove that there exists a function $f \in C_c^{\infty}(\mathbb{R})$ which isn't the zero function.

Solution: Consider the function:

$$g = \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$

We claim that $g \in C^{\infty}(\mathbb{R})$. Indeed, all of the derivatives of $e^{-\frac{1}{x}}$ are vanishing when $x \to 0$:

$$\lim_{x \to 0} \frac{d^n}{dx^n} e^{-\frac{1}{x}} = \lim_{x \to 0} q(x) \cdot e^{-\frac{1}{x}} = 0$$

where q(x) is a rational function of x. The function $f = g(x) \cdot g(1-x)$ is smooth, as a multiplication of two smooth functions, has compact support (the interval [0, 1]), and is non-zero $(f(\frac{1}{2}) = \frac{1}{e})$.

Exercise 2. Find a sequence of functions $\{f_n\}_n \in \mathbb{Z}$ (when $f_n \in C_c^{\infty}(\mathbb{R}) \forall n$) that weakly converges to Dirac Delta function.

Solution: Consider the sequence of function:

$$\tilde{f}_n = g\left(\frac{1}{n} - x\right) \cdot g\left(\frac{1}{n} + x\right) \in C_c^{\infty}(\mathbb{R})$$

where $g(x) \in C_c^{\infty}(\mathbb{R})$ is the function defined in the first question. Notice that the support of f_n is the interval $\left[-\frac{1}{n}, \frac{1}{n}\right]$. Normalizing these functions so that the integral will be equal to 1 we get:

$$f_n = d(n)\tilde{f}_n, \quad d(n) = \left(\int_{-\infty}^{\infty} \tilde{f}_n(x)dx\right)^{-1}$$

For every test function $F(x) \in C_c^{\infty}(\mathbb{R})$, we can write $F(x) = F(0) + x \cdot G(x)$, where $G(x) \in C_c^{\infty}(\mathbb{R})$. Therefore we have:

$$\int_{-\infty}^{\infty} F(x) \cdot f_n(x) dx = \int_{-1/n}^{1/n} F(x) \cdot f_n(x) dx$$
$$= \int_{-1/n}^{1/n} F(0) \cdot f_n(x) dx + \int_{-1/n}^{1/n} x G(x) \cdot f_n(x) dx$$
$$= F(0) + \int_{-1/n}^{1/n} x G(x) \cdot f_n(x) dx$$

So $\int_{-\infty}^{\infty} F(x) \cdot f_n(x) dx - \int_{-\infty}^{\infty} F(x) \cdot \delta(x) dx = \int_{-1/n}^{1/n} x G(x) \cdot f_n(x) dx$. Notice that G(x) is bounded by some $M \in \mathbb{R}$ and thus we get:

$$\begin{vmatrix} 1/n \\ \int \\ -1/n \\ xG(x) \cdot f_n(x) dx \end{vmatrix} \leq \int \\ \int \\ -1/n \\ -1/n \\ xG(x) \cdot f_n(x) dx \\ \leq \int \\ \int \\ -1/n \\ -1/n \\ -1/n \\ n \\ M \cdot f_n(x) dx \\ = \frac{M}{n} \underset{n \to \infty}{\longrightarrow} 0$$

Therefore, the sequence of functions f_n weakly converges to Dirac Delta function.

Exercise 3. Find a function $F \in L^1_{loc}$ for which $F' = \delta$.

Solution: Consider Heaviside step function:

$$\Theta = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}$$

and let ξ_{Θ} be the functional defined by Θ . Then for every test function $\varphi \in C_c^{\infty}(\mathbb{R})$:

$$\begin{aligned} \xi'_{\Theta}(\varphi) &= -\xi_{\Theta}(\varphi') = -\int_{-\infty}^{\infty} \varphi'(x) \cdot \Theta(x) dx \\ &= -\int_{0}^{\infty} \varphi'(x) dx = -\left(\lim_{x \to \infty} \varphi(x) - \varphi(0)\right) \\ &= \varphi(0) = \delta(\varphi) \end{aligned}$$

Therefore, as distributions, $\Theta' = \delta$.

