Lecture 3, 06/11/13
The Dual Space

Definitions.

1. A subset B C V is called bounded if VU C V open, 3\ such that A-U D B
(when the topology on V is given by a sequence of norms n,, this is
equivalent to the demand that B will be bounded with respect to any one
of the norms n;).

2. As a linear space, V* = {f : V — R: f is linear and continuous}. There
are many topologies we can define on V*, but we will consider only two
topologies. Denoting U, s = {f :Vz € S, f(x) < ¢}, we define the bases
of the topologies to be:

For Vi, : B = {U.s:>0, |S| < oo}
ForVi: B = {U.g:e>0, S is bounded}

Notice that convergence of sequences in Vjj, is point-wise, and convergence
in V§ is on bounded sets.

Let V be a Fréchet space, and denote by V,,, the completion of V with respect
to the norm n;, so V,,, is a Banach space. We can “order” the norms n; by
replacing n; with max;<;n;, and get that V& is a direct limit of these Banach
spaces: V,y CVy C..C Vi =1lmV,,.

Consider the embedding C° (R) — C~> (R) , f — &; (by our definitions,
C==(R) = (C& (R))").

Exercise 1. Show that this embedding is dense with respect to the weak topology
on C~* (R) (as a dual space).

Exercise* 2. Show that this embedding is dense with respect to the strong topol-
ogy on C~*° (R) (as a dual space).

Hint for both exercises: Show that d is in the closure of the image.

Definitions.

1. For U C R™ open, we define C¢° (U) to be the space of smooth functions
with compact supports, inside U. “Extending” these function to R™ by
0, we have a map: ¢ : C° (U) — C* (R"), keeping in mind that the
topology on C2° (U) is not the induced topology from C2° (R™).



2. C==(U) = (C= (U))".

3. For Uy C Us, we define the map of restriction of distributions C~* (Us) —
C~° (Uz) to be the transpose of ¢: For £ € C~> (Uy), f € C* (Uy),
Elu, (f) = E(w(f)). Thus &y, € C~>° (Uy) (since ¢ is continuous, and
composition of continuous is continuous).

Notice that for any K C U compact, C% (U) C C (U) (here the topology on
C% (U) is indeed the induced topology from CZ° (U)). We will prove next that
with respect to the restriction of distributions defined above, the distributions
form a sheaf.

Lemma. Let f € C°(U), U = U;U;. Then f = ), fi where f; € C* (U;)
(notice that Vz, [{i: fi(x) # 0}] < 00).

Proof. We can assume that U; are balls (otherwise, replace each U; by a union of
balls). Denote K = supp (f), it is compact and covered by open balls, so there

n n
exists a finite sub-cover: K C 'U1Ui = 'U1B (z4,7;). Since the cover is open
1= 1=

and K is closed, there exists € > 0 such that K C CJlB (4,7 —€). Denote by
i=

pi the smooth step function such that p;|p(, r,—c) = 1, pi'B(wi,n)c = 0. Since
Vo e K, > 1", pi(x) # 0, we can define:

pi-f
fi Y Sy vEeK
0 x¢ K
]

Theorem. With respect to the above restriction map, the distributions form a
sheaf, i.e., let U = U;U;, then:

1. For every &, if Vi, &

U; = 0, then §|U =0.

2. Given {¢;} distributions on {U;} respectively, that agree on intersections
(ie. &luinu, = &luinu,), there exists a distribution & on U, such that

Elu, = &lu,-
Proof. 1. Falls immediately from the lemma.

2. We show the outlines of two proofs:

(a) Choosing a compact set K C U, we wish to define {x : C° (U) — R.
We fix smooth step functions p; on finitely many U; that cover K

(as done in the lemma) and consider the map ¢ : & C%nu, (Us) —
i=1 NI



C$% (U). The lemma proves it is onto, and clearly it is continuous.
Therefore, by Banach-Schauder theorem, ¢ is an open map.
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We claim that there exists a third map, and that it is continuous.

(b) Define £(f) =2, & (Z”’ﬁj) and show that it is linear and continu-
J

ous, and that &|y, = &;.

O

Exercise 3. Complete the details of at least one of the proofs.

Definition. supp(§) = (U{U : £|y = 0}).
Exercise* 4. Describe C (U).
Solution: {f € C° (R™) :Vz € U, V differential operator L, Lf(x) = 0}.

Exercise 5. Special case: Solve exercise 4, with U = R™ \ R¥,

Now we wish to describe the space of distributions supported in R¥:

V = Cg® (R")
We start by describing it’s dual space:
* C?O R™
V= o

We define a descending filtration on V*:
FH(CZ(R™) = {f € C (R") : Vo € R¥, V differential D s.t.deg(D) <4, Df(z) =0}

This gives us a filtration of the quotient: F* ( Ce®Y) ) W"\JRV“))' The corre-
sponding filtration on the dual space V will then be: '

Fi (Co® (R™) = {&: (&, f) =0 Vf € F' (CZ (R")}
Exercise 6. Show that this filtration does not cover C~>°(R"™).

Exercise 7. Va 3 open neighborhood U > x, such that ¥¢ € Cp,>° (R™) 3i,€ €
F; (Co® (R™)) such that €|y = Elu (i-e. the filtration locally covers).

Exercise 8. Consider a smooth function ¢ : R" — R™ that fizes R*. Show
that changing coordinates using ¢ for £ € F; we get a distribution in F; (so
F; is preserved under change of coordinates: ¢*(F;) = F; , meaning: V& €

Fi, §(e(f) € Fi).



Claim. ©fi+1/p =2 U2 F,.

Proof: We number the differential operators D; where 7 is a multi-index, i €
N"~* and demand |i| = Zj i; = ¢. Consider the space &;D;C~> (]Rk) =V,
(we derive ¢ as a distribution over R and then restrict it to R¥). Then V, C F}
S VinFy1=0and F; =V, ® Fp_1.

Exercise 9. Show that this decomposition is not invariant under change of
coordinates.

Tensor Product

Exercise 10. Show that Bil(R,R) # {linear maps R* — R}.
Equivalent definitions.

1. The tensor product of V, W is defined by a bilinear form:

vxw ZLop
! /
Vew

This means: (V@ W)* = Bil (V,W). In the finite dimensional case,
VoW = Bil (V,W)".

2. For formal combinations V' = sp(e;), W = sp(f;) we define V@ W =
sp(e; ® fj). Change of bases here is messy.

3. Definition by a quotient:
174 ® 1774 :sp(v@w: veV, weW) /{(v+v1)®w7u@w7v1@w}m

Properties. (V@ W) " =V*@ W*, Hom(V,W)=V*Q W.



