Lecture 3, 06/11/13

The Dual Space

Definitions.

- 1. A subset $B \subset V$ is called bounded if $\forall U \subset V$ open, $\exists \lambda$ such that $\lambda \cdot U \supset B$ (when the topology on V is given by a sequence of norms n_i , this is equivalent to the demand that B will be bounded with respect to any one of the norms n_i).
- 2. As a linear space, $V^* = \{f : V \to R : f \text{ is linear and continuous}\}$. There are many topologies we can define on V^* , but we will consider only two topologies. Denoting $U_{\varepsilon,S} = \{f : \forall x \in S, f(x) < \varepsilon\}$, we define the bases of the topologies to be:

For
$$V_W^*$$
: $B = \{U_{\varepsilon,S} : \varepsilon > 0, |S| < \infty\}$
For V_S^* : $B = \{U_{\varepsilon,S} : \varepsilon > 0, S \text{ is bounded}\}$

Notice that convergence of sequences in V_W^* is point-wise, and convergence in V_S^* is on bounded sets.

Let V be a Fréchet space, and denote by V_{n_i} the completion of V with respect to the norm n_i , so V_{n_i} is a Banach space. We can "order" the norms n_i by replacing n_i with $\max_{j \le i} n_j$, and get that V_S^* is a direct limit of these Banach spaces: $V_{n_1}^* \subset V_{n_2}^* \subset \ldots \subset V_S^* = \varinjlim V_{n_i}$.

Consider the embedding $C_c^{\infty}(\mathbb{R}) \hookrightarrow C^{-\infty}(\mathbb{R})$, $f \mapsto \xi_f$ (by our definitions, $C^{-\infty}(\mathbb{R}) = (C_c^{\infty}(\mathbb{R}))^*$).

Exercise 1. Show that this embedding is dense with respect to the weak topology on $C^{-\infty}(\mathbb{R})$ (as a dual space).

Exercise* 2. Show that this embedding is dense with respect to the strong topology on $C^{-\infty}(\mathbb{R})$ (as a dual space).

Hint for both exercises: Show that δ is in the closure of the image.

Definitions.

1. For $U \subset \mathbb{R}^n$ open, we define $C_c^{\infty}(U)$ to be the space of smooth functions with compact supports, inside U. "Extending" these function to \mathbb{R}^n by 0, we have a map: $\varphi : C_c^{\infty}(U) \hookrightarrow C_c^{\infty}(\mathbb{R}^n)$, keeping in mind that the topology on $C_c^{\infty}(U)$ is not the induced topology from $C_c^{\infty}(\mathbb{R}^n)$.

- 2. $C^{-\infty}(U) \equiv (C_c^{\infty}(U))^*$.
- 3. For $U_1 \subset U_2$, we define the map of restriction of distributions $C^{-\infty}(U_2) \to C^{-\infty}(U_2)$ to be the transpose of φ : For $\xi \in C^{-\infty}(U_2)$, $f \in C_c^{\infty}(U_1)$, $\xi|_{U_1}(f) = \xi(\varphi(f))$. Thus $\xi|_{U_1} \in C^{-\infty}(U_1)$ (since φ is continuous, and composition of continuous is continuous).

Notice that for any $K \subset U$ compact, $C_K^{\infty}(U) \subset C_c^{\infty}(U)$ (here the topology on $C_K^{\infty}(U)$ is indeed the induced topology from $C_c^{\infty}(U)$). We will prove next that with respect to the restriction of distributions defined above, the distributions form a sheaf.

Lemma. Let $f \in C_c^{\infty}(U)$, $U = \bigcup_i U_i$. Then $f = \sum_i f_i$ where $f_i \in C_c^{\infty}(U_i)$ (notice that $\forall x, |\{i : f_i(x) \neq 0\}| < \infty$).

Proof. We can assume that U_i are balls (otherwise, replace each U_i by a union of balls). Denote K = supp(f), it is compact and covered by open balls, so there exists a finite sub-cover: $K \subset \bigcup_{i=1}^{n} U_i = \bigcup_{i=1}^{n} B(x_i, r_i)$. Since the cover is open and K is closed, there exists $\varepsilon > 0$ such that $K \subset \bigcup_{i=1}^{n} B(x_i, r_i - \varepsilon)$. Denote by ρ_i the smooth step function such that $\rho_i|_{B(x_i,r_i-\varepsilon)} = 1$, $\rho_i|_{B(x_i,r_i)}c = 0$. Since $\forall x \in K$, $\sum_{i=1}^{n} \rho_i(x) \neq 0$, we can define:

$$f_i = \begin{cases} \frac{\rho_i \cdot f}{\sum_{i=1}^n \rho_i} & x \in K\\ 0 & x \notin K \end{cases}$$

Theorem. With respect to the above restriction map, the distributions form a sheaf, i.e., let $U = \bigcup_i U_i$, then:

- 1. For every ξ , if $\forall i, \xi |_{U_i} = 0$, then $\xi |_U = 0$.
- 2. Given $\{\xi_i\}$ distributions on $\{U_i\}$ respectively, that agree on intersections (i.e. $\xi_i|_{U_i\cap U_j} = \xi_j|_{U_i\cap U_j}$), there exists a distribution ξ on U, such that $\xi|_{U_i} = \xi_i|_{U_i}$.

Proof. 1. Falls immediately from the lemma.

