SOME REPRESENTATION THEORY EXERCISES

LONG MAI

Lecture 1

Exercise 1.6

1) $V \boxtimes W \in \operatorname{irr}(G \times H) \Longleftrightarrow V \in \operatorname{irr}(G) \& W \in \operatorname{irr}(H)$
\Longrightarrow
Suppose $V \boxtimes W \in \operatorname{irr}(G \times H)$
If V is not irreducible $\Longrightarrow \exists \mathrm{V}^{\prime} \subseteq V$ is a sub-representation of G
$\Longrightarrow V^{\prime} \boxtimes H$ is a sub-representation of $G \times H$, contradiction with $V \boxtimes W$ irreducible.
Similar for W

Suppose $V \in \operatorname{irr}(G) \& W \in \operatorname{irr}(H)$
i) $V \boxtimes W$ is a representation of $G \times\{e\}$
ii) Every irreducible sub-representation U of $G \times\{e\}$ inside $V \boxtimes W$ is of the form $V \boxtimes s, s \in W$

Let $\left\{w_{0}, w_{1}, . . w_{n}\right\}$ be a basis of W . Every element inside $V \boxtimes W$, or in U will be of the form:
$u=v_{0} \boxtimes w_{0}+v_{1} \boxtimes w_{1}+\ldots+v_{n} \boxtimes w_{n}$
U is an irreducible representation of $G \times\{e\}$
V is an irreducible representation of G .
We define morphisms $\sigma_{i}: U \rightarrow V, \sigma_{i}(u)=v_{i}$
σ_{i} is a linear map, and moreover, is a representation morphism between U and V .
By Schur's lemma, σ_{i} is an isomorphism. Moreover, $\sigma_{i}=\lambda_{i} * \sigma$, in which σ is a fixed isomorphism,
$\lambda_{i} \in \mathbb{C}$.
$\rightarrow \sigma_{i}(u)=\lambda_{i} * \sigma(u) \rightarrow v_{i}=\lambda_{i} * \sigma(u)$
$\rightarrow u=\sum_{i} v_{i} \boxtimes w_{i}=\sum_{i}\left(\lambda_{i} * \sigma(u)\right) \boxtimes w_{i}=\sigma(u) \boxtimes\left(\sum_{i} \lambda_{i} * w_{i}\right)$
Let $s=\sum_{i} \lambda_{i} * w_{i}$, we have for all u in $\mathrm{U}, \mathrm{u}=\sigma(u) \boxtimes s$
σ is an isomorphism between U and V , so it's surjective. $\rightarrow \mathrm{U}=V \boxtimes s$
iii) Suppose U is an invariant subspace of $V \boxtimes W$. We need to show $U=V \boxtimes W$

Let $U^{\prime} \subseteq U$ be a sub-representation of $G \times\{e\}$
By ii), U ' is of the form $V \boxtimes s \rightarrow V \boxtimes s \subseteq U$
W is an irreducible representation of H , so H acts transitively on W .
\rightarrow the image of $V \boxtimes s$ under the action of $G \times H$ is $V \boxtimes W \rightarrow V \boxtimes W \subseteq U$. Done.
2) $V \boxtimes W \simeq V^{\prime} \boxtimes W^{\prime} \Longleftrightarrow V \simeq V^{\prime} \& W \simeq W^{\prime}$
\Longrightarrow
Using the previous problem, part ii), irreducible sub-representations of $G \times\{e\}$ are of the form $V \boxtimes s$ and $V^{\prime} \boxtimes t$, and there is a representation isomorphism between them

This isomorphism gives a representation isomorphism between V and V'. Similar for W and W'

\Longleftarrow

There exist representation isomorphisms A: $V \rightarrow V^{\prime}$ and B: $W \rightarrow W^{\prime}$
$A \boxtimes B:(V, W) \rightarrow V^{\prime} \boxtimes W^{\prime}:(v, w) \rightarrow A v \boxtimes B w$ is a bilinear map.
It induces a bilinear map between $V \boxtimes W \rightarrow V^{\prime} \boxtimes W^{\prime}$, which can be shown to be a representation morphism. Using the previous exercise, $V \boxtimes W$ and $V^{\prime} \boxtimes W^{\prime}$ are irreducible, so the morphism is an isomorphism.