Exercise 4. 1. Let U_1, U_2 be open subsets of \mathbb{R} . Show that if $\xi|_{U_1} \equiv \xi|_{U_2} \equiv 0$ then $\xi|_{U_1 \cup U_2} \equiv 0$.

2. Show this also holds for any union of such open $\{U_i\}_{i \in I}$.

Solution:

1. We define a smooth step function:

$$s(x) = \begin{cases} e^{-e^{-\tan\left(\frac{\pi x}{2}\right)}} & -1 \le x \le 1\\ 1 & 1 < x\\ 0 & x < -1 \end{cases}$$

and use it to write $f \in C_c^{\infty}(\mathbb{R})$, $supp(f) = U_1 \cup U_2$, as a sum $f_1 + f_2$ where $supp(f_i) = U_i$. Notice that s(nx) is a step of width $\frac{1}{2n}$. Suppose $U_i = (a_i, b_i)$ are open intervals (in case U_i are finite union of open intervals the generalization is obvious; the case of infinite union is a result of section (b) of this question). If $U_1 \cap U_2 = \emptyset$ then $f_i = f|_{U_i}$. Otherwise, one of the edges of U_1 is in the interior of U_2 , wlog $a_1 \in (a_2, b_2)$. Then:

$$f_1 \equiv f \cdot s \left(n \left(x - a_1 \right) \right), \quad \frac{1}{2n} < \frac{1}{2} (b_2 - a_1)$$

and then take $f_2 = f - f_1$. Notice that $supp(f_2) \subset U_2$, since we chose n properly. Now, $\xi(f) = \xi(f_1) + \xi(f_2) = 0$, i.e. $\xi|_{U_1 \cup U_2} = 0$.

2. Notice that we are only interested in $\{U_i\}_{i \in I} \cap supp(f)$. In addition we can assume U_i are open intervals (by splitting U_i to its components). The union $\{U_i\}_{i \in I}$ covers supp(f), which is compact, and therefore there is a finite sub-cover $\{U_{ij}\}_{j=1}^n$. So it is enough to present f as a sum $\sum_{j=1}^n f_j$ where $supp(f_j) = U_{ij}$. This we do as in the previous section.

Exercise 5. Find all the generalized functions $\xi \in C_c^{-\infty}(\mathbb{R})$ for which $supp(\xi) = \{0\}$.

Solution: For every $f \in C_c^{\infty}(\mathbb{R})$, supp(f) is compact, and therefore, if $0 \notin supp(f)$ there exists a neighborhood of 0 in which f = 0. Therefore, for every n, $supp(\delta^{(n)}) = \{0\}$, and thus every generalized function of the form $\xi = \sum_{i=1}^{n} c_i \delta^{(i)}$ where $c_i \in \mathbb{R}$, has zero support. Now, suppose $\xi \in C^{-\infty}$, $supp(\xi) = \{0\}$, then by definition, $\xi|_{C_c^{\infty}(\mathbb{R}\setminus\{0\})} = 0$. Clearly this means that $\xi|_{\overline{C_c^{\infty}(\mathbb{R}\setminus\{0\})}} = 0$. For every $f \in C_c^{\infty}(\mathbb{R})$ such that $\forall n$, $f^{(n)}(0) = 0$, we can define a sequence $f_n(x) = w(nx) \cdot f(x)$, where $w_n(x) = 1 - s(2nx + 3) \cdot s(3 - 2nx)$ is a smooth symmetric "flat bump" function, that goes down from 1 to 0 in $\left[-\frac{2}{n}, -\frac{1}{n}\right]$ and up again in $\left[\frac{1}{n}, \frac{2}{n}\right]$. Notice that $f_n \in C_c^{\infty}(\mathbb{R}\setminus\{0\})$, and that $f_n \xrightarrow[n \to \infty]{} f \in \overline{C_c^{\infty}(\mathbb{R}\setminus\{0\})}$, since at x = 0, $\forall k$, $f_n^{(k)}(x) = f^{(k)}(x) = 0$, and for $x \neq 0$, $f_n \equiv f$ in a neighborhood of x for n large enough. Define $\psi : C_c^{\infty}(\mathbb{R}) \to \mathbb{R}^{\infty}$ to be the vector of derivatives at zero:

$$\psi(f) = (f(0), f'(0), ..., f^{(n)}(0), ...) \in \mathbb{R}^{\infty}$$

Clearly ψ is linear, and $\xi|_{\ker \psi} = 0$. Thus there exists a quotient map $\tilde{\xi} : L \to \mathbb{R}$ such that $\xi = \tilde{\xi} \circ \psi$.