- 2. We show the outlines of two proofs:
 - (a) Choosing a compact set $K \subset U$, we wish to define $\xi_K : C_k^{\infty}(U) \to \mathbb{R}$. We fix smooth step functions ρ_i on finitely many U_i that cover K(as done in the lemma) and consider the map $\varphi : \bigoplus_{i=1}^n C_{c,K\cap U_i}^{\infty}(U_i) \to$

 $C_K^{\infty}(U)$. The lemma proves it is onto, and clearly it is continuous. Therefore, by Banach-Schauder theorem, φ is an open map.

$$\begin{array}{cccc} & \stackrel{n}{\bigoplus} C^{\infty}_{c,K\cap U_{i}}\left(U_{i}\right) & \stackrel{\varphi}{\longrightarrow} & C^{\infty}_{K}\left(U\right) \\ & \downarrow & \swarrow \\ & \mathbb{R} & \end{array}$$

We claim that there exists a third map, and that it is continuous.

(b) Define $\xi(f) = \sum_{i} \xi_i \left(\frac{\rho_i \cdot f}{\sum_j \rho_j} \right)$ and show that it is linear and continuous, and that $\xi|_{U_i} = \xi_i$.

Exercise 3. Complete the details of at least one of the proofs.

Definition.
$$supp(\xi) \equiv (\cup \{U : \xi | U = 0\}).$$

Exercise* 4. Describe $\overline{C_c^{\infty}(U)}$.

Solution: $\{f \in C_c^{\infty}(\mathbb{R}^n) : \forall x \in U, \forall \text{ differential operator } L, Lf(x) = 0\}.$

Exercise 5. Special case: Solve exercise 4, with $U = \mathbb{R}^n \setminus \mathbb{R}^k$.

Now we wish to describe the space of distributions supported in \mathbb{R}^k :

$$V = C_{\mathbb{D}^k}^{-\infty} \left(\mathbb{R}^n \right)$$

We start by describing it's dual space:

$$V^* = \frac{C_c^{\infty}(\mathbb{R}^n)}{C^{\infty}(\mathbb{R}^n \setminus \mathbb{R}^k)}$$

We define a descending filtration on V^* :

$$F^{i}\left(C_{c}^{\infty}\left(\mathbb{R}^{n}\right)\right) = \left\{f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right) : \forall x \in \mathbb{R}^{k}, \ \forall \text{ differential } D \text{ s.t. } \deg(D) \leq i, Df(x) = 0\right\}$$

This gives us a filtration of the quotient: $F^i\left(\frac{C_c^{\infty}(\mathbb{R}^n)}{C_c^{\infty}(\mathbb{R}^n\setminus\mathbb{R}^k)}\right)$. The corresponding filtration on the dual space V will then be:

$$F_i\left(C_{\mathbb{R}^k}^{-\infty}\left(\mathbb{R}^n\right)\right) = \left\{\xi : \langle\xi, f\rangle = 0 \;\; \forall f \in F^i\left(C_c^{\infty}\left(\mathbb{R}^n\right)\right)\right\}$$

Exercise 6. Show that this filtration does not cover $C^{-\infty}(\mathbb{R}^n)$.

Exercise 7. $\forall x \exists$ open neighborhood $U \ni x$, such that $\forall \xi \in C_{\mathbb{R}^k}^{-\infty}(\mathbb{R}^n) \exists i, \tilde{\xi} \in F_i\left(C_{\mathbb{R}^k}^{-\infty}(\mathbb{R}^n)\right)$ such that $\xi|_U = \tilde{\xi}|_U$ (i.e. the filtration locally covers).

Exercise 8. Consider a smooth function $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ that fixes \mathbb{R}^k . Show that changing coordinates using φ for $\xi \in F_i$ we get a distribution in F_i (so F_i is preserved under change of coordinates: $\varphi^*(F_i) = F_i$, meaning: $\forall \xi \in F_i, \xi(\varphi(f)) \in F_i$).

Claim. $\oplus^{F_{i+1}}/_{F_i} \cong \cup_{i=0}^{\infty} F_i$.

Proof: We number the differential operators D_i where i is a multi-index, $i \in \mathbb{N}^{n-k}$ and demand $|i| = \sum_j i_j = \ell$. Consider the space $\bigoplus_i D_i C^{-\infty} (\mathbb{R}^k) \equiv V_\ell$ (we derive ξ as a distribution over \mathbb{R}^n and then restrict it to \mathbb{R}^k). Then $V_\ell \subset F_\ell$, $V_\ell \cap F_{\ell-1} = 0$ and $F_\ell = V_\ell \oplus F_{\ell-1}$.

Exercise 9. Show that this decomposition is not invariant under change of coordinates.

Tensor Product

Exercise 10. Show that $Bil(\mathbb{R}, \mathbb{R}) \neq \{linear maps \mathbb{R}^2 \to \mathbb{R}\}.$

Equivalent definitions.

1. The tensor product of V, W is defined by a bilinear form:

$$\begin{array}{cccc} V \times W & \xrightarrow{Bil} & L \\ \downarrow & \swarrow \\ V \otimes W \end{array}$$

This means: $(V \otimes W)^* = Bil(V, W)$. In the finite dimensional case, $V \otimes W = Bil(V, W)^*$.

- 2. For formal combinations $V = sp(e_i)$, $W = sp(f_j)$ we define $V \otimes W = sp(e_i \otimes f_j)$. Change of bases here is messy.
- 3. Definition by a quotient:

$$V \otimes W = {}^{sp(v \oplus w: v \in V, w \in W)} /_{\{(v+v_1) \oplus w - v \oplus w - v_1 \oplus w\}...}$$

Properties. $(V \otimes W)^* = V^* \otimes W^*$, $Hom(V, W) = V^* \otimes W$.