Exercise 1.10

1) $\operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y])=\mathbb{C}(X \times Y)$
$X=x_{1}, x_{2}, \ldots, x_{n}$
$Y=y_{1}, y_{2}, . ., y_{m}$
Define a map $\phi: \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y]) \rightarrow \mathbb{C}(X \times Y)$
Let $\mathrm{f} \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y]) ; f\left(x_{i}\right)=\sum_{j=1}^{m} c_{i j} * y_{j}, c_{i j} \in \mathbb{C}$
Define $\phi(f)=\sum_{i, j} c_{i j} *\left(x_{i}, y_{j}\right)$, which is in $C(X \times Y)$
ϕ is injective because if $\phi(f)=0 \Rightarrow c_{i j}=0 \Rightarrow f=0$
ϕ is surjective because f is determined by $f\left(x_{i}\right)$, and we can choose $f\left(x_{i}\right)$ to be anything in $\mathbb{C}[Y]$, hence we can choose $c_{i j}$ arbitrary.
2) $\operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[Y])=\mathbb{C}(X \times Y)^{G}=\mathbb{C}(X \times Y / G)$
i) $\operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[Y])=\mathbb{C}(X \times Y)^{G}$

Let π be the representation of $\mathrm{C}[\mathrm{X}]$, and τ be the representation of $\mathrm{C}[\mathrm{Y}]$
$\operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[Y])=\left\{f \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y]) \mid \tau(g) f \pi\left(g^{-1}\right)=f\right.$ for all g in G$\}$
Let $f\left(x_{i}\right)=\sum_{j} c_{i j} * y_{j}$ in $\operatorname{Hom}_{G}[\mathbb{C}[X], \mathbb{C}[Y]]$
Let $x_{s}=\pi\left(g^{-1}\right)\left(x_{i}\right)$
$\rightarrow \tau(g) f \pi\left(g^{-1}\right)\left(x_{i}\right)=\tau(g) f\left(x_{s}\right)=\tau(g)\left(\sum_{j} c_{s j} * y_{j}\right)=\sum_{j} c_{s j} * \tau(g)\left(y_{j}\right)$
$\rightarrow \sum_{j} c_{i j} * y_{j}=\sum_{t} c_{s t} * \tau(g)\left(y_{t}\right)$
\rightarrow if $y_{j}=\tau(g)\left(y_{t}\right)$ then $c_{i j}=c_{s t}$
Conclusion: f satisfies $c_{i j}=c_{s t}$ iff $x_{i}=\pi(g) x_{s}$ and $y_{j}=\tau(g)\left(y_{t}\right)$
$\sum_{i j} c_{i j} *\left(x_{i}, y_{j}\right) \in C[X \times Y]^{G}$ iff $\sum_{i j} c_{i j} *\left(x_{i}, y_{j}\right)=\sum_{i j} c_{i j} *\left(\pi(g)\left(x_{i}\right), \tau(g)\left(y_{j}\right)\right)$, and it is the same as the conclusion above, so we are done
ii) $\mathbb{C}(X \times Y)^{G}=\mathbb{C}(X \times Y / G)$:
$\mathbb{C}(X \times Y)^{G}=\left\{\sum c_{i j}\left(x_{i}, y_{j}\right) \mid \forall g \in G: \sum c_{i j}\left(x_{i}, y_{j}\right)=\sum c_{i j}\left(\pi(g) x_{i}, \tau(g) y_{j}\right)\right\}$
$\rightarrow \mathbb{C}(X \times Y)^{G}=\left\{\sum c_{i j}\left(x_{i}, y_{j}\right)\right.$, in which all $\left(x_{i}, y_{j}\right)$ in the same orbit have the same coefficient $\}$
From that, we are done.
3) $\operatorname{dim} \operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[Y])=\#(X \times Y / G)$

Using 2), we have $\operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[Y])=C(X \times Y / G)$
Take dim of both sides. Moreover, $\mathbb{C}(X \times Y / G)$ has dimension equal to the number of orbits under the action of G.
4) G is abelian, $\operatorname{irr}(G)=$?

