SOME REPRESENTATION THEORY EXERCISES

LONG MAI

Lecture 1

Exercise 1.6

1) $V \boxtimes W \in irr(G \times H) \iff V \in irr(G) \& W \in irr(H)$

 \implies

Suppose $V \boxtimes W \in irr(G \times H)$ If V is not irreducible $\Longrightarrow \exists V' \subseteq V$ is a sub-representation of G $\Longrightarrow V' \boxtimes H$ is a sub-representation of $G \times H$, contradiction with $V \boxtimes W$ irreducible. Similar for W

 \Leftarrow

Suppose $V \in irr(G)$ & $W \in irr(H)$

i) $V \boxtimes W$ is a representation of $G \times \{e\}$

ii) Every irreducible sub-representation U of $G \times \{e\}$ inside $V \boxtimes W$ is of the form $V \boxtimes s, s \in W$ Let $\{w_0, w_1, ..., w_n\}$ be a basis of W. Every element inside $V \boxtimes W$, or in U will be of the form:

 $u = v_0 \boxtimes w_0 + v_1 \boxtimes w_1 + \ldots + v_n \boxtimes w_n$

U is an irreducible representation of $G\times \{e\}$

V is an irreducible representation of G.

We define morphisms $\sigma_i: U \to V, \ \sigma_i(u) = v_i$

 σ_i is a linear map, and moreover, is a representation morphism between U and V.

By Schur's lemma, σ_i is an isomorphism. Moreover, $\sigma_i = \lambda_i * \sigma$, in which σ is a fixed isomorphism, $\lambda_i \in \mathbb{C}$.

 σ is an isomorphism between U and V, so it's surjective. \rightarrow U = V $\boxtimes s$

iii) Suppose U is an invariant subspace of $V \boxtimes W$. We need to show $U = V \boxtimes W$

Let $U' \subseteq U$ be a sub-representation of $G \times \{e\}$

By ii), U' is of the form $V \boxtimes s \to V \boxtimes s \subseteq U$

W is an irreducible representation of H, so H acts transitively on W.

 \rightarrow the image of $V \boxtimes s$ under the action of $G \times H$ is $V \boxtimes W \rightarrow V \boxtimes W \subseteq U$. Done.

2)
$$V \boxtimes W \simeq V' \boxtimes W' \iff V \simeq V' \& W \simeq W'$$

 \implies

Using the previous problem, part ii), irreducible sub-representations of $G \times \{e\}$ are of the form $V \boxtimes s$ and $V' \boxtimes t$, and there is a representation isomorphism between them

This isomorphism gives a representation isomorphism between V and V'. Similar for W and W'

 \Leftarrow

There exist representation isomorphisms A: $V \to V'$ and B: $W \to W'$

 $A\boxtimes B:(V,W)\to V'\boxtimes W':(v,w)\to Av\boxtimes Bw \text{ is a bilinear map}.$

It induces a bilinear map between $V \boxtimes W \to V' \boxtimes W'$, which can be shown to be a representation morphism. Using the previous exercise, $V \boxtimes W$ and $V' \boxtimes W'$ are irreducible, so the morphism is an isomorphism.

Exercise 1.10

1) $\operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y]) = \mathbb{C}(X \times Y)$ $X = x_1, x_2, ..., x_n$ $Y = y_1, y_2, ..., y_m$ Define a map $\phi : \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y]) \to \mathbb{C}(X \times Y)$ Let $f \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y]); f(x_i) = \sum_{j=1}^m c_{ij} * y_j, c_{ij} \in \mathbb{C}$ Define $\phi(f) = \sum_{i,j} c_{ij} * (x_i, y_j)$, which is in $C(X \times Y)$ ϕ is injective because if $\phi(f) = 0 \Rightarrow c_{ij} = 0 \Rightarrow f = 0$ ϕ is quivariative because f is determined by $f(x_i)$ and we

 ϕ is surjective because f is determined by $f(x_i)$, and we can choose $f(x_i)$ to be anything in $\mathbb{C}[Y]$, hence we can choose c_{ij} arbitrary.

