Solution for problems

Or Dagmi

1 Prove ostrowski's theorem.

A proof can be found here: http://en.wikipedia.org/wiki/Ostrowski\'s_theorem.
$2\left|\left.\right|_{\alpha} \sim\right|_{\beta} \Longleftrightarrow \exists c| |_{\alpha}^{c}=| |_{\beta}$.
Assume that $\left.\left|\left.\right|_{\alpha} \sim\right|\right|_{\beta}$, And let $|x|_{\alpha}<1$. Note that a sequence $x_{n} \xrightarrow{| |_{\alpha}} x \Longleftrightarrow x_{n} \xrightarrow{| |_{\beta}} x$.
And: $\left|x^{n}\right|_{\alpha} \rightarrow 0$ Thus: $\left|x^{n}\right|_{\beta} \rightarrow 0$. Meaning: $|x|_{\beta}<1$ as well.
So we got: $|x|_{\alpha}<1 \Longleftrightarrow|x|_{\beta}<1$.
Let a be s.t. $|a|_{\alpha} \neq 0$, 1. If $|a|_{\alpha}<1$ then also $|a|_{\beta}<1$ and if $|a|_{\alpha}>1$ then so is $|a|_{\beta}$ (because we can look at $\left|a^{-1}\right|_{\alpha}<1$).
So there exists c s.t. $|a|_{\alpha}=|a|_{\beta}^{c}$. Now for arbitrary x s.t. $|x|_{\alpha} \neq 0,1$ there exists $t \in \mathbb{R}$ s.t.:

$$
|x|_{\alpha}=|\alpha|_{\alpha}^{t}
$$

Suppose $m / n \in \mathbb{Q}$ s.t. $m / n<t$ then:

$$
|a|_{\alpha}^{m / n}<|x|_{\alpha} \Rightarrow|a|_{\alpha}^{m}<\left|x^{n}\right|_{\alpha} \Rightarrow\left|\frac{a^{m}}{x^{n}}\right|_{\alpha}<1
$$

So by what we've shown:

$$
\left|\frac{a^{m}}{x^{n}}\right|_{\beta}<1
$$

So we've got:

$$
|a|_{\beta}^{m / n}<|x|_{\beta}
$$

Similarly, with $m^{\prime} / n^{\prime}>t$ we can show that: $|a|_{\beta}^{m^{\prime} / n^{\prime}}>|x|_{\beta}$.
Because the absoulute value is continous we get that:

$$
|a|_{\beta}^{m / n}<|x|_{\beta}<|a|_{\beta}^{m^{\prime} / n^{\prime}}
$$

So: $|x|_{\beta}=|a|_{\beta}^{t}$. Thus:

$$
|x|_{\alpha}=|a|_{\alpha}^{t}=|a|_{\beta}^{c t}=|x|_{\beta}^{c}
$$

As required.
Let $i \in\{\alpha, \beta\}$ and $B_{r, i}(x)=\left\{y| | y-\left.x\right|_{i}<r\right\}$ be the open r-ball.

Note that:

$$
\begin{aligned}
B_{r, \beta}(x) & =\left\{y| | y-\left.x\right|_{\beta}<r\right\} \\
& =\left\{y| | y-\left.x\right|_{\alpha} ^{1 / c}<r\right\} \\
& =\left\{y| | y-\left.x\right|_{\alpha}<r^{c}\right\} \\
& =B_{r^{c}, \alpha}(x)
\end{aligned}
$$

So, let U be an open set w.r.t $\left|\left.\right|_{\alpha}\right.$, and let $x \in U$. Then for some $r>0, B_{r, \alpha}(x) \subseteq U$. So, from the above computation: $B_{r^{1 / c}, \beta} \subseteq U$.
Thus U is open w.r.t $\left|\left.\right|_{\beta}\right.$.
$3 \mathbb{Q}_{p}=\left\{\ldots x_{-n} \ldots x_{0} \cdot x_{1} \ldots x_{k} \mid x_{i} \in\left\{0, \ldots, p_{-1}\right\}\right\}$.
It's clear that $A=\left\{\ldots x_{-n} \ldots x_{0} \cdot x_{1} \ldots x_{k} \mid x_{i} \in\left\{0, \ldots, p_{-1}\right\}\right\} \hookrightarrow \mathbb{Q}_{p}$, by:

$$
\varphi(x)=\sum x_{n} p^{-n}
$$

This is a infinite sum, but only from one side. It is converge because $x_{n} p^{-n} \rightarrow 0$ (see next question).
Now we will build $\mathbb{Q}_{p} \hookrightarrow A$. We will do that by taking $\bmod p$ on the number and divide it by p every time.
$4 \quad \exists x \sum x_{n} \rightarrow x \Longleftrightarrow\left|x_{n}\right|_{p} \rightarrow 0$.
It's clear that if $\sum x_{n}$ converges then $\left|x_{n}\right|_{p} \rightarrow 0$.
We want to the other direction.
Suppose $x_{n} \rightarrow 0$, Let $\varepsilon>0$, there exists $N \in \mathbb{N}$ s.t. for $n>N,\left|x_{n}\right|_{p}<\varepsilon$.
Denote:

$$
S_{n}=\sum_{i=1}^{n} x_{n}
$$

Thus, for $n, m>N$ we get:

$$
\left|S_{n}-S_{m}\right|_{p}=\left|\sum_{i=\min (m, n)+1}^{i=\max (m, n)} x_{n}\right|_{p} \leq \max _{i>N}\left|x_{n}\right|_{p}<\varepsilon
$$

so the partial sums are Cauchy and consequently converge.

$5 \quad \forall y \in B_{r}(x) \quad B_{r}(x)=B_{r}(y)$.

Two
Let $y \in B_{r}(x)$. Note that:

$$
B_{r}(x)=\left\{z| | z-\left.x\right|_{p}<r\right\}
$$

Assume exists $z \in B_{r}(x)$ s.t. $z \neq B_{r}(y)$, Then: $|z-y|_{p}>r$ and $|z-x|_{p}<r$.
But:

$$
|z-x|_{p}=|(z-y)+(y-x)|_{p}=\max \left(|y-x|_{p},|z-y|_{p}\right)>r
$$

A contradiction. (The other direction is similar).

$6 \mathbb{Z}_{p}$ is homeomorphic to the cantor set.

We will show it for \mathbb{Z}_{2} :
The elements of each of these sets can be denoted by sequences $\left(x_{n}\right)$ with each $x_{i} \in\{0,1\}$, In particular, each 2-adic integer can be represented in canonical form as $\sum_{n=0}^{\infty} x_{n} 2^{n}$.
If two sequences in this representation, $\left(x_{n}\right)$ and $\left(y_{n}\right)$, differ in the j th term and no other term before j, the distance between them is:

$$
\left|\left(x_{n}\right)-\left(y_{n}\right)\right|_{2}=\left|\sum_{k=j}^{\infty}\left(x_{k}-y_{k}\right) 2^{k}\right|=2^{-j}
$$

If two elements of the Cantor set under this representation differ in the j th term but no earlier term, then the distance between them is bounded:

$$
\left|\left(x_{n}\right)-\left(y_{n}\right)\right|_{\infty}=\left|\sum_{k=j}^{\infty} \frac{2\left(x_{k}-y_{k}\right)}{10^{k}}\right|_{\infty} \leq \sum_{k=j}^{\infty}\left|\frac{2\left(x_{k}-y_{k}\right)}{10^{k}}\right|_{\infty} \leq \sum_{k=j}^{\infty}\left|\frac{2}{10^{k}}\right|_{\infty}=\frac{2}{9} \cdot 10^{-j}<\infty
$$

We can define a bijection $\varphi: \mathcal{C} \rightarrow \mathbb{Z}_{2}$ such that φ sends an element determined by the sequence $\left(x_{n}\right)$ in the Cantor set to the element determined by the same sequence in \mathbb{Z}_{2}. ince each element of each set is uniquely expressible in this way, this mapping is clearly a bijection. We prove that it is also continuous using the metric definition of continuity. Fix some $x \in \mathcal{C}$. Let $\varepsilon>0, \exists N \in \mathbb{N}$ s.t.

