Solution for problems

Or Dagmi

1 Prove ostrowski's theorem.

A proof can be found here: http://en.wikipedia.org/wiki/Ostrowski%27s_theorem.

$$2 \quad | \mid_{\alpha} \sim | \mid_{\beta} \iff \exists c \mid \mid_{\alpha}^{c} = | \mid_{\beta}.$$

Assume that $| \mid_{\alpha} \sim | \mid_{\beta}$, And let $|x|_{\alpha} < 1$. Note that a sequence $x_n \stackrel{|\mid_{\alpha}}{\to} x \iff x_n \stackrel{|\mid_{\beta}}{\to} x$. And: $|x^n|_{\alpha} \to 0$ Thus: $|x^n|_{\beta} \to 0$. Meaning: $|x|_{\beta} < 1$ as well. So we got: $|x|_{\alpha} < 1 \iff |x|_{\beta} < 1$.

Let a be s.t. $|a|_{\alpha} \neq 0, 1$. If $|a|_{\alpha} < 1$ then also $|a|_{\beta} < 1$ and if $|a|_{\alpha} > 1$ then so is $|a|_{\beta}$ (because we can look at $|a^{-1}|_{\alpha} < 1$).

So there exists c s.t. $|a|_{\alpha} = |a|_{\beta}^{c}$. Now for arbitrary x s.t. $|x|_{\alpha} \neq 0, 1$ there exists $t \in \mathbb{R}$ s.t.:

$$|x|_{\alpha} = |\alpha|_{\alpha}^{t}$$

Suppose $m/n \in \mathbb{Q}$ s.t. m/n < t then:

$$|a|_{\alpha}^{m/n} < |x|_{\alpha} \Rightarrow |a|_{\alpha}^{m} < |x^{n}|_{\alpha} \Rightarrow \left|\frac{a^{m}}{x^{n}}\right|_{\alpha} < 1$$

So by what we've shown:

$$\left|\frac{a^m}{x^n}\right|_\beta < 1$$

So we've got:

$$|a|_{\beta}^{m/n} < |x|_{\beta}$$

Similarly, with m'/n' > t we can show that: $|a|_{\beta}^{m'/n'} > |x|_{\beta}$. Because the absoulute value is continous we get that:

$$|a|_{\beta}^{m/n} < |x|_{\beta} < |a|_{\beta}^{m'/n'}$$

So: $|x|_{\beta} = |a|_{\beta}^{t}$. Thus:

$$|x|_{\alpha}=|a|_{\alpha}^{t}=|a|_{\beta}^{ct}=|x|_{\beta}^{c}$$

As required.

Let $i \in \{\alpha, \beta\}$ and $B_{r,i}(x) = \{y \mid |y - x|_i < r\}$ be the open r-ball.

Note that:

$$B_{r,\beta}(x) = \left\{ y \mid |y - x|_{\beta} < r \right\} \\ = \left\{ y \mid |y - x|_{\alpha}^{1/c} < r \right\} \\ = \left\{ y \mid |y - x|_{\alpha} < r^{c} \right\} \\ = B_{r^{c},\alpha}(x)$$

So, let U be an open set w.r.t $| |_{\alpha}$, and let $x \in U$. Then for some r > 0, $B_{r,\alpha}(x) \subseteq U$. So, from the above computation: $B_{r^{1/c},\beta} \subseteq U$. Thus U is open w.r.t $| |_{\beta}$.

3
$$\mathbb{Q}_p = \{ \dots x_{-n} \dots x_0 \dots x_1 \dots x_k \mid x_i \in \{0, \dots, p_{-1}\} \}.$$

It's clear that $A = \{\dots x_{-n} \dots x_0 \dots x_1 \dots x_k \mid x_i \in \{0, \dots, p_{-1}\}\} \hookrightarrow \mathbb{Q}_p$, by:

$$\varphi\left(x\right) = \sum x_n p^{-n}$$

This is a infinite sum, but only from one side. It is converge because $x_n p^{-n} \to 0$ (see next question). Now we will build $\mathbb{Q}_p \hookrightarrow A$. We will do that by taking $\mod p$ on the number and divide it by p every time.

$$4 \quad \exists x \ \sum x_n \to x \iff |x_n|_p \to 0.$$

It's clear that if $\sum x_n$ converges then $|x_n|_p \to 0$. We want to the other direction.

Suppose $x_n \to 0$, Let $\varepsilon > 0$, there exists $N \in \mathbb{N}$ s.t. for n > N, $|x_n|_p < \varepsilon$. Denote:

$$S_n = \sum_{i=1}^n x_n$$

Thus, for n, m > N we get:

$$|S_n - S_m|_p = \left|\sum_{i=\min(m,n)+1}^{i=\max(m,n)} x_n\right|_p \le \max_{i>N} |x_n|_p < \varepsilon$$

so the partial sums are Cauchy and consequently converge.

