
Lecture 3, 06/11/13

The Dual Space

Definitions.

1. A subset B ⊂ V is called bounded if ∀U ⊂ V open, ∃λ such that λ ∙U ⊃ B
(when the topology on V is given by a sequence of norms ni, this is
equivalent to the demand that B will be bounded with respect to any one
of the norms ni).

2. As a linear space, V ∗ = {f : V → R : f is linear and continuous}. There
are many topologies we can define on V ∗, but we will consider only two
topologies. Denoting Uε,S = {f : ∀x ∈ S, f(x) < ε}, we define the bases
of the topologies to be:

For V ∗
W : B = {Uε,S : ε > 0, |S| < ∞}

For V ∗
S : B = {Uε,S : ε > 0, S is bounded}

Notice that convergence of sequences in V ∗
W is point-wise, and convergence

in V ∗
S is on bounded sets.

Let V be a Fréchet space, and denote by Vni the completion of V with respect
to the norm ni, so Vni is a Banach space. We can “order” the norms ni by
replacing ni with maxj≤i nj , and get that V ∗

S is a direct limit of these Banach
spaces: V ∗

n1
⊂ V ∗

n2
⊂ ... ⊂ V ∗

S = lim
−→

Vni .

Consider the embedding C∞
c (R) ↪→ C−∞ (R) , f 7→ ξf (by our definitions,

C−∞ (R) = (C∞
c (R))∗).

Exercise 1. Show that this embedding is dense with respect to the weak topology
on C−∞ (R) (as a dual space).

Exercise* 2. Show that this embedding is dense with respect to the strong topol-
ogy on C−∞ (R) (as a dual space).

Hint for both exercises: Show that δ is in the closure of the image.

Definitions.

1. For U ⊂ Rn open, we define C∞
c (U) to be the space of smooth functions

with compact supports, inside U . “Extending” these function to Rn by
0, we have a map: ϕ : C∞

c (U) ↪→ C∞
c (Rn), keeping in mind that the

topology on C∞
c (U) is not the induced topology from C∞

c (Rn).
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2. C−∞ (U) ≡ (C∞
c (U))∗.

3. For U1 ⊂ U2, we define the map of restriction of distributions C−∞ (U2) →
C−∞ (U2) to be the transpose of ϕ: For ξ ∈ C−∞ (U2), f ∈ C∞

c (U1),
ξ|U1 (f) = ξ (ϕ (f)). Thus ξ|U1 ∈ C−∞ (U1) (since ϕ is continuous, and
composition of continuous is continuous).

Notice that for any K ⊂ U compact, C∞
K (U) ⊂ C∞

c (U) (here the topology on
C∞

K (U) is indeed the induced topology from C∞
c (U)). We will prove next that

with respect to the restriction of distributions defined above, the distributions
form a sheaf.

Lemma. Let f ∈ C∞
c (U), U = ∪iUi. Then f =

∑
i fi where fi ∈ C∞

c (Ui)
(notice that ∀x, |{i : fi(x) 6= 0}| < ∞).

Proof. We can assume that Ui are balls (otherwise, replace each Ui by a union of
balls). Denote K = supp (f), it is compact and covered by open balls, so there

exists a finite sub-cover: K ⊂
n
∪

i=1
Ui =

n
∪

i=1
B (xi, ri). Since the cover is open

and K is closed, there exists ε > 0 such that K ⊂
n
∪

i=1
B (xi, ri − ε). Denote by

ρi the smooth step function such that ρi|B(xi,ri−ε) = 1, ρi|B(xi,ri)
C = 0. Since

∀x ∈ K,
∑n

i=1 ρi(x) 6= 0, we can define:

fi =

{
ρi∙f∑n
i=1 ρi

x ∈ K

0 x /∈ K

Theorem. With respect to the above restriction map, the distributions form a
sheaf, i.e., let U = ∪iUi, then:

1. For every ξ, if ∀i, ξ|Ui = 0, then ξ|U = 0.

2. Given {ξi} distributions on {Ui} respectively, that agree on intersections
(i.e. ξi|Ui∩Uj = ξj |Ui∩Uj ), there exists a distribution ξ on U , such that
ξ|Ui = ξi|Ui .