Use the result: commutative operators share a common eigenvector (application of Hilbert's Nullstellensatz)

G is finite, and abelian, so $G=\oplus_{n_{i}}\left(\mathbb{Z} / n_{i} \mathbb{Z}\right)$
The irreducible representation of a finite cyclic group $\mathbb{Z} / n_{i} \mathbb{Z}$ has dimension 1 (because if v is an eigenvector of 1 , then v is also the eigenvector of all elements in the group)

The set $\left\{\pi\left(1_{n_{i}}\right)\right\}$ consists of commuting matrices because G is abelian. Hence, there exists a common
eigenvector v . Then the vector space generated by v is an invariant subspace of $\mathrm{G} . \rightarrow \operatorname{irr}(\mathrm{G})=\mathbb{C}$
5) $\operatorname{Irr}\left(S_{4}\right)=$?

The number of irreducible representations of $S_{4}=$ the number of conjugacy classes $=$ number of different cycle structures $=5$

1) trivial representation, $\pi_{1}(g)=1$
2) sign representation, $\pi_{2}(g)=\operatorname{sign}(g)$

Let S_{4} act on the set of vertices of a tetrahedron $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
$\mathrm{C}[\mathrm{X}]$ is a representation of S_{4}
$\mathrm{C}[\mathrm{X}]$ has a sub-representation W of dimension $1=\left\{c x_{1}+c x_{2}+c x_{3}+c x_{4} \mid c \in \mathbb{C}\right\}$
$W^{\perp}=\left\{\left(c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4} \mid c_{1}+c_{2}+c_{3}+c_{4}=0\right\}\right.$
$\operatorname{dim} \operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[X])=\#(X \times X / G)=2$, because there are two orbits of $X \times X$ under the action of G: $\{(1,1),(2,2),(3,3),(4,4)\}$ and the rest.

It follows that W^{\perp} is irreducible, because otherwise, we have at least 3 irreducible sub-representations of $\mathrm{C}[\mathrm{X}]$, and $\operatorname{dim} \operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[X]) \geq 1 * 1+1 * 1+1 * 1=3$

So we have an irreducible representation of dimension 3:
3) $\pi_{3}: W^{\perp}=\left\{\left(c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4} \mid c_{1}+c_{2}+c_{3}+c_{4}=0\right\}\right.$, of dimension 3
4) $\pi_{3} \boxtimes \pi_{2}$ is an irreducible representation of G of dimension $3\left(W^{\perp} \boxtimes_{\mathbb{C}} \mathbb{C} \cong W^{\perp}\right)$, and is non-isomorphic to π_{3}, because otherwise, using 2) of Exercise 1.6, we have the trivial and the sign representation be isomorphic

Let S_{4} act on the set of edges of a tetrahedron $Y=\left\{x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}\right\}$
$\mathbb{C}[Y]$ is a representation of S_{4}
$\mathbb{C}[Y]$ has a sub-representation V of dimension $1=\left\{c x_{12}+c x_{13}+c x_{14}+c x_{23}+c x_{24}+c x_{34}\right\}$
$V^{\perp}=\left\{\left(c_{12}, c_{13}, c_{14}, c_{23}, c_{24}, c_{34}\right) \mid\left(c_{12}+c_{13}+c_{14}+c_{23}+c_{24}+c_{34}=0\right\}\right.$, which is of dimension 5
The orbits of $Y \times Y$ are:
$\left\{\left(x_{12}, x_{12}\right),\left(x_{13}, x_{13}\right),\left(x_{14}, x_{14}\right),\left(x_{23}, x_{23}\right),\left(x_{24}, x_{24}\right),\left(x_{34}, x_{34}\right)\right\}$

$$
\begin{aligned}
& \quad\left\{\left(x_{12}, x_{13}\right),\left(x_{13}, x_{12}\right),\left(x_{12}, x_{14}\right),\left(x_{14}, x_{12}\right),\left(x_{13}, x_{14}\right),\left(x_{14}, x_{13}\right),\right. \\
& \left(x_{24}, x_{34}\right),\left(x_{34}, x_{24}\right),\left(x_{23}, x_{34}\right),\left(x_{34}, x_{23}\right),\left(x_{14}, x_{24}\right),\left(x_{24}, x_{14}\right) \\
& \left(x_{12}, x_{23}\right),\left(x_{23}, x_{12}\right),\left(x_{13}, x_{23}\right),\left(x_{23}, x_{13}\right),\left(x_{12}, x_{24}\right),\left(x_{24}, x_{12}\right) \\
& \left.\left(x_{14}, x_{34}\right),\left(x_{34}, x_{14}\right),\left(x_{23}, x_{24}\right),\left(x_{24}, x_{23}\right),\left(x_{34}, x_{13}\right),\left(x_{13}, x_{34}\right)\right\}
\end{aligned}
$$