5
$$\forall y \in B_r(x)$$
 $B_r(x) = B_r(y)$.

Two

Let $y \in B_r(x)$. Note that:

$$B_r(x) = \left\{ z \mid |z - x|_p < r \right\}$$

Assume exists $z \in B_r(x)$ s.t. $z \neq B_r(y)$, Then: $|z - y|_p > r$ and $|z - x|_p < r$. But:

$$|z - x|_p = |(z - y) + (y - x)|_p = \max\left(|y - x|_p, |z - y|_p\right) > r$$

A contradiction. (The other direction is similar).

6 \mathbb{Z}_p is homeomorphic to the cantor set.

We will show it for \mathbb{Z}_2 :

The elements of each of these sets can be denoted by sequences (x_n) with each $x_i \in \{0, 1\}$, In particular, each 2-adic integer can be represented in canonical form as $\sum_{n=0}^{\infty} x_n 2^n$.

If two sequences in this representation, (x_n) and (y_n) , differ in the *j*th term and no other term before *j*, the distance between them is:

$$|(x_n) - (y_n)|_2 = \left|\sum_{k=j}^{\infty} (x_k - y_k) 2^k\right| = 2^{-j}$$

If two elements of the Cantor set under this representation differ in the jth term but no earlier term, then the distance between them is bounded:

$$|(x_n) - (y_n)|_{\infty} = \left|\sum_{k=j}^{\infty} \frac{2(x_k - y_k)}{10^k}\right|_{\infty} \le \sum_{k=j}^{\infty} \left|\frac{2(x_k - y_k)}{10^k}\right|_{\infty} \le \sum_{k=j}^{\infty} \left|\frac{2}{10^k}\right|_{\infty} = \frac{2}{9} \cdot 10^{-j} < \infty$$

We can define a bijection $\varphi : \mathcal{C} \to \mathbb{Z}_2$ such that φ sends an element determined by the sequence (x_n) in the Cantor set to the element determined by the same sequence in \mathbb{Z}_2 . ince each element of each set is uniquely expressible in this way, this mapping is clearly a bijection. We prove that it is also continuous using the metric definition of continuity. Fix some $x \in \mathcal{C}$. Let $\varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t.

$$2^{-(N+1)} < \varepsilon < 2^{-N}$$

We can choose $\delta = \frac{2}{9} \cdot 10^{-N}$ s.t.:

$$\left|x-y\right|_{\infty} < \delta \Rightarrow \left|\varphi\left(x\right)-\varphi\left(y\right)\right|_{2} < \epsilon$$

For any $y \in C$. In particular, this δ implies that x and y have at least the first N + 1 terms of their representative equences in common, forcing $|x - y|_2 < 2^{-N+1} < \varepsilon$. Thus φ is continuous.

Remains to show that φ^{-1} is continous. Fix $x \in \mathbb{Z}_2$, Let $\varepsilon > 0$ we can find N s.t.

$$\frac{2}{9}10^{-N} < \varepsilon \le \frac{2}{9}10^{-N+1}$$

Choose $\delta = 2^{-(N+1)}$ and we get:

$$|x - y|_{2} < \delta \Rightarrow \left|\varphi^{-1}(x) - \varphi^{-1}(y)\right|_{\infty} < \infty$$

So φ^{-1} is also continous.

Thus \mathbb{Z}_2 and \mathcal{C} are homeomorphic as required.

Now we will prove the following lemma:

 $\frac{\text{Lemma 6.1}}{\mathbb{Q}_p \text{ is totally disonnected.}}$

Proof: Let $a \in \mathbb{Q}_p$. The connected component C_a of a is equal to $\{a\}$.

Let a be arbitrary and suppose $C_a \supseteq \{a\}$, therefore there exists $n \in \mathbb{N}$ s.t. $B_{(a,p^{-n})} \cap C_a \neq C_a$, But then:

$$C_a = \left(B_{(a,p^{-n})} \cap C_a\right) \cup \left(\left(\mathbb{Q}_p \setminus B_{(a,p^{-n})}\right) \cap C_a\right)$$

which is the disjoint union of two open subsets. Therefore C_a os mpt commected, which is a contradiction.

Theorem 6.2

Any compact perfect totally disconnected subset E of the real line is homeomorphic to the Cantor set.

Proof: Denote $m = \inf E$ and $M = \sup E$.

We will build $F : [m.M] \to [0,1]$ s.t. F maps E homeomorphic on C.

We will build F on the complements $[m, M] \setminus E \to [0, 1] \setminus C$, and by continuty to a map $F : [m, M] \to [0, 1]$. $[m, M] \setminus E$ is the disjoint union of countably many open intervals, and the same is true for $[0, 1] \setminus C$. Let \mathcal{I} be the collection of the intervals whose union is [m, M] and let \mathcal{J} be the collection whose union is $[0, 1] \setminus C$. We shall build a bijection: $\Theta : \mathcal{I} \to \mathcal{J}$.