2)
$$\operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[Y]) = \mathbb{C}(X \times Y)^{G} = \mathbb{C}(X \times Y/G)$$

i) $\operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[Y]) = \mathbb{C}(X \times Y)^{G}$
Let π be the representation of $\operatorname{C}[X]$, and τ be the representation of $\operatorname{C}[Y]$
 $\operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[Y]) = \{f \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}[X], \mathbb{C}[Y]) \mid \tau(g)f\pi(g^{-1}) = f \text{ for all g in } G\}$
Let $f(x_{i}) = \sum_{j} c_{ij} * y_{j} \text{ in } \operatorname{Hom}_{G}[\mathbb{C}[X], \mathbb{C}[Y]]$
Let $x_{s} = \pi(g^{-1})(x_{i})$
 $\rightarrow \tau(g)f\pi(g^{-1})(x_{i}) = \tau(g)f(x_{s}) = \tau(g)(\sum_{j} c_{sj} * y_{j}) = \sum_{j} c_{sj} * \tau(g)(y_{j})$
 $\rightarrow \sum_{j} c_{ij} * y_{j} = \sum_{t} c_{st} * \tau(g)(y_{t})$
 $\rightarrow \text{ if } y_{j} = \tau(g)(y_{t}) \text{ then } c_{ij} = c_{st}$

Conclusion: f satisfies $c_{ij} = c_{st}$ iff $x_i = \pi(g)x_s$ and $y_j = \tau(g)(y_t)$

$$\sum_{ij} c_{ij} * (x_i, y_j) \in C[X \times Y]^G \text{ iff } \sum_{ij} c_{ij} * (x_i, y_j) = \sum_{ij} c_{ij} * (\pi(g)(x_i), \tau(g)(y_j)), \text{ and it is the same as the conclusion above, so we are done$$

ii)
$$\mathbb{C}(X \times Y)^G = \mathbb{C}(X \times Y/G)$$
:
 $\mathbb{C}(X \times Y)^G = \{\sum c_{ij}(x_i, y_j) \mid \forall g \in G : \sum c_{ij}(x_i, y_j) = \sum c_{ij}(\pi(g)x_i, \tau(g)y_j)\}$
 $\rightarrow \mathbb{C}(X \times Y)^G = \{\sum c_{ij}(x_i, y_j), \text{ in which all } (x_i, y_j) \text{ in the same orbit have the same coefficient}\}$
From that, we are done.

3) dim Hom_G($\mathbb{C}[X], \mathbb{C}[Y]$) = $\#(X \times Y/G)$ Using 2), we have Hom_G($\mathbb{C}[X], \mathbb{C}[Y]$) = $C(X \times Y/G)$

Take dim of both sides. Moreover, $\mathbb{C}(X \times Y/G)$ has dimension equal to the number of orbits under the action of G.

4) G is abelian, irr(G) = ?

Use the result: commutative operators share a common eigenvector (application of Hilbert's Nullstellensatz)

G is finite, and abelian, so $G = \oplus_{n_i}(\mathbb{Z}/n_i\mathbb{Z})$

The irreducible representation of a finite cyclic group $\mathbb{Z}/n_i\mathbb{Z}$ has dimension 1 (because if v is an eigenvector of 1, then v is also the eigenvector of all elements in the group)

The set $\{\pi(1_{n_i})\}$ consists of commuting matrices because G is abelian. Hence, there exists a common

eigenvector v. Then the vector space generated by v is an invariant subspace of $G. \rightarrow irr(G) = \mathbb{C}$

5) $Irr(S_4) = ?$

The number of irreducible representations of S_4 = the number of conjugacy classes = number of different cycle structures = 5

- 1) trivial representation, $\pi_1(g) = 1$
- 2) sign representation, $\pi_2(g) = sign(g)$

Let S_4 act on the set of vertices of a tetrahedron $X = \{x_1, x_2, x_3, x_4\}$ C[X] is a representation of S_4 C[X] has a sub-representation W of dimension $1 = \{cx_1 + cx_2 + cx_3 + cx_4 \mid c \in \mathbb{C}\}$ $W^{\perp} = \{(c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 \mid c_1 + c_2 + c_3 + c_4 = 0\}$ $\dim \operatorname{Hom}_G(\mathbb{C}[X], \mathbb{C}[X]) = \#(X \times X/G) = 2$, because there are two orbits of $X \times X$ under the action of $G: \{(1, 1), (2, 2), (3, 3), (4, 4)\}$ and the rest. It follows that W^{\perp} is irreducible, because otherwise, we have at least 3 irreducible sub-representations

of C[X], and dim Hom_G($\mathbb{C}[X]$, $\mathbb{C}[X]$) $\geq 1 * 1 + 1 * 1 + 1 * 1 = 3$

So we have an irreducible representation of dimension 3:

$$3\pi_3: W^{\perp} = \{(c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 \mid c_1 + c_2 + c_3 + c_4 = 0\}, \text{ of dimension } 3$$

 $4)\pi_3 \boxtimes \pi_2$ is an irreducible representation of G of dimension 3 ($W^{\perp} \boxtimes_{\mathbb{C}} \mathbb{C} \cong W^{\perp}$), and is non-isomorphic to π_3 , because otherwise, using 2) of Exercise 1.6, we have the trivial and the sign representation be isomorphic