$$\begin{array}{ccc} C_c^{\infty}\left(\mathbb{R}\right) & \xrightarrow{\psi} & L & \subset \mathbb{R}^{\infty} \\ & \searrow^{\xi} & \downarrow^{\tilde{\xi}} \\ & & \mathbb{R} \end{array}$$

From this we can conclude that $\xi(f)$ must be a linear function, depending only on the derivatives of f at zero. Now notice that regarding the product topology on \mathbb{R}^{∞} , the map ψ is continuous (wrt the topology we defined on $C_c^{\infty}(\mathbb{R})$, generated by the balls $b_{k,g,\varepsilon} = \{f : |f^{(k)}(x) - g^{(k)}(x)| < \varepsilon\}$):

$$\psi^{-1}(U) = \psi^{-1}\left(U_1 \times \dots \times U_n \times \mathbb{R}^\infty\right) = \bigcap_{i=1}^n V_i$$

where V_i are unions of balls $b_{i,g,\varepsilon}$ and thus are open. So with respect to the product topology ψ is indeed continuous, and it is easy to see that if we would "allow" infinite product of opens to be open in \mathbb{R}^{∞} , then we would get above infinite intersection of open sets which is in general not open. Now, for an open $V \in C_c^{\infty}(\mathbb{R}), V = \bigcup_{k,g,\varepsilon} b_{k,g,\varepsilon}$:

$$\psi\left(V\right) = \psi\left(\cup_{k,g,\varepsilon} b_{k,g,\varepsilon}\right) = \bigcup_{k,g,\varepsilon} \psi\left(b_{k,g,\varepsilon}\right) = \bigcup_{k,g,\varepsilon} \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{k-1} \times U_{k,g,\varepsilon} \times \mathbb{R}^{\infty}$$

where $U_{k,g,\epsilon} = \{f^{(k)}(0) : |f^{(k)}(x) - g^{(k)}(x)| < \varepsilon\} = \{f^{(k)}(0) : |f^{(k)}(0) - g^{(k)}(0)| < \varepsilon\}.$ The last equality holds since for every element $f^{(k)}(0)$ in the RHS, we can define $\tilde{f}(x) = g(x) + \frac{x^k}{k!} (f^{(k)}(0) - g^{(k)}(0))$ so:

$$\begin{aligned} \left| \tilde{f}^{(k)}(x) - g^{(k)}(x) \right| &= \left| g^{(k)}(x) + \left(f^{(k)}(0) - g^{(k)}(0) \right) - g^{(k)}(x) \right| \\ &= \left| f^{(k)}(0) - g^{(k)}(0) \right| < \varepsilon \end{aligned}$$

(since $f^{(k)}(0)$ is an element of the RHS). Therefore, $f^{(k)}(0) = \tilde{f}^{(k)}(0)$ is an element of the LHS. Now, the set $\{f^{(k)}(0) : |f^{(k)}(0) - g^{(k)}(0)| < \varepsilon\}$ is clearly open in \mathbb{R} , and thus $\psi(V)$ is open in \mathbb{R}^{∞} , and ψ is an open map. Notice that ξ is continuous wrt to the mentioned topology on $C_c^{\infty}(\mathbb{R})$, and the usual topology on \mathbb{R} , and ψ is open (and continuous). Therefore $\tilde{\xi}$ is also continuous with respect to the product topology on \mathbb{R}^{∞} and the usual topology on \mathbb{R} , and would not be continuous wrt a finer topology on \mathbb{R}^{∞} . Notice that since L is dense in \mathbb{R}^{∞} , we can extend $\tilde{\xi}$ continuously to a function from \mathbb{R}^{∞} (from now on we regard $\tilde{\xi}$ as a map from \mathbb{R}^{∞} to \mathbb{R}). From this we conclude that ξ must by finite sum of $\delta^{(n)}$.

