SOME REPRESENTATION THEORY EXERCISES

LONG MAI

Lecture 1

Exercise 1.6

) VRWeirr(Gx H) <=V €irr(G) & W € irr(H)

—
Suppose VR W € irr(G x H)

If V is not irreducible = 3 V’ C V is a sub-representation of G

= V' X H is a sub-representation of G x H, contradiction with V X W irreducible.
Similar for W

“—
Suppose V € irr(G) & W € irr(H)

i) VX W is a representation of G x {e}

ii) Every irreducible sub-representation U of G x {e} inside V &K W is of the form V K s,s € W

Let {wo, w1, ..w,} be a basis of W. Every element inside V X W, or in U will be of the form:
u=vygKwy+ vy Kwy + ... + v, Kw,

U is an irreducible representation of G x {e}

V is an irreducible representation of G.

We define morphisms o; : U — V, 0;(u) = v;

o is a linear map, and moreover, is a representation morphism between U and V.

By Schur’s lemma, ¢; is an isomorphism. Moreover, o; = A; * ¢, in which ¢ is a fixed isomorphism,
A € C.

— oi(u) = A\ xo(u) = v; = A xo(u)

—u=Y v, Rw=>(N\*xo(u)Rw;, =c(u) X (> A\ *w;)
Let s =Y A\; * w;, we have for all uin U, u = o(u) K s
1
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o is an isomorphism between U and V, so it’s surjective. - U =V K s

iii) Suppose U is an invariant subspace of V X W. We need to show U = VKW
Let U’ C U be a sub-representation of G x {e}

By ii), U’ is of the form VX s - VKs CU

W is an irreducible representation of H, so H acts transitively on W.

—the image of V' X s under the action of G x H is VXW — VKW C U. Done.

DVRW 2V RW <= V=V &W~W
—
Using the previous problem, part ii), irreducible sub-representations of G x {e} are of the form V X s
and V' X ¢, and there is a representation isomorphism between them

This isomorphism gives a representation isomorphism between V and V’. Similar for W and W’

—
There exist representation isomorphisms A: V — V' and B: W — W'

ARB: (V,W) - V' BW': (v,w) — Av K Bw is a bilinear map.

It induces a bilinear map between V X W — V' X W', which can be shown to be a representation
morphism. Using the previous exercise, V X W and V' X W’ are irreducible, so the morphism is an

isomorphism.

Exercise 1.10
1) Home (C[X],C[Y]) =C(X xY)
X =x1,29,....,Tn
Y =y1,92,.,Um
Define a map ¢ : Hom¢ (C[X],C[Y]) — C(X x Y)
Let f € Hom¢(C[X],C[Y)); f(z:) = Tzn: cij *xyj,cij € C
Define ¢(f) = >_ cij * (%4, 95), Whichjizslin C(X xY)
¢ is injective b;éause ifo(f)=0=c¢;=0=f=0
¢ is surjective because f is determined by f(z;), and we can choose f(z;) to be anything in C[Y], hence

we can choose c;; arbitrary.
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2) Home (C[X], C[Y]) = C(X x Y)% = C(X x Y/G)
i) Homg (C[X], C[Y]) = C(X x Y€
Let 7 be the representation of C[X], and 7 be the representation of C[Y]
Homg(C[X], C[Y]) = {f € Home(C[X],C[¥]) | 7(9)fr(g™") = f for all g in G}
Let f(z;) = Y eiy + y; in Homg[C[X], C[Y]]
Let 2, = m(g~")(z:)
— r(g)fr(g™ ) @) = 7(9)F(20) = () g+ 45) = X sy * 7(0) (55)
HZ%‘ *yj:;cst*T(g)(yt) J ]
— it y; = 7(9)(y) then ciy = cu

Conclusion: f satisfies ¢;; = ¢ iff x; = 7(g)zs and y; = 7(g9)(yt)

deijx(xs,y,) € C[X x Y| iff doeij (@i, y) = > i+ (m(g)(z:), 7(9)(y;)), and it is the same as the
i i i

conclusion above, so we are done

ii) C(X x V)¢ = C(X x Y/G):
CX xY)9 = {Xcij(ziyy) | Vg € G2 Y cijwiyy) = 2 cig(m(g)zs, 7(9)y;)}
— C(X x Y)Y = {3 cij(xi,y;), in which all (z;,y;) in the same orbit have the same coefficient }

From that, we are done.

3) dim Homg (C[X],C[Y]) = #(X x Y/G)
Using 2), we have Homg(C[X],C[Y]) = C(X x Y/G)
Take dim of both sides. Moreover, C(X x Y/G) has dimension equal to the number of orbits under the

action of G.

