
Solution for problems

Or Dagmi

1 Prove ostrowski’s theorem.

A proof can be found here: http://en.wikipedia.org/wiki/Ostrowski%27s_theorem.

2 | |α ∼ | |β ⇐⇒ ∃c | |cα = | |β.

Assume that | |α ∼ | |β , And let |x|α < 1. Note that a sequence xn
| |α→ x ⇐⇒ xn

| |β
→ x.

And: |xn|α → 0 Thus: |xn|β → 0 . Meaning: |x|β < 1 as well.

So we got: |x|α < 1 ⇐⇒ |x|β < 1.

Let a be s.t. |a|α 6= 0, 1. If |a|α < 1 then also |a|β < 1 and if |a|α > 1 then so is |a|β (because we can look at
∣

∣a−1
∣

∣

α
< 1).

So there exists c s.t. |a|α = |a|
c
β . Now for arbitrary x s.t. |x|α 6= 0, 1 there exists t ∈ R s.t.:

|x|α = |α|
t
α

Suppose m/n ∈ Q s.t. m/n < t then:

|a|
m/n
α < |x|α ⇒ |a|

m
α < |xn|α ⇒

∣

∣

∣

∣

am

xn

∣

∣

∣

∣

α

< 1

So by what we’ve shown:
∣

∣

∣

∣

am

xn

∣

∣

∣

∣

β

< 1

So we’ve got:

|a|
m/n
β < |x|β

Similarly, with m′

/n′ > t we can show that:|a|
m′/n′

β > |x|β .

Because the absoulute value is continous we get that:

|a|
m/n
β < |x|β < |a|

m′/n′

β

So: |x|β = |a|
t
β . Thus:

|x|α = |a|
t
α = |a|

ct
β = |x|

c
β

As required.

Let i ∈ {α, β} and Br,i (x) = {y | |y − x|i < r} be the open r-ball.
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Note that:

Br,β (x) =
{

y | |y − x|β < r
}

=
{

y | |y − x|
1/c
α < r

}

= {y | |y − x|α < rc}

= Brc,α (x)

So, let U be an open set w.r.t | |α, and let x ∈ U . Then for some r > 0, Br,α (x) ⊆ U . So, from the above
computation: Br1/c,β ⊆ U .

Thus U is open w.r.t | |β .

3 Qp = {. . . x−n . . . x0.x1 . . . xk | xi ∈ {0, . . . , p−1}}.

It’s clear that A = {. . . x−n . . . x0.x1 . . . xk | xi ∈ {0, . . . , p−1}} →֒ Qp , by:

ϕ (x) =
∑

xnp
−n

This is a infinite sum, but only from one side. It is converge because xnp
−n → 0 (see next question).

Now we will build Qp →֒ A. We will do that by taking mod p on the number and divide it by p every time.

4 ∃x
∑

xn → x ⇐⇒ |xn|p → 0.

It’s clear that if
∑

xn converges then |xn|p → 0.

We want to the other direction.

Suppose xn → 0, Let ε > 0, there exists N ∈ N s.t. for n > N , |xn|p < ε.

Denote:

Sn =

n
∑

i=1

xn

Thus, for n,m > N we get:

|Sn − Sm|p =

∣

∣

∣

∣

∣

∣

i=max(m,n)
∑

i=min(m,n)+1

xn

∣

∣

∣

∣

∣

∣

p

≤ max
i>N
|xn|p < ε

so the partial sums are Cauchy and consequently converge.

5 ∀y ∈ Br (x) Br (x) = Br (y).

Two

Let y ∈ Br (x). Note that:

Br (x) =
{

z | |z − x|p < r
}

Assume exists z ∈ Br (x) s.t. z 6= Br (y), Then: |z − y|p > r and |z − x|p < r.

But:

|z − x|p = |(z − y) + (y − x)|p = max
(

|y − x|p , |z − y|p

)

> r

A contradiction. (The other direction is similar).
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6 Zp is homeomorphic to the cantor set.

We will show it for Z2:

The elements of each of these sets can be denoted by sequences (xn) with each xi ∈ {0, 1}, In particular, each 2-adic

integer can be represented in canonical form as
∞
∑

n=0
xn2

n.

If two sequences in this representation, (xn) and (yn), differ in the jth term and no other term before j, the distance
between them is:

|(xn)− (yn)|2 =

∣

∣

∣

∣

∣

∣

∞
∑

k=j

(xk − yk) 2
k

∣

∣

∣

∣

∣

∣

= 2−j

If two elements of the Cantor set under this representation differ in the jth term but no earlier term, then the
distance between them is bounded:

|(xn)− (yn)|∞ =

∣

∣

∣

∣

∣

∣

∞
∑

k=j

2 (xk − yk)

10k

∣

∣

∣

∣

∣

∣

∞

≤

∞
∑

k=j

∣

∣

∣

∣

2 (xk − yk)

10k

∣

∣

∣

∣

∞

≤

∞
∑

k=j

∣

∣

∣

∣

2

10k

∣

∣

∣

∣

∞

=
2

9
· 10−j <∞

We can define a bijection ϕ : C → Z2 such that ϕ sends an element determined by the sequence (xn) in the Cantor
set to the element determined by the same sequence in Z2. ince each element of each set is uniquely expressible
in this way, this mapping is clearly a bijection. We prove that it is also continuous using the metric definition of
continuity. Fix some x ∈ C. Let ε > 0, ∃N ∈ N s.t.

