Generalized Functions: Homework 6

Exercise 1. Let X ba an ℓ-space, so $C^{\infty}(X)$ separates points.
Solution: Let $x, y \in X$. Since X is Hausdorff, there exist $U, V \subset X$ open, such that $x \in U, y \in V$ and $U \cap V=\emptyset$. Since X has a basis of open compact sets, we can assume that U, V are open and compact (and thus closed, since X is Hausdorff). Define $f: X \rightarrow X$ by:

$$
f(z)= \begin{cases}x & z \in U \\ y & \text { otherwise }\end{cases}
$$

So for every $z \in X$, if $x \in U$ take any $U_{z} \ni z$ open, then $\tilde{U}=U_{z} \cap U$ is also open, contains z and $\left.f\right|_{\tilde{U}}=x$ constant. If $z \notin U$ then take $U_{z} \ni z$ open, so $\tilde{U}=U_{z} \cap(X \backslash U)$ is open (since U is closed) and $\left.f\right|_{\tilde{U}}=y$ constant. This means that $f \in C^{\infty}(X)$ separates x and y as required.

Exercise 2. Show that $S^{*}(X)$ is a sheaf with respect to the restriction map.
Solution: Let $U=\cup_{i} U_{i}$. Denote by $\varphi: S\left(U_{i}\right) \rightarrow S(U)$ the extension by zero. Then $\varphi_{*}: S^{*}(U) \rightarrow S^{*}\left(U_{i}\right),\left(\varphi_{*} \xi\right)(f)=\xi(\varphi \circ f)$ is the restriction map of distributions.
Lemma: Given a compact set $K \subset X$ and an open (finite) cover $K \subset \cup_{i=1}^{n} U_{i}$, there exists a partition on unity on K, sub-ordinate to the open cover.

Proof. We choose a refinement cover of open compact sets: For every $x \in K \cap U_{i}$ we take open compact $x \in K_{i, x} \subset U_{i}$, so

$$
K \subset \bigcup_{i=1}^{n}\left(\underset{x \in K \cap U_{i}}{\bigcup} K_{i, x}\right)
$$

Since K is compact, there exists a finite sub-cover, $K \subset \cup_{i, j} K_{i, j}$, which is a refinement of the original cover. We can assume that this union is disjoint (taking $\left.\tilde{K}_{i, j}=K_{i, j} \backslash\left(\cup_{l<i, k<j} K_{l, k}\right)\right)$. Define:

$$
\rho_{i}(x)= \begin{cases}1 & x \in K_{i, j} \text { for some } j \\ 0 & \text { otherwise }\end{cases}
$$

These are smooth functions (locally constant), $\operatorname{supp}\left(\rho_{i}\right) \subset U_{i}$ and $\sum \rho_{i}=1$.

1. Let $\xi \in S(U)$, and suppose $\xi_{i}=\left.\xi\right|_{U_{i}}=0$. For every $f \in S(U)$, let $\left\{\rho_{i}\right\}_{i}$ be a partition of unity of $\operatorname{supp}(f)$, sub-ordinate to the cover $\left\{U_{i}\right\}$. So $f=\sum_{i} \rho_{i} f$, where each $\rho_{i} f$ "comes from" a distribution in $S\left(U_{i}\right)$. Thus:

$$
\xi(f)=\sum_{i} \xi\left(\rho_{i} f\right)=\sum_{i} \xi_{i}\left(\varphi^{-1}\left(\rho_{i} f\right)\right)=0
$$

2. Let $\xi_{i} \in U_{i}$ such that $\forall i,\left.j \xi_{i}\right|_{U_{i} \cap U_{j}}=\left.\xi_{j}\right|_{U_{i} \cap U_{j}}$. Define:

$$
\xi(f)=\sum_{i} \xi_{i}\left(\frac{\rho_{i} \cdot f}{\sum_{j} \rho_{j}}\right)
$$

Clearly ξ is linear, and for $h \in S\left(U_{k}\right)$:

$$
\left.\xi\right|_{U_{k}}(h)=\xi(\varphi \circ h)=\sum_{i} \xi_{i}\left(\frac{\rho_{i} \cdot \varphi \circ h}{\sum_{j} \rho_{j}}\right) \underset{\rho_{i} \varphi h=\delta_{i k} h}{=} \xi_{k}(h)
$$

i.e. $\left.\xi\right|_{U_{k}}=\xi_{k}$.