$$
2^{-(N+1)}<\varepsilon \leq 2^{-N}
$$

We can choose $\delta=\frac{2}{9} \cdot 10^{-N}$ s.t.:

$$
|x-y|_{\infty}<\delta \Rightarrow|\varphi(x)-\varphi(y)|_{2}<\varepsilon
$$

For any $y \in \mathcal{C}$. In particular, this δ implies that x and y have at least the first $N+1$ terms of their representative equences in common, forcing $|x-y|_{2}<2^{-N+1}<\varepsilon$. Thus φ is continous.
Remains to show that φ^{-1} is continous. Fix $x \in \mathbb{Z}_{2}$, Let $\varepsilon>0$ we can find N s.t.

$$
\frac{2}{9} 10^{-N}<\varepsilon \leq \frac{2}{9} 10^{-N+1}
$$

Choose $\delta=2^{-(N+1)}$ and we get:

$$
|x-y|_{2}<\delta \Rightarrow\left|\varphi^{-1}(x)-\varphi^{-1}(y)\right|_{\infty}<\infty
$$

So φ^{-1} is also continous.
Thus \mathbb{Z}_{2} and \mathcal{C} are homeomorphic as required.
Now we will prove the following lemma:

Lemma 6.1

Q_{p} is totally disonnected.
Proof: Let $a \in \mathbb{Q}_{p}$. The connected component C_{a} of a is eqaul to $\{a\}$.
Let a be arbitrary and suppose $C_{a} \supsetneqq\{a\}$, therefore there exists $n \in \mathbb{N}$ s.t. $B_{\left(a, p^{-n}\right)} \cap C_{a} \neq C_{a}$, But then:

$$
C_{a}=\left(B_{\left(a, p^{-n}\right)} \cap C_{a}\right) \cup\left(\left(\mathbb{Q}_{p} \backslash B_{\left(a, p^{-n}\right)}\right) \cap C_{a}\right)
$$

which is the disjoint union of two open subsets. Therefore C_{a} os mpt cpmmected. which is a contradiction.

Theorem 6.2

Any compact perfect totally disconnected subset E of the real line is homeomorphic to the Cantor set.

Proof: Denote $m=\inf E$ and $M=\sup E$.
We will build $F:[m . M] \rightarrow[0,1]$ s.t. F maps E homeomorphic on \mathcal{C}.
We will build F on the complements $[m, M] \backslash E \rightarrow[0,1] \backslash C$, and by continuty to a map $F:[m, M] \rightarrow[0,1]$.
$[m, M] \backslash E$ is the disjoint union of countably many open intervals, and the same is true for $[0,1] \backslash C$. Let \mathcal{I} be the collection of the intervals whose union is $[m, M]$ and let \mathcal{J} be the collection whose union is $[0,1] \backslash \mathcal{C}$. We shall build a bijection: $\Theta: \mathcal{I} \rightarrow \mathcal{J}$.
Let $I_{1} \in \mathcal{I}$ be an interval of maximal length and define:

$$
\Theta\left(I_{1}\right)=(1 / 3,2 / 3)
$$

Next, choose intervals $I_{2,1}$ and $I_{2,2}$ to the left and right of I_{1} s.t they have maximal length and define:

$$
\begin{aligned}
\Theta\left(I_{2,1}\right) & =(1 / 9,2 / 9) \\
\Theta\left(I_{1,2}\right) & =(7 / 9,8 / 9)
\end{aligned}
$$

Continuing this process defines Θ on the whole set \mathcal{I}, Since \mathcal{I} contains only finitely many sets of length greates then some fixed $\varepsilon>0$, and since two intervals in \mathcal{I} or in \mathcal{J} have different endpoints (as E and C are perfect). It is clear from the construction that Θ is bijective and order preserving.
Define F as follows:
For $I \in \mathcal{I}:\left.F\right|_{I}: I \rightarrow \Theta(I)$ is a unique linear increasing map. Because E and C are totally disconnected, they are nowhere dense. Thus there exists at most one continuation $F:[m, M] \rightarrow[0,1]$. Now, From our construction of Θ :