Let $I_1 \in \mathcal{I}$ be an interval of maximal length and define:

$$\Theta(I_1) = (1/3, 2/3)$$

Next, choose intervals $I_{2,1}$ and $I_{2,2}$ to the left and right of I_1 s.t they have maximal length and define:

$$\Theta(I_{2,1}) = (1/9, 2/9) \Theta(I_{1,2}) = (7/9, 8/9)$$

Continuing this process defines Θ on the whole set \mathcal{I} , Since \mathcal{I} contains only finitely many sets of length greates then some fixed $\varepsilon > 0$, and since two intervals in \mathcal{I} or in \mathcal{J} have different endpoints (as E and C are perfect). It is clear from the construction that Θ is bijective and order preserving.

Define F as follows:

For $I \in \mathcal{I}$: $F \mid_{I} : I \to \Theta(I)$ is a unique linear increasing map. Because E and C are totally disconnected, they are nowhere dense. Thus there exists at most one continuation $F : [m, M] \to [0, 1]$. Now, From our construction of Θ :

$$F(x) = \sup \left\{ F(y) : y \notin E, \ y \le x \right\}$$

Let $f: F |_E$. Note that $f: E \to C$ is a monotone increasing, continous bijection and we need to show that $g := f^{-1}$ i continuous.

Note that g is again monotone increasing. Let $x \in C$ and $x_n \to x$. This sequence contains a monotone subsequence and thus we may assume, wlog, that the sequence x_n is monotone increasing. Clearly

$$y = \lim_{n \to \infty} g(x_n) = \sup_{n \ge 1} g(x_n) \le g(x)$$

Assume y < g(x), since E is closed, we have $y \in E$ and $g^{-1}(y) < x$. This implies that $y < x_n$ for large n and by monotonicity $y < g(x_n)$. A contradiction to the definition of y, Thus g continuous.

The same type of proof will work for all \mathbb{Z}_p showing it is homeomorphic to $\mathcal{C}^{(p)}$ defined by:

$$\mathcal{C}_{n}^{(p)} := \mathcal{C}_{n-1}^{(p)} \cap \left(\left(2p-1\right)^{-n} \left(\bigcup_{k \in \mathbb{Z}} \left[2k, 2k+1\right] \right) \right)$$

And define:

$$\mathcal{C}^{(p)} := \bigcap_{n \ge 0} \mathcal{C}_n^{(p)}$$

Note that $\mathcal{C}^{(p)}$ is perfect for every p, thus \mathbb{Z}_p is perfect for every p, and by the theorem, because it is also totally disconnected, \mathbb{Z}_p is homeomorphic to the Cantor set as required.

7 $\mathbb{Z}_p \cong \lim_{\longleftarrow} \mathbb{Z}/p^n \mathbb{Z}$

Note that $\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z}$ So we got $\mathbb{Z}_p \mapsto \varprojlim \mathbb{Z}/p^n\mathbb{Z}$, We will build another map from $\varprojlim \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}_p$.

8 $\mathbb{Q}_p \cong \mathcal{C} \setminus \{1\}.$

Note that \mathbb{Q}_p is a countable union of Cantor sets by taking $\mathbb{Q}_p/\mathbb{Z}_p$, and so it is trivial that it is homeomorphic to $\mathcal{C} \setminus \{1\}$.

9 Haar theorem for \mathbb{Q}_p

Define μ s.t. : $\mu(B_1(0)) = 1$, Note that for every ball $B_p(0)$ we can cover it with distinctively p unit balls. Because μ need to be σ -additive and invariant to translations, we get that $\mu(B_p(0)) = p\mu(B_1(0)) = p$. Now note that the definition of $\mu(B_1(0))$ defines μ , hence every other haar measure is only a differ by a constant multiplication.

10 $\alpha(a) = |a|_p$

Define $\alpha(a) = \frac{\mu_a}{\mu}$, We want to show that this is $|a|_p$. Because we know that μ_a is haar measure, then we want to know what is the value on the unit ball, Note that |ax| = |a| |x|:

$$\frac{\mu \left(a \cdot B \left(0, 1\right)\right)}{\mu \left(B \left(0, 1\right)\right)} = \frac{\mu \left(B \left(0, a\right)\right)}{\mu \left(B \left(0, 1\right)\right)} = |a|$$

Because there are p^n unit balls inside a ball with radius p^n .

11 find a l-space X which is countable at ∞ and an open subset $U \subset X$ that is not countable at ∞ .

Take a look at $\{0,1\}^{\mathbb{R}}$, It is compact because of Tichonof thm. But if we exclude 0, it is not countable at ∞ .

12 Every l-space metrizable and countable at ∞ space X, is isomorphic to 1 of the 3 spaces, cantor set, cantor set-{1} and discrete set.

Follows from the theorem at question 6, as l-spaces are totally disconnected