Let S_4 act on the set of edges of a tetrahedron $Y = \{x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}\}$

 $\mathbb{C}[Y]$ is a representation of S_4

 $\mathbb{C}[Y]$ has a sub-representation V of dimension $1 = \{cx_{12} + cx_{13} + cx_{14} + cx_{23} + cx_{24} + cx_{34}\}$ $V^{\perp} = \{(c_{12}, c_{13}, c_{14}, c_{23}, c_{24}, c_{34}) \mid (c_{12} + c_{13} + c_{14} + c_{23} + c_{24} + c_{34} = 0\}, \text{ which is of dimension 5}$ The orbits of $Y \times Y$ are:

 $\{(x_{12}, x_{12}), (x_{13}, x_{13}), (x_{14}, x_{14}), (x_{23}, x_{23}), (x_{24}, x_{24}), (x_{34}, x_{34})\}$

```
 \{ (x_{12}, x_{13}), (x_{13}, x_{12}), (x_{12}, x_{14}), (x_{14}, x_{12}), (x_{13}, x_{14}), (x_{14}, x_{13}), (x_{24}, x_{34}), (x_{34}, x_{24}), (x_{23}, x_{34}), (x_{34}, x_{23}), (x_{14}, x_{24}), (x_{24}, x_{14}), (x_{12}, x_{23}), (x_{23}, x_{12}), (x_{13}, x_{23}), (x_{23}, x_{13}), (x_{12}, x_{24}), (x_{24}, x_{12}), (x_{14}, x_{34}), (x_{34}, x_{14}), (x_{23}, x_{24}), (x_{24}, x_{23}), (x_{34}, x_{13}), (x_{13}, x_{34}) \}
```

```
\{(x_{12}, x_{34}), (x_{13}, x_{24}), (x_{14}, x_{23}), (x_{23}, x_{14}), (x_{24}, x_{13}), (x_{34}, x_{12})\}
```

So dim Hom_G($\mathbb{C}[Y]$, $\mathbb{C}[Y]$) = 3 = 1² + 1² + 1², so $\mathbb{C}[Y]$ is the direct sum of 3 non-isomorphic irreducible representations

 $\mathbb{C}[Y]$ cannot contain an irreducible representation of dimension 4, because otherwise:

 $\#S_4 = \sum_{\rho} \dim(\rho)^2 \ge 1^2 + 1^2 + 3^2 + 4^2 > 24.$

So $\mathbb{C}[Y]$ contains 1 representation of dim 1, 1 representation of dim 2, and 1 representation of dim 3. (6 = 1+ 2+3)

So we have already found 5 non-isomorphic irreducible representations: 2 representation of dimension one, 1 representation of dimension two, and 2 representations of dimension three.

To find an explicit formula for the representation of dimension 2 in C[Y] 1) we calculate $\operatorname{Hom}_{G}(\mathbb{C}[X], \mathbb{C}[Y])$

The set of orbits of $X \times Y$ is $\{(x_1, x_{12}), (x_2, x_{12}), (x_1, x_{13}), (x_3, x_{13}), (x_1, x_{14}), (x_4, x_{14}), (x_2, x_{23}), (x_3, x_{23}), (x_4, x_{24}), (x_2, x_{24}), (x_3, x_{34}), (x_4, x_{34})\}$

 $\begin{aligned} &\{(x_1, x_{23}), (x_1, x_{24}), (x_1, x_{34}), (x_2, x_{13}), (x_2, x_{14}), (x_2, x_{34}), \\ &(x_3, x_{12}), (x_3, x_{14}), (x_3, x_{24}), (x_4, x_{12}), (x_4, x_{13}), (x_4, x_{23}) \end{aligned}$ The first orbit gives rise to a map from $\mathbb{C}[X] \to \mathbb{C}[Y]$

 $x_1 \to x_{12} + x_{13} + x_{14}$

 $x_2 \to x_{12} + x_{23} + x_{24}$

$$x_3 \to x_{13} + x_{23} + x_{34}$$

$$x_4 \to x_{14} + x_{24} + x_{34}$$

The image of $\mathbb{C}[X]$ in $\mathbb{C}[Y]$ is a space of dimension 4, taking the complement of that space, we get a vector space of dimension 2, which is the representation we are looking for. In particular, after calculation, we get the vector space is generated by $e_1 = (x_{12} - x_{14} - x_{23} + x_{34})$ and $e_2 = (x_{13} - x_{14} - x_{23} + x_{24})$

- S_4 is generated by (1 2) and (1 2 3 4).
- (1 2) maps e_1 and e_2 to $e_1 e_2$ and $-e_2$
- (1 2 3 4) maps e_1 and e_2 to $-e_1$ and $e_2 e_1$
- So it's the 2 dimensional representation.