Exercise 3. Show that the map $\psi: S(X) \rightarrow S(Z)$ is onto.
Solution: For $f \in S(Z)$, denote by $Y \subset Z$ the compact (and open) support of f. Since the topology on Z is the induced topology from X, there exists open U (in X) such that $Y=U \cap X$. For every $x \in Y$ we take open compact $x \in U_{x} \subset U$, and get a cover $Y \subset \cup_{x} U_{x}$. There exists a finite sub-cover, as Y is compact: $Y \subset \bigcup_{i=1}^{n} U_{i} \equiv \tilde{Y}$. The set \tilde{Y} is open and compact. We define $\tilde{f} \in S(X)$ in the following way:

$$
\tilde{f}(x)= \begin{cases}f(y) & x \in U_{y} \subset \tilde{Y} \\ 0 & x \in X \backslash \tilde{Y}\end{cases}
$$

Exercise 4. Let $L \subset V$ be vector spaces. Show that $\forall f: L \rightarrow K, \exists g: V \rightarrow K$ such that $\left.g\right|_{L}=f$.

Solution: Consider the collection of pairs $\left(L_{\alpha}, f_{\alpha}\right)$ such that $L \subseteq L_{\alpha} \subseteq V$ and $\left.f_{\alpha}\right|_{L}=f$, with the partial order:

$$
\left(L_{\alpha}, f_{\alpha}\right)<\left(L_{\beta}, f_{\beta}\right) \Longleftrightarrow L_{\alpha} \subset L_{\beta},\left.f_{\beta}\right|_{L_{\alpha}}=f_{\alpha}
$$

Given a chain $\left\{\left(L_{\alpha}, f_{\alpha}\right)\right\}_{\alpha \in J}$ there exists an upper bound: $\left(L_{\infty}, f_{\infty}\right)$ where $L_{\infty}=\cup_{\alpha} L_{\alpha}$ and $f_{\infty}(x)=\left\{f_{\alpha}(x): x \in L_{\alpha}\right\}$. Therefore, by Zorn's lemma there exists a maximal element $\left(L_{\alpha_{0}}, f_{\alpha_{0}}\right)$. Suppose $V \neq L_{\alpha_{0}}$, the there exists $y \in V \backslash L_{\alpha_{0}}$. Consider $F=\operatorname{span}\left\{L_{\alpha_{0}}, y\right\}$ and search for $h \in F^{*}$ such that $\left.h\right|_{L_{\alpha_{0}}}=f_{\alpha_{0}}$. But, by linearity, for $x \in L_{\alpha_{0}}$,

$$
h(x+\lambda y)=f_{\alpha_{0}}(x)+\lambda \tilde{h}(y)
$$

Choosing for example $\tilde{h}(y)=1$ we get that $h \in F^{*}$ and:

$$
\left(L_{\alpha_{0}}, f_{\alpha_{0}}\right)<(F, h)
$$

in contradiction to the maximality of $\left(L_{\alpha_{0}}, f_{\alpha_{0}}\right)$. Thus we get $L_{\alpha_{0}}=V, g \equiv f_{\alpha_{0}}$.

Exercise 5. Show that the map $\varphi: S(X) \otimes S(Y) \rightarrow S(X \times Y)$ defined by:

$$
f_{1} \otimes f_{2} \mapsto f(x, y)=f_{1}(x) \cdot f_{2}(y)
$$

is well defined and is a linear isomorphism.
Solution: By linearity of φ, it is enough to check for the basic elements $f_{1} \otimes f_{2}$.

- Well defined: Need to show that $\varphi\left(f_{1} \otimes f_{2}\right) \in S(X \times Y)$. Indeed, f is compactly supported, since $\operatorname{supp}(f)=\operatorname{supp}\left(f_{1}\right) \times \operatorname{supp}\left(f_{2}\right)$ is compact. f is locally constant:

$$
\begin{gathered}
\forall(x, y) \in X \times Y \\
\exists U_{1} \subset X, x \in U_{1} \text {, s.t. }\left.f_{1}\right|_{U_{1}}=c_{1} \\
\exists U_{2} \subset Y, y \in U_{2} \text {, s.t. }\left.f_{2}\right|_{U_{2}}=c_{2}
\end{gathered}
$$

Denoting $U=U_{1} \times U_{2} \subset X \times Y$ open, we get:

$$
(x, y) \in U,\left.f\right|_{U}=\left.\left.f_{1}\right|_{U_{1}} \cdot f_{2}\right|_{U_{2}}=c_{1} \cdot c_{2}
$$

i.e. f is indeed locally constant.