Exercise 6. Show that for $\phi \in C_c^{\infty}(\mathbb{R})$ we get that $\xi * \phi$ is a smooth function.

Solution: We consider the convolution $(\xi * \phi)(x) = \xi(\tilde{\phi}_x)$. Since $\tilde{\phi}_x(t) = \phi(x-t)$ is smooth and has compact support for every x, and ξ is a distribution, $\forall x \ \xi * \phi(x)$ is well defined. Since $\tilde{\phi}_x = \phi(x-t)$ is smooth with respect to x, and

 ξ is a linear functional, $\xi \ast \phi(x)$ is continuous.

$$\frac{d}{dx} \left(\xi * \phi \right) (x) = \lim_{h \to 0} \frac{\xi \left(\tilde{\phi}_{x+h}(t) \right) - \xi \left(\tilde{\phi}_{x}(t) \right)}{h}$$

$$= \lim_{\xi \text{ is linear}} \xi \left(\frac{\tilde{\phi}_{x+h}(t) - \tilde{\phi}_{x}(t)}{h} \right)$$

$$= \lim_{h \to 0} \xi \left(\frac{\phi(x+h-t) - \phi(x-t)}{h} \right)$$

$$= \xi \left(\lim_{h \to 0} \frac{\phi(x+h-t) - \phi(x-t)}{h} \right)$$

$$= \xi \left(\psi'(x-t) \right) = \xi * \phi'$$

This means that the function $\xi * \phi(x)$ has continuous derivatives of every order $(\xi * \phi^{(n)})$, i.e. $\xi * \phi(x)$ is smooth.

Exercise 7. 1. Show that $\delta * \eta = \eta$.

- 2. Show that $\delta' * \eta = \eta'$.
- 3. Show the associativity: $\delta' * (\xi * \eta) = (\delta' * \xi) * \eta$.
- 4. Show that $(\xi * \eta)' = \xi' * \eta = \xi * \eta'$.

Solution:

1. By definition:

$$\begin{aligned} \left(\delta*\eta\right)(\varphi) &= \left(\eta*\delta\right)(\varphi) = \eta\left(\overline{\left(\delta*\bar{\varphi}\right)}\right) \\ &= \eta\left(\overline{\delta(\bar{\varphi}_x)}\right) = \eta\left(\overline{\varphi(x)}\right) \\ &= \eta\left(\varphi\right) \end{aligned}$$

Notice that above, δ receives a function of t and η receives a function of x.

2.

$$\begin{aligned} \left(\delta'*\eta\right)(\varphi) &= \eta\left(\overline{\left(\delta'*\bar{\varphi}\right)}\right) \\ &= \eta\left(\overline{\delta'(\bar{\varphi}_x)}\right) = \eta\left(-\overline{\varphi'(x)}\right) \\ &= \eta\left(-\varphi'\right) = -\eta\left(\varphi'\right) \\ &= \eta'\left(\varphi\right) \end{aligned}$$

$$\begin{aligned} \left(\left(\delta' * \xi \right) * \eta \right) (\varphi) &= \left(\delta' * \xi \right) \left(\overline{(\eta * \overline{\varphi})} \right) \\ &= \delta' \left(\overline{(\xi * (\eta * \overline{\varphi}))} \right) \\ &= \delta' * \left(\xi \left(\overline{(\eta * \overline{\varphi})} \right) \right) \\ &= \left(\delta' * (\xi * \eta) \right) (\varphi) \end{aligned}$$

4. Using the previous, $(\xi * \eta)' = \delta' * (\xi * \eta) = (\delta' * \xi) * \eta = \xi' * \eta$, and since $\xi * \eta = \eta * \xi$ we also get: $(\xi * \eta)' = \delta' * (\eta * \xi) = (\delta' * \eta) * \xi = \eta' * \xi = \xi * \eta'$.