Proof. 1. Falls immediately from the lemma.

2. We show the outlines of two proofs:

(a) Choosing a compact set K ⊂ U , we wish to define ξK : C∞
k (U) → R.

We fix smooth step functions ρi on finitely many Ui that cover K

(as done in the lemma) and consider the map ϕ :
n
⊕

i=1
C∞

c,K∩Ui
(Ui) →
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C∞
K (U). The lemma proves it is onto, and clearly it is continuous.

Therefore, by Banach-Schauder theorem, ϕ is an open map.

n
⊕

i=1
C∞

c,K∩Ui
(Ui)

ϕ
−→ C∞

K (U)

↓ ↙
R

We claim that there exists a third map, and that it is continuous.

(b) Define ξ(f) =
∑

i ξi

(
ρi∙f∑

j ρj

)
and show that it is linear and continu-

ous, and that ξ|Ui
= ξi.

Exercise 3. Complete the details of at least one of the proofs.

Definition. supp(ξ) ≡ (∪{U : ξ|U = 0}).

Exercise* 4. Describe C∞
c (U).

Solution: {f ∈ C∞
c (Rn) : ∀x ∈ U, ∀ differential operator L, Lf(x) = 0}.

Exercise 5. Special case: Solve exercise 4, with U = Rn \ Rk.

Now we wish to describe the space of distributions supported in Rk:

V = C−∞
Rk (Rn)

We start by describing it’s dual space:

V ∗ = C∞
c (Rn)/

C∞
c (Rn\Rk)

We define a descending filtration on V ∗:

F i (C∞
c (Rn)) =

{
f ∈ C∞

c (Rn) : ∀x ∈ Rk, ∀ differential D s.t. deg(D) ≤ i,Df(x) = 0
}

This gives us a filtration of the quotient: F i
(

C∞
c (Rn)/

C∞
c (Rn\Rk)

)
. The corre-

sponding filtration on the dual space V will then be:

Fi

(
C−∞
Rk (Rn)

)
=
{
ξ : 〈ξ, f〉 = 0 ∀f ∈ F i (C∞

c (Rn))
}

Exercise 6. Show that this filtration does not cover C−∞(Rn).

Exercise 7. ∀x ∃ open neighborhood U 3 x, such that ∀ξ ∈ C−∞
Rk (Rn) ∃i, ξ̃ ∈

Fi

(
C−∞
Rk (Rn)

)
such that ξ|U = ξ̃|U (i.e. the filtration locally covers).

Exercise 8. Consider a smooth function ϕ : Rn → Rn that fixes Rk. Show
that changing coordinates using ϕ for ξ ∈ Fi we get a distribution in Fi (so
Fi is preserved under change of coordinates: ϕ∗(Fi) = Fi , meaning: ∀ξ ∈
Fi, ξ(ϕ(f)) ∈ Fi).
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Claim. ⊕Fi+1/Fi
∼= ∪∞

i=0Fi.
Proof: We number the differential operators Di where i is a multi-index, i ∈
Nn−k and demand |i| =

∑
j ij = `. Consider the space ⊕iDiC

−∞
(
Rk
)
≡ V`

(we derive ξ as a distribution over Rn and then restrict it to Rk). Then V` ⊂ F`

, V` ∩ F`−1 = 0 and F` = V` ⊕ F`−1.

Exercise 9. Show that this decomposition is not invariant under change of
coordinates.

Tensor Product

Exercise 10. Show that Bil(R,R) 6= {linear maps R2 → R}.

Equivalent definitions.

1. The tensor product of V,W is defined by a bilinear form:

V × W
Bil
−→ L

↓ ↗
V ⊗ W

This means: (V ⊗ W )∗ = Bil (V,W ). In the finite dimensional case,
V ⊗ W = Bil (V,W )∗.

2. For formal combinations V = sp(ei), W = sp(fj) we define V ⊗ W =
sp(ei ⊗ fj). Change of bases here is messy.

3. Definition by a quotient:

V ⊗ W =sp(v⊕w: v∈V, w∈W ) /{(v+v1)⊕w−v⊕w−v1⊕w}...

Properties. (V ⊗ W )∗ = V ∗ ⊗ W ∗, Hom(V,W ) = V ∗ ⊗ W .
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