- φ is injective: Take $0 \neq \sum_{i} f_{i} \otimes g_{i} \in S(X) \otimes S(Y)$, then we can assume that f_{i} are linearly independent and that g_{i} are non-zero.

$$
\varphi\left(\sum_{i} f_{i} \otimes g_{i}\right)(x, y)=\sum_{i} f_{i}(x) \cdot g_{i}(y)
$$

Taking y such that $g_{1}(y) \neq 0$, we get (for linearly independence of $\left\{f_{i}\right\}$) that there exists x such that the function above does not vanish, i.e.,

$$
\varphi\left(\sum_{i} f_{i} \otimes g_{i}\right) \neq 0
$$

- φ is surjective: Consider $g(x, y) \in S(X \times Y)$ with compact support K. Since g is locally constant, $\forall p \in X \times Y, \exists \tilde{U}_{p}$ open such that $\left.g\right|_{\tilde{U}_{p}}$ is constant. Since we have a basis of open compact product sets, we can assume $\tilde{U}_{p}=U_{x} \times V_{y}$ open and compact. We got an open cover $K \subset$ $\cup_{(x, y) \in K} U_{x} \times V_{y}$, therefore there exists a finite open compact product sub-cover:

$$
K \subset \cup_{i=1}^{n} U_{x_{i}} \times V_{y_{i}}
$$

such that g is constant on every set in this cover. Subtracting from every set in the cover the previous sets we get a disjoint open compact cover. Since every set which is a difference between two product set is a finite disjoint union of product sets, by splitting these sets we have an open compact product disjoint cover, such that g is constant on every set. Let
$f_{1}^{i}(x) \equiv 1$ in $U_{x_{i}}$, and zero outside (i.e. $\operatorname{supp}\left(f_{1}^{i}\right)=U_{x_{i}}$), and $f_{2}^{i}(y)=$ $g\left(U_{x_{i}} \times V_{y_{i}}\right)$ in $V_{y_{i}}$ and zero outside (i.e. $\left.\operatorname{supp}\left(f_{2}^{i}\right)=V_{y_{i}}\right)$. Then:

$$
g(x, y)=\sum_{i=1}^{n} f_{1}^{i}(x) \cdot f_{2}^{i}(y)=\varphi\left(\sum_{i=1}^{n} f_{1}^{i} \otimes f_{2}^{i}\right)
$$

for $\sum_{i=1}^{n} f_{1}^{i} \otimes f_{2}^{i} \in S(X) \otimes S(Y)$, meaning φ is onto.

Exercise 6. Consider the map $\psi: S^{*}(X) \otimes S^{*}(Y) \rightarrow S^{*}(X \times Y)$, such that for every $f \otimes g, \psi(f \otimes g)$ is a functional on $S(X) \otimes S(Y)=S(X \times Y)$:

$$
\forall h_{1} \otimes h_{2} \in S(X) \otimes S(Y), \psi\left(f_{1} \otimes f_{2}\right)\left(h_{1} \otimes h_{2}\right)=f_{1}\left(h_{1}\right) \cdot f_{2}\left(h_{2}\right)
$$

Show that ψ is injective with dense image.
Solution: By linearity of ψ, it is enough to check for the basic elements $f_{1} \otimes f_{2}$.

- ψ is injective: Take $\sum f_{i} \otimes g_{i} \in S^{*}(X) \otimes S^{*}(Y)$ such that f_{i} are linearly independent and $g_{i} \neq 0$, then the joint kernel of f_{2}, \ldots, f_{n} is not empty (otherwise we would get an embedding from $S^{*}(X) \otimes S^{*}(Y)$ to \mathbb{C}^{n-1} in contradiction, since the dimension of $S^{*}(X) \otimes S^{*}(Y)$ is higher). Denote by $K=\bigcap_{i=2}^{n} \operatorname{ker} f_{i}$ and consider the quotient ${ }^{S(X)} /{ }_{K}$. Then f_{2}, \ldots, f_{n} form a basis for this quotient space. If f_{1} vanishes on K, we would get that f_{1} is a linear combination of f_{2}, \ldots, f_{n}, in contradiction to our assumption. Therefore, there exists $v \in K \subset S(X)$ such that $f_{1}(v) \neq 0$. Taking $w \in S(Y)$ such that $g_{1}(w)=1$ we get:

$$
\left(\sum f_{i} \otimes g_{i}\right)(v \otimes w) \neq 0
$$

- ψ has a dense image: Using the previous exercise, we actually need to show that the map $\psi: V^{*} \otimes W^{*} \rightarrow(V \otimes W)^{*}$ has a dense image. Notice that a subspace of a dual space is dense if and only if the only element this subspaces vanishes on is the zero element. Take any $\sum v_{i} \otimes w_{i} \in V \otimes W$ (like before we assume v_{i} are linearly independent and w_{i} are non-zero), then $F=\psi(f \otimes g)$ acts on this element by:

$$
F\left(\sum v_{i} \otimes w_{i}\right)=\sum f\left(v_{i}\right) \cdot g\left(w_{i}\right)
$$

