
Generalized Functions: Homework 6

Exercise 1. Let X ba an `-space, so C∞(X) separates points.

Solution: Let x, y ∈ X. Since X is Hausdorff, there exist U, V ⊂ X open, such
that x ∈ U, y ∈ V and U ∩ V = ∅. Since X has a basis of open compact sets,
we can assume that U, V are open and compact (and thus closed, since X is
Hausdorff). Define f : X → X by:

f(z) =

{
x z ∈ U

y otherwise

So for every z ∈ X, if x ∈ U take any Uz 3 z open, then Ũ = Uz ∩ U is also
open, contains z and f |Ũ = x constant. If z /∈ U then take Uz 3 z open, so
Ũ = Uz ∩ (X \U) is open (since U is closed) and f |Ũ = y constant. This means
that f ∈ C∞(X) separates x and y as required.

Exercise 2. Show that S∗(X) is a sheaf with respect to the restriction map.

Solution: Let U = ∪iUi. Denote by ϕ : S(Ui) → S(U) the extension by
zero. Then ϕ∗ : S∗(U) → S∗(Ui), (ϕ∗ξ)(f) = ξ(ϕ ◦ f) is the restriction map of
distributions.
Lemma: Given a compact set K ⊂ X and an open (finite) cover K ⊂ ∪n

i=1Ui,
there exists a partition on unity on K, sub-ordinate to the open cover.

Proof. We choose a refinement cover of open compact sets: For every x ∈ K∩Ui

we take open compact x ∈ Ki,x ⊂ Ui, so

K ⊂
n
∪

i=1

(

∪
x∈K∩Ui

Ki,x

)

Since K is compact, there exists a finite sub-cover, K ⊂ ∪i,jKi,j , which is
a refinement of the original cover. We can assume that this union is disjoint
(taking K̃i,j = Ki,j \ (∪l<i,k<jKl,k)). Define:

ρi(x) =

{
1 x ∈ Ki,j for some j

0 otherwise

These are smooth functions (locally constant), supp(ρi) ⊂ Ui and
∑

ρi = 1.

1. Let ξ ∈ S(U), and suppose ξi = ξ|Ui = 0. For every f ∈ S(U), let {ρi}i

be a partition of unity of supp(f), sub-ordinate to the cover {Ui}. So
f =

∑
i ρif , where each ρif ”comes from” a distribution in S(Ui). Thus:

ξ(f) =
∑

i

ξ (ρif) =
∑

i

ξi

(
ϕ−1(ρif)

)
= 0
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2. Let ξi ∈ Ui such that ∀i, j ξi|Ui∩Uj = ξj |Ui∩Uj . Define:

ξ(f) =
∑

i

ξi

(
ρi ∙ f∑

j ρj

)

Clearly ξ is linear, and for h ∈ S(Uk):

ξ|Uk
(h) = ξ(ϕ ◦ h) =

∑

i

ξi

(
ρi ∙ ϕ ◦ h
∑

j ρj

)

=
ρiϕh=δikh

ξk(h)

i.e. ξ|Uk
= ξk.

Exercise 3. Show that the map ψ : S(X) → S(Z) is onto.

Solution: For f ∈ S(Z), denote by Y ⊂ Z the compact (and open) support
of f . Since the topology on Z is the induced topology from X, there exists
open U (in X) such that Y = U ∩ X. For every x ∈ Y we take open compact
x ∈ Ux ⊂ U , and get a cover Y ⊂ ∪xUx. There exists a finite sub-cover, as Y is

compact: Y ⊂
n
∪

i=1
Ui ≡ Ỹ . The set Ỹ is open and compact. We define f̃ ∈ S(X)

in the following way:

f̃(x) =

{
f(y) x ∈ Uy ⊂ Ỹ

0 x ∈ X \ Ỹ

Exercise 4. Let L ⊂ V be vector spaces. Show that ∀f : L → K, ∃g : V → K
such that g|L = f .