Exercise 8. Show that if φ is smooth, and $supp(\xi)$ is compact, then $\xi * \varphi$ will still be smooth.

Solution: The difference from question 6 is that φ is not compactly supported, so the integral (on unbounded domain) may diverge. However, since $supp(\xi)$ is compact, it is contained in an interval [a, b]. Thus $\forall g$ such that $g|_{[a,b]} = 0$ we have $\xi(g) = 0$. Multiplying by the step function from question 4(a) we can write $\varphi = \varphi_1 + \varphi_2$ such that $\varphi_1|_{[a,b]} = 0$ and $\varphi_2|_{\mathbb{R} \setminus [a-1,b+1]} = 0$. Then we have:

$$\begin{aligned} (\xi * \varphi)(x) &= \xi \left(\varphi(x-t)\right) = \xi \left(\varphi_1(x-t) + \varphi_2(x-t)\right) \\ &= \xi \left(\varphi_2(x-t)\right) \end{aligned}$$

But since φ_2 is compactly supported, by question 6 $\xi(\varphi_2(x-t))$ is smooth.

Exercise 9. Let A be a differential operator with fixed coefficients. Describe the Green function without using generalized functions.

Solution: We defined the Green function in class as the solution $AG(t) = \delta_0$ so when $t \neq 0$, AG(t) = 0. Notice that the Green function has to have a jump on it's *n*th derivative (where *n* is the order of *A*), since the integral in a small neighborhood of zero does not vanish. Specifically, Suppose $A = a(x)\partial^n + ...$, then:

$$\int_{-\varepsilon}^{\varepsilon} AGdx = \int_{-\varepsilon}^{\varepsilon} a(x)\partial^{n}G + \dots dx = \int_{-\varepsilon}^{\varepsilon} \delta(x)dx = 1$$
$$\Rightarrow G^{(n)}(0_{+}) - G^{(n)}(0_{-}) = \frac{1}{a(0)} \quad (*)$$

Notice that G that satisfy (*) indeed acts like a green function: Let G(t) be a

3.

function such that $\forall t \neq 0$, AG(t) = 0, and such that (*) holds, then:

$$\begin{split} A\left(G*f\right)\left(x\right) &= \left(a(x)\frac{d^{n}}{dx^{n}} + \ldots\right)\left(\int_{-\infty}^{\infty}G(x-t)f(t)dt\right) \\ &= \int_{-\infty}^{\infty}\left(a(x)\frac{d^{n}}{dx^{n}} + \ldots\right)G(x-t)f(t)dt \\ &= \int_{-\infty}^{\infty}\left(a(x)G^{(n)}(x-t) + \ldots\right)f(t)dt \\ &= \lim_{\varepsilon \to 0}\int_{x-\varepsilon}^{x+\varepsilon}\left(a(x)G^{(n)}(x-t) + \ldots\right)f(t)dt \\ &= a(0)\left(G^{(n)}(0_{+}) - G^{(n)}(0_{-})\right)f(x) \\ &= \frac{a(0)}{a(0)}f(x) = f(x) \end{split}$$

Exercise 10. Solve the equation $\Delta f = \delta_0$.

Solution: Since δ_0 is radial symmetric (its values depend only on the radius and not on the direction) the solution would be radial symmetric too: f = f(r). Now, writing δ_0 in spherical coordinates we must divide by the area element, so that the integral would stay 1:

$$\hat{\delta}(r) = \frac{\delta(r)}{4\pi r^2}$$

Writing the Laplace operator also in spherical coordinates we get the equation:

$$f''(r) + \frac{2}{r}f'(r) = \frac{\delta(r)}{4\pi r^2}$$

and we got an ODE.

$$\begin{aligned} \frac{\delta(r)}{4\pi} &= r^2 f'' + 2r f' = \left(r^2 f'\right)' \\ r^2 f' &= \int \frac{\delta(r)}{4\pi} dr = \frac{1}{4\pi} \\ f &= \int \frac{1}{4\pi r^2} dr = -\frac{1}{4\pi r} \end{aligned}$$