4) G is abelian, irr(G) =?
Use the result: commutative operators share a common eigenvector (application of Hilbert’s Nullstellen-
satz)
G is finite, and abelian, so G = &,,,(Z/n;Z)
The irreducible representation of a finite cyclic group Z/n;Z has dimension 1 (because if v is an
eigenvector of 1, then v is also the eigenvector of all elements in the group)

The set {m(1,,)} consists of commuting matrices because G is abelian. Hence, there exists a common
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eigenvector v. Then the vector space generated by v is an invariant subspace of G. — irr(G) = C

5) Irr(Sy) =7
The number of irreducible representations of S; = the number of conjugacy classes = number of different

cycle structures = 5

1) trivial representation, m1(g) = 1

2) sign representation, ma(g) = sign(g)

Let Sy act on the set of vertices of a tetrahedron X = {z1, z2, x5, 24}
C[X] is a representation of Sy
C[X] has a sub-representation W of dimension 1 = {cz1 + cx2 + cxg + cx4 | c € C}
Wt ={(c1z1 + 2w + 323 + caz4 | €1 + o+ 3+ ¢4 = 0}
dim Hom¢g (C[X], C[X]) = #(X x X/G) = 2, because there are two orbits of X x X under the action of
G: {(1,1),(2,2),(3,3),(4,4)} and the rest.
It follows that W is irreducible, because otherwise, we have at least 3 irreducible sub-representations
of C[X], and dim Homg(C[X],C[X]) > 1x1+1*x1+1x1=3

So we have an irreducible representation of dimension 3:

3)ms3 : Wt = {(c1m1 + cawg + 323 + camy | €1 + 2 + c3 + ¢4 = 0}, of dimension 3

4)m3 X7y is an irreducible representation of G of dimension 3 (W+XcC = W), and is non-isomorphic
to w3, because otherwise, using 2) of Exercise 1.6, we have the trivial and the sign representation be

isomorphic

Let Sy act on the set of edges of a tetrahedron Y = {219, %13, 214, T23, 24, T34}
C[Y] is a representation of Sy
C[Y] has a sub-representation V of dimension 1 = {cx15 + cx13 + cx14 + a3z + cxog + cT34}
V+ = {(c12, €13, C14, €23, Coa, €34) | (c12 + €13 + €14 + €23 + Coq + ¢34 = 0}, which is of dimension 5
The orbits of Y x Y are:

{(5512, 3012), (5513, 5313), ($14, 9614), (5523, 5323), ($24, 9624), ($34, 9034)}
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{(-7712’ .2313), (-'1713a x12)7 (-’1512’ $14)» (-'1714a -7712)7 (-’1513’ $14)7 ($14a 3713);
(.’E24, 3734), (1634, 3724), (xQS; 3734)a (1634, 3723), (1'14, 3724)7 (1'24, 3714)7
(1'127 3723)7 (1623, 3712)7 (xIS; 3723)7 (xQS; 3713)7 (1'12, 1‘24)7 (x24a $12)7

(@14, @34), (T34, T14), (T23, T24), (T24, T23), (T34, T13), (13, 234) }
{(@12,234), (13, T24), (T 14, T23), (T23, T14), (T24, T13), (T34, T12) }

So dim Homg (C[Y],C[Y]) = 3 = 12+ 12+ 12, so C[Y] is the direct sum of 3 non-isomorphic irreducible
representations
C[Y] cannot contain an irreducible representation of dimension 4, because otherwise:
#Sy =Y dim(p)? > 12+ 124+ 32 +42 > 24.
So C[Y] pcontains 1 representation of dim 1, 1 representation of dim 2, and 1 representation of dim 3. (6
= 14+ 2+43)
So we have already found 5 non-isomorphic irreducible representations: 2 representation of dimension

one, 1 representation of dimension two, and 2 representations of dimension three.

To find an explicit formula for the representation of dimension 2 in C[Y] 1) we calculate
Homg(C[X], C[Y])
The set of orbits of X x Y is
{(33173012),(1‘2,3312),(961,3713),($3,$13),($1,$14)7(33479514)7

(3327 3323)a (533, 1‘23)7 (3347 3324)7 ($2, $24)7 (3337 5334), ($4, 1334)}

{(21,m23), (w1, 224), (71, 234), (72, 213), (T2, T14), (T2, T34),
(z3,712), (T3, T14), (T3, 24), (¥4, T12), (¥4, 713), (T4, T23) }
The first orbit gives rise to a map from C[X] — C[Y]
T1 — T2 + T13 + T14
To — T12 + T2z + T2
T3 — %13 + T2z + T34
T4 — T14 + T24 + T34
The image of C[X] in C[Y] is a space of dimension 4, taking the complement of that space, we get a vector
space of dimension 2, which is the representation we are looking for. In particular, after calculation, we

get the vector space is generated by e; = (12 — 14 — T3 + 34) and e = (213 — T14 — Ta3 + x24)
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Sy is generated by (1 2) and (1 2 3 4).

(1 2) maps e; and e to e; — ez and —es

(123 4) maps e; and es to —eq and e3 — e

So it’s the 2 dimensional representation.