Solution: Consider the collection of pairs (Lα, fα) such that L ⊆ Lα ⊆ V and
fα|L = f , with the partial order:

(Lα, fα) < (Lβ , fβ) ⇐⇒ Lα ⊂ Lβ , fβ |Lα
= fα

Given a chain {(Lα, fα)}α∈J there exists an upper bound: (L∞, f∞) where
L∞ = ∪αLα and f∞(x) = {fα(x) : x ∈ Lα}. Therefore, by Zorn’s lemma
there exists a maximal element (Lα0 , fα0). Suppose V 6= Lα0 , the there exists
y ∈ V \ Lα0 . Consider F = span{Lα0 , y} and search for h ∈ F ∗ such that
h|Lα0

= fα0 . But, by linearity, for x ∈ Lα0 ,

h(x + λy) = fα0(x) + λh̃(y)

Choosing for example h̃(y) = 1 we get that h ∈ F ∗ and:

(Lα0 , fα0) < (F, h)

in contradiction to the maximality of (Lα0 , fα0). Thus we get Lα0 = V, g ≡ fα0 .
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Exercise 5. Show that the map ϕ : S(X) ⊗ S(Y ) → S(X × Y ) defined by:

f1 ⊗ f2 7→ f(x, y) = f1(x) ∙ f2(y)

is well defined and is a linear isomorphism.

Solution: By linearity of ϕ, it is enough to check for the basic elements f1⊗f2.

• Well defined: Need to show that ϕ(f1 ⊗ f2) ∈ S(X × Y ). Indeed,f is
compactly supported, since supp(f) = supp(f1) × supp(f2) is compact. f
is locally constant:

∀(x, y) ∈ X × Y

∃U1 ⊂ X, x ∈ U1, s.t. f1|U1 = c1

∃U2 ⊂ Y, y ∈ U2, s.t. f2|U2 = c2

Denoting U = U1 × U2 ⊂ X × Y open, we get:

(x, y) ∈ U, f |U = f1|U! ∙ f2|U2 = c1 ∙ c2

i.e. f is indeed locally constant.

• ϕ is injective: Take 0 6=
∑

i fi ⊗ gi ∈ S(X) ⊗ S(Y ), then we can assume
that fi are linearly independent and that gi are non-zero.

ϕ

(
∑

i

fi ⊗ gi

)

(x, y) =
∑

i

fi(x) ∙ gi(y)

Taking y such that g1(y) 6= 0, we get (for linearly independence of {fi})
that there exists x such that the function above does not vanish, i.e.,

ϕ

(
∑

i

fi ⊗ gi

)

6= 0

• ϕ is surjective: Consider g(x, y) ∈ S(X × Y ) with compact support K.
Since g is locally constant, ∀p ∈ X × Y, ∃Ũp open such that g|Ũp

is
constant. Since we have a basis of open compact product sets, we can
assume Ũp = Ux × Vy open and compact. We got an open cover K ⊂
∪(x,y)∈KUx × Vy, therefore there exists a finite open compact product
sub-cover:

K ⊂ ∪n
i=1Uxi × Vyi

such that g is constant on every set in this cover. Subtracting from every
set in the cover the previous sets we get a disjoint open compact cover.
Since every set which is a difference between two product set is a finite
disjoint union of product sets, by splitting these sets we have an open
compact product disjoint cover, such that g is constant on every set. Let

3



f i
1(x) ≡ 1 in Uxi , and zero outside (i.e. supp(f i

1) = Uxi), and f i
2(y) =

g (Uxi × Vyi) in Vyi and zero outside (i.e. supp(f i
2) = Vyi). Then:

g(x, y) =
n∑

i=1

f i
1(x) ∙ f i

2(y) = ϕ

(
n∑

i=1

f i
1 ⊗ f i

2

)

for
∑n

i=1 f i
1 ⊗ f i

2 ∈ S(X) ⊗ S(Y ), meaning ϕ is onto.