$$
F(x)=\sup \{F(y): y \notin E, y \leq x\}
$$

Let $f:\left.F\right|_{E}$. Note that $f: E \rightarrow C$ is a monotone increasing, continous bijection and we need to show that $g:=f^{-1}$ i continous.
Note that g is again monotone increasing. Let $x \in C$ and $x_{n} \rightarrow x$. This sequence contains a monotone subsequence and thus we may assume, wlog, that the sequence x_{n} is monotone increasing.
Clearly

$$
y=\lim _{n \rightarrow \infty} g\left(x_{n}\right)=\sup _{n \geq 1} g\left(x_{n}\right) \leq g(x)
$$

Assume $y<g(x)$, since E is closed, we have $y \in E$ and $g^{-1}(y)<x$. This implies that $y<x_{n}$ for large n and by monotonicity $y<g\left(x_{n}\right)$. A contradiction to the definition of y, Thus g continous.

The same type of proof will work for all \mathbb{Z}_{p} showing it is homeomorphic to $\mathcal{C}^{(p)}$ defined by:

$$
\mathcal{C}_{n}^{(p)}:=\mathcal{C}_{n-1}^{(p)} \cap\left((2 p-1)^{-n}\left(\bigcup_{k \in \mathbb{Z}}[2 k, 2 k+1]\right)\right)
$$

And define:

$$
\mathcal{C}^{(p)}:=\bigcap_{n \geq 0} \mathcal{C}_{n}^{(p)}
$$

Note that $\mathcal{C}^{(p)}$ is perfect for every p, thus \mathbb{Z}_{p} is perfect for every p, and by the theorem, because it is also totally disconnected, \mathbb{Z}_{p} is homeomorphic to the Cantor set as required.

$7 \quad \mathbb{Z}_{p} \cong \lim _{\leftarrow} \mathbb{Z} / p^{n} \mathbb{Z}$

Note that $\mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p} \cong \mathbb{Z} / p^{n} \mathbb{Z}$
So we got $\mathbb{Z}_{p} \mapsto \lim _{\leftarrow} \mathbb{Z} / p^{n} \mathbb{Z}$, We will build another map from $\underset{\leftarrow}{\lim } \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z}_{p}$.
$8 \quad \mathrm{Q}_{p} \cong \mathcal{C} \backslash\{1\}$.
Note that \mathbb{Q}_{p} is a countable union of Cantor sets by taking $\mathbb{Q}_{p} / \mathbb{Z}_{p}$, and so it is trivial that it is homeomorphic to $\mathcal{C} \backslash\{1\}$.

9 Haar theorem for \mathbb{Q}_{p}

Define μ s.t. : $\mu\left(B_{1}(0)\right)=1$, Note that for every ball $B_{p}(0)$ we can cover it with distinctivly p unit balls. Because μ need to be σ-additive and invariant to translations, we get that $\mu\left(B_{p}(0)\right)=p \mu\left(B_{1}(0)\right)=p$.
Now note that the definition of $\mu\left(B_{1}(0)\right)$ defines μ, hence every other haar measure is only a differ by a constant multiplication.

$$
\alpha(a)=|a|_{p}
$$

Define $\alpha(a)=\frac{\mu_{a}}{\mu}$, We want to show that this is $|a|_{p}$. Because we know that μ_{a} is haar measure, then we want to know what is the value on the unit ball,Note that $|a x|=|a||x|$:

$$
\frac{\mu(a \cdot B(0,1))}{\mu(B(0,1))}=\frac{\mu(B(0, a))}{\mu(B(0,1))}=|a|
$$

Because there are p^{n} unit balls inside a ball with radius p^{n}.

11 find a l-space X which is countable at ∞ and an open subset $U \subset X$ that is not countable at ∞.

Take a look at $\{0,1\}^{\mathbb{R}}$, It is compact because of Tichonof thm. But if we exclude 0 , it is not countable at ∞.

12 Every l-space metrizable and countable at ∞ space X, is isomorphic to 1 of the 3 spaces, cantor set, cantor set- $\{1\}$ and discrete set.

Follows from the theorem at question 6 , as l-spaces are totally disconnected

