
SOME REPRESENTATION THEORY EXERCISES

LONG MAI

Lecture 1

Exercise 1.6

1) V �W ∈ irr(G × H) ⇐⇒ V ∈ irr(G) & W ∈ irr(H)

=⇒

Suppose V �W ∈ irr(G × H)

If V is not irreducible =⇒ ∃ V’ ⊆ V is a sub-representation of G

=⇒ V ′ �H is a sub-representation of G × H, contradiction with V �W irreducible.

Similar for W

⇐=

Suppose V ∈ irr(G) & W ∈ irr(H)

i) V �W is a representation of G × {e}

ii) Every irreducible sub-representation U of G × {e} inside V �W is of the form V � s, s ∈ W

Let {w0, w1, ..wn} be a basis of W. Every element inside V �W , or in U will be of the form:

u = v0 � w0 + v1 � w1 + ... + vn � wn

U is an irreducible representation of G × {e}

V is an irreducible representation of G.

We define morphisms σi : U → V , σi(u) = vi

σi is a linear map, and moreover, is a representation morphism between U and V.

By Schur’s lemma, σi is an isomorphism. Moreover, σi = λi ∗ σ, in which σ is a fixed isomorphism,

λi ∈ C.

→ σi(u) = λi ∗ σ(u) → vi = λi ∗ σ(u)

→ u =
∑

i

vi � wi =
∑

i

(λi ∗ σ(u))� wi = σ(u)� (
∑

i

λi ∗ wi)

Let s =
∑

i

λi ∗ wi, we have for all u in U, u = σ(u)� s

1
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σ is an isomorphism between U and V, so it’s surjective. →U = V � s

iii) Suppose U is an invariant subspace of V �W . We need to show U = V �W

Let U ′ ⊆ U be a sub-representation of G × {e}

By ii), U’ is of the form V � s → V � s ⊆ U

W is an irreducible representation of H, so H acts transitively on W.

→the image of V � s under the action of G × H is V �W → V �W ⊆ U . Done.

2) V �W ' V ′ �W ′ ⇐⇒ V ' V ′ & W ' W ′

=⇒

Using the previous problem, part ii), irreducible sub-representations of G × {e} are of the form V � s

and V ′ � t, and there is a representation isomorphism between them

This isomorphism gives a representation isomorphism between V and V’. Similar for W and W’

⇐=

There exist representation isomorphisms A: V → V ′ and B: W → W ′

A�B : (V,W ) → V ′ �W ′ : (v, w) → Av �Bw is a bilinear map.

It induces a bilinear map between V � W → V ′ � W ′, which can be shown to be a representation

morphism. Using the previous exercise, V � W and V ′ � W ′ are irreducible, so the morphism is an

isomorphism.

Exercise 1.10

1) HomC(C[X],C[Y ]) = C(X × Y )

X = x1, x2, ..., xn

Y = y1, y2, .., ym

Define a map φ : HomC(C[X],C[Y ]) → C(X × Y )

Let f ∈ HomC(C[X],C[Y ]); f(xi) =
m∑

j=1

cij ∗ yj , cij ∈ C

Define φ(f) =
∑

i,j

cij ∗ (xi, yj), which is in C(X × Y )

φ is injective because if φ(f) = 0 ⇒ cij = 0 ⇒ f = 0

φ is surjective because f is determined by f(xi), and we can choose f(xi) to be anything in C[Y ], hence

we can choose cij arbitrary.
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2) HomG(C[X],C[Y ]) = C(X × Y )G = C(X × Y/G)

i) HomG(C[X],C[Y ]) = C(X × Y )G

Let π be the representation of C[X], and τ be the representation of C[Y]

HomG(C[X],C[Y ]) = {f ∈ HomC(C[X],C[Y ]) | τ(g)fπ(g−1) = f for all g in G}

Let f(xi) =
∑

j

cij ∗ yj in HomG[C[X],C[Y ]]

Let xs = π(g−1)(xi)

→ τ(g)fπ(g−1)(xi) = τ(g)f(xs) = τ(g)(
∑

j

csj ∗ yj) =
∑

j

csj ∗ τ(g)(yj)

→
∑

j

cij ∗ yj =
∑

t
cst ∗ τ(g)(yt)

→ if yj = τ(g)(yt) then cij = cst

Conclusion: f satisfies cij = cst iff xi = π(g)xs and yj = τ(g)(yt)

∑

ij

cij ∗ (xi, yj) ∈ C[X × Y ]G iff
∑

ij

cij ∗ (xi, yj) =
∑

ij

cij ∗ (π(g)(xi), τ (g)(yj)), and it is the same as the

conclusion above, so we are done

ii) C(X × Y )G = C(X × Y/G):

C(X × Y )G = {
∑

cij(xi, yj) | ∀g ∈ G :
∑

cij(xi, yj) =
∑

cij(π(g)xi, τ (g)yj)}

→ C(X × Y )G = {
∑

cij(xi, yj), in which all (xi, yj) in the same orbit have the same coefficient}

From that, we are done.

3) dimHomG(C[X],C[Y ]) = #(X × Y/G)

Using 2), we have HomG(C[X],C[Y ]) = C(X × Y/G)

Take dim of both sides. Moreover, C(X × Y/G) has dimension equal to the number of orbits under the

action of G.