Taking f such that $f\left(v_{j}\right)=\delta_{1 j}$ (possible since v_{i} are linearly independent) and g such that $g\left(w_{1}\right)=1$, we get $F\left(\sum v_{i} \otimes w_{i}\right) \neq 0$, meaning $\operatorname{Im}(\psi)$ is dense in $(V \otimes W)^{*}$.

Exercise 7. Show the following linear isomorphisms:

1. $S(X, V) \cong S(X) \otimes V$.
2. If V is finite-dimensional: $S^{*}(X, V) \cong S^{*}(X) \otimes V^{*}$.

Solution:

1. Consider the map $\varphi: S(X) \otimes V \rightarrow S(X, V), \varphi(f \otimes v)=f \cdot v$. It is well-defined, linear and injective (as before, we assume that v_{i} are linearly independent and that f is non-zero, then $\sum f \cdot v_{i} \neq 0$). In order to define a map in the other direction, we choose a basis of $V,\left\{e_{i}\right\}$ and define $\psi: S(X, V) \rightarrow S(X) \otimes V$ by:

$$
\psi(F)=\sum_{i}\left\langle F(x), e_{i}\right\rangle \otimes e_{i}
$$

This is a linear map (and continuous). It is easy to see that $\psi \circ \varphi=i d$ and $\varphi \circ \psi=i d$. This yields the required isomorphism.
2. Consider the map $\Phi: S^{*}(X) \otimes V^{*} \rightarrow S^{*}(X, V)$ that sends every $f \otimes \ell \in$ $S^{*}(X) \otimes V^{*}$ to $F \in S^{*}(X, V) \cong(S(X) \otimes V)^{*}$ where:

$$
F(h \otimes v)=f(h) \cdot \ell(v)
$$

Clearly Φ is linear and injective (the same proof as in exercise 6). Like before, we present the map in the other direction: $\Psi: S^{*}(X, V) \rightarrow$ $S^{*}(X) \otimes V^{*}, \Psi(F)=\sum_{i} f_{i} \otimes \ell_{i}$, where:

$$
f_{i}(h)=F\left(h \cdot e_{i}\right), \quad \ell(v)=\left\langle v, e_{i}\right\rangle
$$

So Ψ is also linear and injective, and one can see that it does not depend on the basis (similar to the previous question). Clearly, $\Psi \circ \Phi=i d$ and $\Phi \circ \Psi=i d$.

Exercise 8. Let F be a local field, $F \neq \mathbb{R}, \mathbb{C}$, and let V be a vector space over F. Show that $h(V) \cong D(V)$.

Solution: Recall that we defined $D(V)=\left|\Omega^{t o p}(V)\right|$, so for every Haar measure we wish to define a bilinear form $\omega \in \Omega^{t o p}(V)$ such that $\omega\left(A v_{1}, \ldots, A v_{n}\right)=$ $|\operatorname{det} A| \cdot \omega\left(v_{1}, \ldots, v_{n}\right)$. Given a Haar measure h we define:

$$
\omega_{h}\left(v_{1}, \ldots, v_{n}\right)=h\left(\left\{\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}:\left\|\alpha_{i}\right\| \leq 1\right\}\right)
$$

We need to show the property above for every matrix A, i.e.:
$h\left(\left\{\alpha_{1} A v_{1}+\cdots+\alpha_{n} A v_{n}:\left\|\alpha_{i}\right\| \leq 1\right\}\right)=|\operatorname{det} A| \cdot h\left(\left\{\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}:\left\|\alpha_{i}\right\| \leq 1\right\}\right)$
when the norm is of course the p-adic norm. By Gauss decomposition it is enough to show for A diagonal, and matrices of the form: $I+a E_{i j}$ (and of course we can assume $\left.v_{i}=e_{i}\right)$. Start with diagonal matrices - $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. As mentioned in class, the Haar measures on V are the product measures of the Haar measures on F. In addition we defined the absolute value on p-adics:
$|k|:=\mu(k S) / \mu(S)$. Denote by $S=\left\{\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}:\left\|\alpha_{i}\right\| \leq 1\right\}=S_{1} \times \cdots \times S_{n}$, $S_{i} \subset F$. Therefore we get:

$$
\begin{aligned}
h_{n}\left(\left\{\alpha_{1} \lambda_{1} e_{1}+\cdots+\alpha_{n} \lambda_{n} e_{n}:\left\|\alpha_{i}\right\| \leq 1\right\}\right) & =h_{1}\left(\lambda_{1} S_{1}\right) \times \cdots \times h_{n}\left(\lambda_{n} S_{n}\right) \\
& =\left|\lambda_{1}\right| h_{1}\left(S_{1}\right) \times \cdots \times\left|\lambda_{n}\right| h_{n}\left(S_{n}\right) \\
& =\left|\lambda_{1} \ldots \lambda_{n}\right| h(S) \\
& =|\operatorname{det} A| h(S)
\end{aligned}
$$

Now consider matrices of the form $A=I+a E_{i j}$, for some $a \in F$. In this case we get:

$$
\begin{aligned}
& h\left(\left\{\alpha_{1} A e_{1}+\cdots+\alpha_{n} A e_{n}:\left\|\alpha_{i}\right\| \leq 1\right\}\right)= \\
& h\left(\left\{\alpha_{1} e_{1}+\cdots+\left(\alpha_{i}+a \alpha_{j}\right) e_{i}+\cdots+\alpha_{n} e_{n}:\left\|\alpha_{i}\right\| \leq 1\right\}\right) \\
& :=h(\tilde{S})
\end{aligned}
$$

Notice that if $\|a\| \leq 1$ then since $\left\|\alpha_{i}+a \alpha_{j}\right\|=\max \left(\left\|\alpha_{i}\right\|,\left\|a \alpha_{j}\right\|\right)$ we get that when $\left\|\alpha_{j}\right\| \leq 1$, it holds that $\left\|\alpha_{i}\right\| \leq 1 \Longleftrightarrow\left\|\alpha_{i}+a \alpha_{j}\right\| \leq 1$. So in this case (under the assumption of $\|a\| \leq 1$) we get the set equality $S=\tilde{S}$, i.e.:
$\left\{\alpha_{1} e_{1}+\cdots+\left(\alpha_{i}+a \alpha_{j}\right) e_{i}+\cdots+\alpha_{n} e_{n}:\left\|\alpha_{i}\right\| \leq 1\right\}=\left\{\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}:\left\|\alpha_{i}\right\| \leq 1\right\}$
In case where $\|a\|>1$, we can split \tilde{S} to a finite number of sets such that $\left\|a \alpha_{j}\right\| \leq 1$: Given $\alpha_{j} \in B_{0,1}$ we present the unit ball as a union of ϵ-balls: $B_{0,1}=\cup_{k} B_{k, \epsilon}$, for $\epsilon<1 /\|a\|$. This gives a split of the set $\tilde{S}: \tilde{S}=\cup_{k} \tilde{S}_{k}$, where:

$$
\tilde{S}_{k}=\left\{\alpha_{1} e_{1}+\cdots+\left(\alpha_{i}+a \alpha_{j}\right) e_{i}+\cdots+\alpha_{n} e_{n}: \alpha_{j} \in B_{i, \epsilon} \wedge \forall l \neq j,\left\|\alpha_{l}\right\| \leq 1\right\}
$$

By translation we can center the balls around zero and get a set of the same measure:

$$
\begin{gathered}
N_{k}=\left\{\alpha_{1} e_{1}+\cdots+\left(\alpha_{i}+a \alpha_{j}\right) e_{i}+\cdots+\alpha_{n} e_{n}: \alpha_{j} \in B_{0, \epsilon} \wedge \forall l \neq j,\left\|\alpha_{l}\right\| \leq 1\right\} \\
h\left(N_{k}\right)=h\left(\tilde{S}_{k}\right)
\end{gathered}
$$

Now, as in $N_{k},\left\|\alpha_{j}\right\| \leq \epsilon$, we again get that $\left\|\alpha_{i}\right\| \leq 1 \Longleftrightarrow\left\|\alpha_{i}+a \alpha_{j}\right\| \leq 1$ and so $h\left(N_{k}\right)=h\left(S_{k}\right)$ (where S_{k} is the corresponding split of S). So:

$$
h(\tilde{S})=\sum h\left(\tilde{S}_{k}\right)=\sum h\left(N_{k}\right)=\sum h\left(S_{k}\right)=h(S)
$$