We prove that $g(r) = -\frac{1}{4\pi r}$ is indeed a solution of $\Delta f = \delta_0$. We actually need to prove that for any f, $\Delta (g * f)(x) = f(x)$. By properties of convolutions (easy change of variables) we get:

$$\Delta (g * f) (\mathbf{r}) = \nabla \cdot \nabla (g * f) (\mathbf{r}) = (\nabla g * \nabla f) (\mathbf{r})$$

So we wish to estimate the integral:

$$\int_{\mathbb{R}^3} \left(\nabla g(r') \right) \cdot \left(\nabla f(\mathbf{r} - \mathbf{r}') \right) d\mathbf{r}' = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^3 \setminus B(0,\varepsilon)} \left(\nabla g(r') \right) \cdot \left(\nabla f(\mathbf{r} - \mathbf{r}') \right) d\mathbf{r}'.$$

Notice that for a vector function G and a scalar function f it holds that: $G \cdot \nabla f = \nabla (G \cdot f) - f \cdot \nabla G$. In our case $G = \nabla g$ so we get that $\nabla g \cdot \nabla f = \nabla (f \cdot \nabla g) - f \cdot \Delta g$. Using the Divergence theorem we get:

$$\begin{split} \Delta(g*f)\left(\mathbf{r}\right) &= \lim_{\varepsilon \to 0} \int\limits_{\mathbb{R}^{3} \setminus B(0,\varepsilon)} (\nabla g(r')) \cdot (\nabla f(\mathbf{r} - \mathbf{r}')) \, d\mathbf{r}' \\ &= \lim_{\varepsilon \to 0} \int\limits_{\mathbb{R}^{3} \setminus B(0,\varepsilon)} \nabla\left(f(\mathbf{r} - \mathbf{r}') \cdot \nabla g(r')\right) d\mathbf{r}' - \int\limits_{\mathbb{R}^{3} \setminus B(0,\varepsilon)} f(\mathbf{r} - \mathbf{r}') \cdot \Delta g(r') d\mathbf{r}' \\ &= \lim_{\varepsilon \to 0} \int\limits_{\partial B(0,\varepsilon)} f(\mathbf{r} - \mathbf{r}') \cdot \nabla g(r') \cdot \hat{r'} dS - \int\limits_{\mathbb{R}^{3} \setminus B(0,\varepsilon)} f(\mathbf{r} - \mathbf{r}') \cdot \left(\frac{1}{r'^{2}} \frac{\partial}{\partial r'} r'^{2} \frac{\partial}{\partial r'}\right) g(r') d\mathbf{r}' \\ &= \lim_{\varepsilon \to 0} \int\limits_{\partial B(0,\varepsilon)} f(\mathbf{r} - \mathbf{r}') \cdot \frac{1}{4\pi r'^{2}} r'^{2} \sin \theta' d\theta' d\varphi' - 0 \\ &= \frac{1}{4\pi} \lim_{\varepsilon \to 0} \int\limits_{\partial B(0,\varepsilon)} f(\mathbf{r} - \mathbf{r}') \sin \theta' d\theta' d\varphi' \\ &= \frac{1}{4\pi} \lim_{\varepsilon \to 0} \int\limits_{\partial B(0,\varepsilon)} \left(f(\mathbf{r}) + \mathbf{r}' \tilde{f}(\mathbf{r} - \mathbf{r}')\right) \sin \theta' d\theta' d\varphi' \\ &= \frac{f(\mathbf{r})}{4\pi} \lim_{\varepsilon \to 0} \int\limits_{\partial B(0,\varepsilon)} \sin \theta' d\theta' d\varphi' + \frac{1}{4\pi} \lim_{\varepsilon \to 0} \int\limits_{\partial B(0,\varepsilon)} \varepsilon \tilde{f}(\mathbf{r} - \mathbf{r}') \sin \theta' d\theta' d\varphi' \\ &= \frac{f(\mathbf{r})}{4\pi} 4\pi + \frac{\varepsilon}{4\pi} \lim_{\varepsilon \to 0} \int\limits_{\partial B(0,\varepsilon)} \tilde{f}(\mathbf{r} - \mathbf{r}') \sin \theta' d\theta' d\varphi' = f(\mathbf{r}) + 0. \end{split}$$

Exercise 11. Find the order and the leading coefficients for every pole of $\xi_{\lambda} \equiv x_{+}^{\lambda}$.