4) G is abelian, irr(G) =?

Use the result: commutative operators share a common eigenvector (application of Hilbert’s Nullstellen-

satz)

G is finite, and abelian, so G = ⊕ni(Z/niZ)

The irreducible representation of a finite cyclic group Z/niZ has dimension 1 (because if v is an

eigenvector of 1, then v is also the eigenvector of all elements in the group)

The set {π(1ni
)} consists of commuting matrices because G is abelian. Hence, there exists a common
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eigenvector v. Then the vector space generated by v is an invariant subspace of G. → irr(G) = C

5) Irr(S4) =?

The number of irreducible representations of S4 = the number of conjugacy classes = number of different

cycle structures = 5

1) trivial representation, π1(g) = 1

2) sign representation, π2(g) = sign(g)

Let S4 act on the set of vertices of a tetrahedron X = {x1, x2, x3, x4}

C[X] is a representation of S4

C[X] has a sub-representation W of dimension 1 = {cx1 + cx2 + cx3 + cx4 | c ∈ C}

W⊥ = {(c1x1 + c2x2 + c3x3 + c4x4 | c1 + c2 + c3 + c4 = 0}

dimHomG(C[X],C[X]) = #(X × X/G) = 2, because there are two orbits of X × X under the action of

G: {(1, 1), (2, 2), (3, 3), (4, 4)} and the rest.

It follows that W⊥ is irreducible, because otherwise, we have at least 3 irreducible sub-representations

of C[X], and dimHomG(C[X],C[X]) ≥ 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 1 = 3

So we have an irreducible representation of dimension 3:

3)π3 : W⊥ = {(c1x1 + c2x2 + c3x3 + c4x4 | c1 + c2 + c3 + c4 = 0}, of dimension 3

4)π3�π2 is an irreducible representation of G of dimension 3 (W⊥�CC ∼= W⊥), and is non-isomorphic

to π3, because otherwise, using 2) of Exercise 1.6, we have the trivial and the sign representation be

isomorphic

Let S4 act on the set of edges of a tetrahedron Y = {x12, x13, x14, x23, x24, x34}

C[Y ] is a representation of S4

C[Y ] has a sub-representation V of dimension 1 = {cx12 + cx13 + cx14 + cx23 + cx24 + cx34}

V ⊥ = {(c12, c13, c14, c23, c24, c34) | (c12 + c13 + c14 + c23 + c24 + c34 = 0}, which is of dimension 5

The orbits of Y × Y are:

{(x12, x12), (x13, x13), (x14, x14), (x23, x23), (x24, x24), (x34, x34)}
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{(x12, x13), (x13, x12), (x12, x14), (x14, x12), (x13, x14), (x14, x13),

(x24, x34), (x34, x24), (x23, x34), (x34, x23), (x14, x24), (x24, x14),

(x12, x23), (x23, x12), (x13, x23), (x23, x13), (x12, x24), (x24, x12),

(x14, x34), (x34, x14), (x23, x24), (x24, x23), (x34, x13), (x13, x34)}

{(x12, x34), (x13, x24), (x14, x23), (x23, x14), (x24, x13), (x34, x12)}

So dimHomG(C[Y ],C[Y ]) = 3 = 12 +12 +12, so C[Y ] is the direct sum of 3 non-isomorphic irreducible

representations

C[Y ] cannot contain an irreducible representation of dimension 4, because otherwise:

#S4 =
∑

ρ
dim(ρ)2 ≥ 12 + 12 + 32 + 42 > 24.

So C[Y ] contains 1 representation of dim 1, 1 representation of dim 2, and 1 representation of dim 3. (6

= 1+ 2+3)

So we have already found 5 non-isomorphic irreducible representations: 2 representation of dimension

one, 1 representation of dimension two, and 2 representations of dimension three.

To find an explicit formula for the representation of dimension 2 in C[Y] 1) we calculate

HomG(C[X],C[Y ])

The set of orbits of X × Y is

{(x1, x12), (x2, x12), (x1, x13), (x3, x13), (x1, x14), (x4, x14),

(x2, x23), (x3, x23), (x4, x24), (x2, x24), (x3, x34), (x4, x34)}

{(x1, x23), (x1, x24), (x1, x34), (x2, x13), (x2, x14), (x2, x34),

(x3, x12), (x3, x14), (x3, x24), (x4, x12), (x4, x13), (x4, x23)}

The first orbit gives rise to a map from C[X] → C[Y ]

x1 → x12 + x13 + x14

x2 → x12 + x23 + x24

x3 → x13 + x23 + x34

x4 → x14 + x24 + x34

The image of C[X] in C[Y ] is a space of dimension 4, taking the complement of that space, we get a vector

space of dimension 2, which is the representation we are looking for. In particular, after calculation, we

get the vector space is generated by e1 = (x12 − x14 − x23 + x34) and e2 = (x13 − x14 − x23 + x24)
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S4 is generated by (1 2) and (1 2 3 4).

(1 2) maps e1 and e2 to e1 − e2 and −e2

(1 2 3 4) maps e1 and e2 to −e1 and e2 − e1

So it’s the 2 dimensional representation.