Exercise 6. Consider the map ψ : S∗(X)⊗S∗(Y ) → S∗(X ×Y ), such that for
every f ⊗ g, ψ(f ⊗ g) is a functional on S(X) ⊗ S(Y ) = S(X × Y ):

∀h1 ⊗ h2 ∈ S(X) ⊗ S(Y ), ψ (f1 ⊗ f2) (h1 ⊗ h2) = f1(h1) ∙ f2(h2)

Show that ψ is injective with dense image.

Solution: By linearity of ψ, it is enough to check for the basic elements f1⊗f2.

• ψ is injective: Take
∑

fi ⊗ gi ∈ S∗(X) ⊗ S∗(Y ) such that fi are linearly
independent and gi 6= 0, then the joint kernel of f2, ..., fn is not empty
(otherwise we would get an embedding from S∗(X) ⊗ S∗(Y ) to Cn−1 in
contradiction, since the dimension of S∗(X) ⊗ S∗(Y ) is higher). Denote

by K =
n
∩

i=2
ker fi and consider the quotient S(X)/K . Then f2, ..., fn form

a basis for this quotient space. If f1 vanishes on K, we would get that f1

is a linear combination of f2, ..., fn, in contradiction to our assumption.
Therefore, there exists v ∈ K ⊂ S(X) such that f1(v) 6= 0. Taking
w ∈ S(Y ) such that g1(w) = 1 we get:

(∑
fi ⊗ gi

)
(v ⊗ w) 6= 0

• ψ has a dense image: Using the previous exercise, we actually need to
show that the map ψ : V ∗ ⊗ W ∗ → (V ⊗ W )∗ has a dense image. Notice
that a subspace of a dual space is dense if and only if the only element this
subspaces vanishes on is the zero element. Take any

∑
vi ⊗ wi ∈ V ⊗ W

(like before we assume vi are linearly independent and wi are non-zero),
then F = ψ(f ⊗ g) acts on this element by:

F
(∑

vi ⊗ wi

)
=
∑

f(vi) ∙ g(wi)

Taking f such that f(vj) = δ1j (possible since vi are linearly independent)
and g such that g(w1) = 1, we get F (

∑
vi ⊗ wi) 6= 0, meaning Im(ψ) is

dense in (V ⊗ W )∗.

Exercise 7. Show the following linear isomorphisms:

1. S(X,V ) ∼= S(X) ⊗ V .
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2. If V is finite-dimensional: S∗(X,V ) ∼= S∗(X) ⊗ V ∗.

Solution:

1. Consider the map ϕ : S(X) ⊗ V → S(X,V ), ϕ(f ⊗ v) = f ∙ v. It is
well-defined, linear and injective (as before, we assume that vi are linearly
independent and that f is non-zero, then

∑
f ∙ vi 6= 0). In order to define

a map in the other direction, we choose a basis of V , {ei} and define
ψ : S(X,V ) → S(X) ⊗ V by:

ψ(F ) =
∑

i

〈F (x), ei〉 ⊗ ei

This is a linear map (and continuous). It is easy to see that ψ ◦ ϕ = id
and ϕ ◦ ψ = id. This yields the required isomorphism.

2. Consider the map Φ : S∗(X) ⊗ V ∗ → S∗(X,V ) that sends every f ⊗ ` ∈
S∗(X) ⊗ V ∗ to F ∈ S∗(X,V ) ∼= (S(X) ⊗ V )∗ where:

F (h ⊗ v) = f(h) ∙ `(v)

Clearly Φ is linear and injective (the same proof as in exercise 6). Like
before, we present the map in the other direction: Ψ : S∗(X,V ) →
S∗(X) ⊗ V ∗, Ψ(F ) =

∑
i fi ⊗ `i, where:

fi(h) = F (h ∙ ei), `(v) = 〈v, ei〉

So Ψ is also linear and injective, and one can see that it does not depend
on the basis (similar to the previous question). Clearly, Ψ ◦ Φ = id and
Φ ◦ Ψ = id.