$$
\left\{\left(x_{12}, x_{34}\right),\left(x_{13}, x_{24}\right),\left(x_{14}, x_{23}\right),\left(x_{23}, x_{14}\right),\left(x_{24}, x_{13}\right),\left(x_{34}, x_{12}\right)\right\}
$$

So $\operatorname{dim} \operatorname{Hom}_{G}(\mathbb{C}[Y], \mathbb{C}[Y])=3=1^{2}+1^{2}+1^{2}$, so $\mathbb{C}[Y]$ is the direct sum of 3 non-isomorphic irreducible representations
$\mathbb{C}[Y]$ cannot contain an irreducible representation of dimension 4 , because otherwise:
$\# S_{4}=\sum_{\rho} \operatorname{dim}(\rho)^{2} \geq 1^{2}+1^{2}+3^{2}+4^{2}>24$.
So $\mathbb{C}[Y]$ contains 1 representation of $\operatorname{dim} 1,1$ representation of $\operatorname{dim} 2$, and 1 representation of $\operatorname{dim} 3 .(6$ $=1+2+3)$

So we have already found 5 non-isomorphic irreducible representations: 2 representation of dimension one, 1 representation of dimension two, and 2 representations of dimension three.

To find an explicit formula for the representation of dimension 2 in $\mathrm{C}[\mathrm{Y}]$ 1) we calculate $\operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[Y])$

The set of orbits of $X \times Y$ is

$$
\begin{aligned}
& \left\{\left(x_{1}, x_{12}\right),\left(x_{2}, x_{12}\right),\left(x_{1}, x_{13}\right),\left(x_{3}, x_{13}\right),\left(x_{1}, x_{14}\right),\left(x_{4}, x_{14}\right)\right. \\
& \left.\left(x_{2}, x_{23}\right),\left(x_{3}, x_{23}\right),\left(x_{4}, x_{24}\right),\left(x_{2}, x_{24}\right),\left(x_{3}, x_{34}\right),\left(x_{4}, x_{34}\right)\right\} \\
& \quad\left\{\left(x_{1}, x_{23}\right),\left(x_{1}, x_{24}\right),\left(x_{1}, x_{34}\right),\left(x_{2}, x_{13}\right),\left(x_{2}, x_{14}\right),\left(x_{2}, x_{34}\right)\right. \text {, } \\
& \left.\left(x_{3}, x_{12}\right),\left(x_{3}, x_{14}\right),\left(x_{3}, x_{24}\right),\left(x_{4}, x_{12}\right),\left(x_{4}, x_{13}\right),\left(x_{4}, x_{23}\right)\right\}
\end{aligned}
$$

The first orbit gives rise to a map from $\mathbb{C}[X] \rightarrow \mathbb{C}[Y]$
$x_{1} \rightarrow x_{12}+x_{13}+x_{14}$
$x_{2} \rightarrow x_{12}+x_{23}+x_{24}$
$x_{3} \rightarrow x_{13}+x_{23}+x_{34}$
$x_{4} \rightarrow x_{14}+x_{24}+x_{34}$
The image of $\mathbb{C}[X]$ in $\mathbb{C}[Y]$ is a space of dimension 4 , taking the complement of that space, we get a vector space of dimension 2, which is the representation we are looking for. In particular, after calculation, we get the vector space is generated by $e_{1}=\left(x_{12}-x_{14}-x_{23}+x_{34}\right)$ and $e_{2}=\left(x_{13}-x_{14}-x_{23}+x_{2} 4\right)$
S_{4} is generated by (12) and (123 4).
(12) maps e_{1} and e_{2} to $e_{1}-e_{2}$ and $-e_{2}$
(1234) maps e_{1} and e_{2} to $-e_{1}$ and $e_{2}-e_{1}$

So it's the 2 dimensional representation.