Solution: Take $f \in C_c^{\infty}(\mathbb{R})$, then we can write it as a power series $f = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$. In addition, since f has compact support, we may have singu-

larities only near x=0 (the integral $\int_1^\infty x^\lambda f(x) dx$ converges $\forall \lambda)$ so:

$$\xi_{\lambda}(f) = \int_{0}^{1} x^{\lambda} f(x) dx = \int_{0}^{1} x^{\lambda} \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} dx$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \int_{0}^{1} x^{\lambda+n} dx$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \frac{x^{\lambda+n+1}}{\lambda+n+1} |_{0}^{1}$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \frac{1}{\lambda+n+1}$$

From this we can see that all of the poles are of order 1 and the residue of the pole $\lambda_n = -n$ is $\frac{f^{(n-1)}(0)}{(n-1)!}$.

Exercise 12. Find an analytic continuation for $P_{\lambda} = p_{+}(x_{1},...x_{n})^{\lambda}$ in the case $p(x, y, z) \equiv \sum_{i=1}^{3} x_{i}^{2} a.$

Solution: Consider the differential operator $\nabla^2 = \sum_i \frac{\partial^2}{\partial x_i^2}$:

$$\begin{aligned} \nabla^2 p_+(x_1, \dots x_n)^{\lambda} &= \sum_{i=1}^3 \frac{\partial^2}{\partial x_i^2} \left(\sum_{j=1}^3 x_j^2 a \right)^{\lambda} \\ &= \sum_{i=1}^3 \frac{\partial}{\partial x_i} \left(2\lambda x_i \left(\sum_{j=1}^3 x_j^2 a \right)^{\lambda-1} \right) \\ &= \sum_{i=1}^3 2\lambda \left(\sum_{j=1}^3 x_j^2 a \right)^{\lambda-1} + 4\lambda(\lambda-1)x_i^2 \left(\sum_{j=1}^3 x_j^2 a \right)^{\lambda-2} \\ &= 6\lambda p^{\lambda-1} + 4\lambda(\lambda-1)\left(p+a\right)p^{\lambda-2} \\ &= 6\lambda P_{\lambda-1} + 4\lambda(\lambda-1)P_{\lambda-1} + 4\lambda(\lambda-1)aP_{\lambda-2} \\ &\Rightarrow P_{\lambda-2} = \frac{\nabla^2 P_{\lambda} - (2\lambda + 4\lambda^2)P_{\lambda-1}}{4\lambda(\lambda-1)a} \end{aligned}$$

Exercise 13. Find an analytic continuation for $p_+(x_1, ..., x_n)^{\lambda}$ in the case $p(x, y, z) \equiv x^2 + y^2 - z^2$.

Solution: Consider the differential operator $L = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} - \frac{\partial^2}{\partial z_i}$:

$$\frac{\partial^2}{\partial x_i^2} p_+(x_1, \dots x_n)^{\lambda} = (2\lambda p^{\lambda-1} + 4\lambda(\lambda-1)x^2 p^{\lambda-2})$$

$$Lp_+(x_1, \dots x_n)^{\lambda} = 2\lambda p^{\lambda-1} + 4\lambda(\lambda-1)(x^2+y^2-z^2)p^{\lambda-2}$$

$$= 2\lambda p^{\lambda-1} + 4\lambda(\lambda-1)p^{\lambda-1}$$

$$= (4\lambda^2 - 2\lambda)P_{\lambda-1}$$

$$\Rightarrow P_{\lambda-1} = \frac{LP_{\lambda}}{(4\lambda-2)\lambda}$$