Exercise 8. Let F be a local field, F 6= R,C, and let V be a vector space over
F . Show that h(V ) ∼= D(V ).

Solution: Recall that we defined D(V ) = |Ωtop(V )|, so for every Haar measure
we wish to define a bilinear form ω ∈ Ωtop(V ) such that ω(Av1, . . . , Avn) =
| det A| ∙ ω(v1, . . . , vn). Given a Haar measure h we define:

ωh(v1, . . . , vn) = h ({α1v1 + ∙ ∙ ∙ + αnvn : ‖αi‖ ≤ 1})

We need to show the property above for every matrix A, i.e.:

h ({α1Av1 + ∙ ∙ ∙ + αnAvn : ‖αi‖ ≤ 1}) = | det A|∙h ({α1v1 + ∙ ∙ ∙ + αnvn : ‖αi‖ ≤ 1})

when the norm is of course the p-adic norm. By Gauss decomposition it is
enough to show for A diagonal, and matrices of the form: I+aEij (and of course
we can assume vi = ei). Start with diagonal matrices - A = diag(λ1, . . . , λn).
As mentioned in class, the Haar measures on V are the product measures of
the Haar measures on F . In addition we defined the absolute value on p-adics:
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|k| := μ(kS)/μ(S). Denote by S = {α1e1+∙ ∙ ∙+αnen : ‖αi‖ ≤ 1} = S1×∙ ∙ ∙×Sn,
Si ⊂ F . Therefore we get:

hn ({α1λ1e1 + ∙ ∙ ∙ + αnλnen : ‖αi‖ ≤ 1}) = h1(λ1S1) × ∙ ∙ ∙ × hn(λnSn)

= |λ1|h1(S1) × ∙ ∙ ∙ × |λn|hn(Sn)

= |λ1 . . . λn|h(S)

= | det A|h(S)

Now consider matrices of the form A = I + aEij , for some a ∈ F . In this case
we get:

h ({α1Ae1 + ∙ ∙ ∙ + αnAen : ‖αi‖ ≤ 1}) =

h ({α1e1 + ∙ ∙ ∙ + (αi + aαj)ei + ∙ ∙ ∙ + αnen : ‖αi‖ ≤ 1})

:= h(S̃)

Notice that if ‖a‖ ≤ 1 then since ‖αi + aαj‖ = max(‖αi‖, ‖aαj‖) we get that
when ‖αj‖ ≤ 1, it holds that ‖αi‖ ≤ 1 ⇐⇒ ‖αi + aαj‖ ≤ 1. So in this case
(under the assumption of ‖a‖ ≤ 1) we get the set equality S = S̃, i.e.:

{α1e1+∙ ∙ ∙+(αi+aαj)ei+∙ ∙ ∙+αnen : ‖αi‖ ≤ 1} = {α1v1+∙ ∙ ∙+αnvn : ‖αi‖ ≤ 1}

In case where ‖a‖ > 1, we can split S̃ to a finite number of sets such that
‖aαj‖ ≤ 1: Given αj ∈ B0,1 we present the unit ball as a union of ε-balls:
B0,1 = ∪kBk,ε, for ε < 1/‖a‖. This gives a split of the set S̃: S̃ = ∪kS̃k, where:

S̃k = {α1e1 + ∙ ∙ ∙ + (αi + aαj)ei + ∙ ∙ ∙ + αnen : αj ∈ Bi,ε ∧ ∀l 6= j, ‖αl‖ ≤ 1}

By translation we can center the balls around zero and get a set of the same
measure:

Nk = {α1e1 + ∙ ∙ ∙ + (αi + aαj)ei + ∙ ∙ ∙ + αnen : αj ∈ B0,ε ∧ ∀l 6= j, ‖αl‖ ≤ 1}

h(Nk) = h(S̃k)