2−(N+1) < ε ≤ 2−N

We can choose δ = 2
9 · 10

−N s.t.:
|x− y|∞ < δ ⇒ |ϕ (x)− ϕ (y)|2 < ε

For any y ∈ C. In particular, this δ implies that x and y have at least the first N + 1 terms of their representative
equences in common, forcing |x− y|2 < 2−N+1 < ε. Thus ϕ is continous.

Remains to show that ϕ−1 is continous. Fix x ∈ Z2, Let ε > 0 we can find N s.t.

2

9
10−N < ε ≤

2

9
10−N+1

Choose δ = 2−(N+1) and we get:

|x− y|2 < δ ⇒
∣

∣ϕ−1 (x)− ϕ−1 (y)
∣

∣

∞
<∞

So ϕ−1 is also continous.

Thus Z2 and C are homeomorphic as required.

Now we will prove the following lemma:

Lemma 6.1

Qp is totally disonnected.

Proof: Let a ∈ Qp. The connected component Ca of a is eqaul to {a}.

Let a be arbitrary and suppose Ca % {a}, therefore there exists n ∈ N s.t. B(a,p−n) ∩ Ca 6= Ca, But then:

Ca =
(

B(a,p−n) ∩ Ca

)

∪
((

Qp\B(a,p−n)

)

∩Ca

)

which is the disjoint union of two open subsets. Therefore Ca os mpt cpmmected. which is a contradiction.

Theorem 6.2

Any compact perfect totally disconnected subset E of the real line is homeomorphic to the Cantor set.
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Proof: Denote m = inf E and M = supE.

We will build F : [m.M ]→ [0, 1] s.t. F maps E homeomorphic on C.

We will build F on the complements [m,M ] \E → [0, 1] \C , and by continuty to a map F : [m,M ]→ [0, 1].

[m,M ] \E is the disjoint union of countably many open intervals, and the same is true for [0, 1] \C. Let I be the
collection of the intervals whose union is [m,M ] and let J be the collection whose union is [0, 1] \C. We shall build
a bijection: Θ : I → J .

Let I1 ∈ I be an interval of maximal length and define:

Θ(I1) = (1/3, 2/3)

Next, choose intervals I2,1 and I2,2 to the left and right of I1 s.t they have maximal length and define:

Θ(I2,1) = (1/9, 2/9)

Θ (I1,2) = (7/9, 8/9)

Continuing this process defines Θ on the whole set I, Since I contains only finitely many sets of length greates then
some fixed ε > 0, and since two intervals in I or in J have different endpoints (as E and C are perfect). It is clear
from the construction that Θ is bijective and order preserving.

Define F as follows:

For I ∈ I: F |I : I → Θ(I) is a unique linear increasing map. Because E and C are totally disconnected, they are
nowhere dense. Thus there exists at most one continuation F : [m,M ]→ [0, 1]. Now, From our construction of Θ:

F (x) = sup {F (y) : y /∈ E, y ≤ x}

Let f : F |E . Note that f : E → C is a monotone increasing, continous bijection and we need to show that g := f−1

i continous.

Note that g is again monotone increasing. Let x ∈ C and xn → x. This sequence contains a monotone subsequence
and thus we may assume, wlog, that the sequence xn is monotone increasing.

Clearly
y = lim

n→∞
g (xn) = sup

n≥1
g (xn) ≤ g (x)

Assume y < g (x), since E is closed, we have y ∈ E and g−1 (y) < x. This implies that y < xn for large n and by
monotonicity y < g (xn). A contradiction to the definition of y, Thus g continous.

The same type of proof will work for all Zp showing it is homeomorphic to C(p) defined by:

C(p)n := C
(p)
n−1 ∩

(

(2p− 1)
−n

(

⋃

k∈Z

[2k, 2k + 1]

))

And define:
C(p) :=

⋂

n≥0

C(p)n

Note that C(p) is perfect for every p, thus Zp is perfect for every p, and by the theorem, because it is also totally
disconnected, Zp is homeomorphic to the Cantor set as required.

7 Zp
∼= lim
←−

Z/pnZ

Note that Zp/pnZp
∼= Z/pnZ

So we got Zp 7→ lim
←−

Z/pnZ, We will build another map from lim
←−

Z/pnZ→ Zp.
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8 Qp
∼= C\ {1}.

Note that Qp is a countable union of Cantor sets by taking Qp/Zp, and so it is trivial that it is homeomorphic to
C\ {1} .

9 Haar theorem for Qp

Define µ s.t. : µ (B1 (0)) = 1, Note that for every ball Bp (0) we can cover it with distinctivly p unit balls.

Because µ need to be σ-additive and invariant to translations, we get that µ (Bp (0)) = pµ (B1 (0)) = p.

Now note that the definition of µ (B1 (0)) defines µ, hence every other haar measure is only a differ by a constant
multiplication.

10 α (a) = |a|p

Define α (a) = µa

µ , We want to show that this is |a|p. Because we know that µa is haar measure, then we want to

know what is the value on the unit ball,Note that |ax| = |a| |x|:

µ (a ·B (0, 1))

µ (B (0, 1))
=

µ (B (0, a))

µ (B (0, 1))
= |a|

Because there are pn unit balls inside a ball with radius pn.

11 find a l-space X which is countable at ∞ and an open subset U ⊂ X

that is not countable at ∞.

Take a look at {0, 1}R, It is compact because of Tichonof thm. But if we exclude 0, it is not countable at ∞.

12 Every l-space metrizable and countable at ∞ space X, is isomorphic

to 1 of the 3 spaces, cantor set, cantor set-{1} and discrete set.

Follows from the theorem at question 6, as l-spaces are totally disconnected
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