Exercise 9. Show:

$S\left(V, h_{V}\right) \cong\left\{\xi \in S^{*}(V) \left\lvert\, \begin{array}{c}\operatorname{supp}(\xi) \text { is compact and } \exists \text { open compact subgroup } \\ K \subset V \text { such that } \forall k \in K, k \xi=\xi\end{array}\right.\right\}$

Solution: \supseteq : Clearly every $\xi \in$ RHS is compactly supported. For every $x \in V$, $K x$ is an open neighborhood of x, and $\xi(K x)=K \xi(x)=\xi(x)$, meaning ξ is locally constant, so we can identify ξ with some $f \in S\left(V, h_{V}\right)$.
\subseteq : Take $f \in S\left(V, h_{V}\right)$, then for every $x \in V$ there exists an open group G_{x} that stabilize f in an open neighborhood U_{x} of x (since f is locally constant). These neighborhoods cover $\operatorname{supp}(f)$ (which is compact) so there exists a finite sub-cover: $\operatorname{supp}(f) \subset \cup_{i=1}^{n} U_{x_{i}}$. Consider the finite intersection:

$$
G=\bigcap_{i=1}^{n} G_{x_{i}}
$$

It is an open (and thus non-empty) group, that stabilize f everywhere. Thus we can identify f with $\xi \in \mathrm{RHS}$, with $K=G$.

Exercise* 10. 1. Find $\left(M, C^{\infty}\right)$ which is "almost" a smooth manifold, but is not Hausdorff.
2. Find $\left(M, C^{\infty}\right)$ which is "almost" a smooth manifold, but is not paracompact.

Solution:

1. Consider the line with two origins: $M=\mathbb{R} \times\{a\} \cup \mathbb{R} \times\{b\} / \sim$, with the equivalence: $\forall x \neq 0,(x, a) \sim(x, b)$. Clearly M is second countable and has a smooth atlas, but is not Hausdorff.
2. Consider the long open ray: $M=\omega_{1} \times[0,1) \backslash(0,0)$. We have a topology with respect to the order on M. Clearly M is Hausdorff, and has a smooth atlas, but it is not para-compact:
Start with the open covering $[0, \alpha)$ for every ordinal $\alpha<\omega_{1}$. Let X be some refinement of this covering, and let S be the set of limit ordinals below ω_{1}. Then S is a stationary subset of ω_{1} (i.e., it intersects every club set in $\left.\omega_{1}\right)$. For each $\beta \in S$, we pick a $Y_{\beta} \in X$ such that that $\beta \in Y_{\beta}$. Consider the function $f: S \rightarrow \omega_{1}$ which sends β to the least ordinal in Y_{β}. For any $\beta \in S, f(\beta)<\beta$ since β is a limit ordinal. So by Fodor's Lemma, There exists a stationary subset $S^{\prime} \subset S$, such that f is constant on S^{\prime}. Let γ be the value of f on S^{\prime}, then:

$$
\forall \beta \in S^{\prime}, \quad \gamma \in Y_{\beta}
$$

Thus the refinement X is not finite (or even countable) at γ.
Exercise 11. Let $E=\left\{(\theta, x): \theta \in S^{1}, x \in L_{\theta / 2}\right\}$, where $L_{\theta / 2}$ is a line in direction $\theta / 2$. Define a structure of a vector bundle on E and show that it is not homeomorphic to the cylinder.

Solution: We show that E has a structure of a vector bundle over S^{1}. Clearly they are both topological spaces with the continuous projection:

$$
\pi(\theta, x)=\theta \in S^{1}
$$

In addition, for every $\theta \in S^{1}, \pi^{-1}(\theta)=L_{\theta / 2}$ which has a structure of a finitedimensional real vector space. Finally, take any $\theta \in S^{1}$, let $U \subset S^{1}$ be an open half circle, such that $\theta \in U$ and consider $\pi^{-1}(U)=\left\{(\theta, x): \theta \in U, x \in L_{\theta / 2}\right\}$. It is clearly homeomorphic to \mathbb{R}^{2}, and so E is indeed a vector bundle over S^{1}. It is obviously not homeomorphic to the trivial vector bundle over S^{1}, as it is not orientable(and the trivial is). Note that E is homeomorphic to the Mobius ring - by rescaling the fibers.