Now, as in Nk, ‖αj‖ ≤ ε, we again get that ‖αi‖ ≤ 1 ⇐⇒ ‖αi + aαj‖ ≤ 1 and
so h(Nk) = h(Sk) (where Sk is the corresponding split of S). So:

h(S̃) =
∑

h(S̃k) =
∑

h(Nk) =
∑

h(Sk) = h(S)

Exercise 9. Show:

S(V, hV ) ∼=

{

ξ ∈ S∗(V )|
supp(ξ) is compact and ∃ open compact subgroup

K ⊂ V such that ∀k ∈ K, kξ = ξ

}
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Solution: ⊇: Clearly every ξ ∈RHS is compactly supported. For every x ∈ V ,
Kx is an open neighborhood of x, and ξ(Kx) = Kξ(x) = ξ(x), meaning ξ is
locally constant, so we can identify ξ with some f ∈ S(V, hV ).
⊆: Take f ∈ S(V, hV ), then for every x ∈ V there exists an open group Gx

that stabilize f in an open neighborhood Ux of x (since f is locally constant).
These neighborhoods cover supp(f) (which is compact) so there exists a finite
sub-cover: supp(f) ⊂ ∪n

i=1Uxi . Consider the finite intersection:

G =
n
∩

i=1
Gxi

It is an open (and thus non-empty) group, that stabilize f everywhere. Thus
we can identify f with ξ ∈RHS, with K = G.

Exercise* 10. 1. Find (M,C∞) which is ”almost” a smooth manifold, but
is not Hausdorff.

2. Find (M,C∞) which is ”almost” a smooth manifold, but is not para-
compact.

Solution:

1. Consider the line with two origins: M = R× {a} ∪ R× {b}/ ∼, with the
equivalence: ∀x 6= 0, (x, a) ∼ (x, b). Clearly M is second countable and
has a smooth atlas, but is not Hausdorff.

2. Consider the long open ray: M = ω1 × [0, 1) \ (0, 0). We have a topology
with respect to the order on M . Clearly M is Hausdorff, and has a smooth
atlas, but it is not para-compact:
Start with the open covering [0, α) for every ordinal α < ω1. Let X be
some refinement of this covering, and let S be the set of limit ordinals
below ω1. Then S is a stationary subset of ω1 (i.e., it intersects every club
set in ω1). For each β ∈ S , we pick a Yβ ∈ X such that that β ∈ Yβ .
Consider the function f : S → ω1 which sends β to the least ordinal in
Yβ . For any β ∈ S, f(β) < β since β is a limit ordinal. So by Fodor’s
Lemma, There exists a stationary subset S′ ⊂ S, such that f is constant
on S′. Let γ be the value of f on S′, then:

∀β ∈ S′, γ ∈ Yβ

Thus the refinement X is not finite (or even countable) at γ.

Exercise 11. Let E =
{
(θ, x) : θ ∈ S1, x ∈ Lθ/2

}
, where Lθ/2 is a line in

direction θ/2. Define a structure of a vector bundle on E and show that it is
not homeomorphic to the cylinder.

Solution: We show that E has a structure of a vector bundle over S1. Clearly
they are both topological spaces with the continuous projection:

π(θ, x) = θ ∈ S1
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In addition, for every θ ∈ S1, π−1(θ) = Lθ/2 which has a structure of a finite-
dimensional real vector space. Finally, take any θ ∈ S1, let U ⊂ S1 be an open
half circle, such that θ ∈ U and consider π−1(U) =

{
(θ, x) : θ ∈ U, x ∈ Lθ/2

}
.

It is clearly homeomorphic to R2, and so E is indeed a vector bundle over S1.
It is obviously not homeomorphic to the trivial vector bundle over S1, as it is
not orientable(and the trivial is). Note that E is homeomorphic to the Mobius
ring - by rescaling the fibers.
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