Generalized Functions: Homework 6

Exercise 1. Let X ba an £-space, so C°(X) separates points.

Solution: Let x,y € X. Since X is Hausdorff, there exist U,V C X open, such
that z € U, y € V and UNV = (). Since X has a basis of open compact sets,
we can assume that U,V are open and compact (and thus closed, since X is
Hausdorff). Define f: X — X by:

f(z)—{x zeU

y otherwise

So for every z € X, if x € U take any U, > z open, then U=U,NU is also
open, contains z and f|; = x constant. If z ¢ U then take U, > z open, so
U =U,N(X\U) is open (since U is closed) and f|; = y constant. This means
that f € C*(X) separates x and y as required.

Exercise 2. Show that S*(X) is a sheaf with respect to the restriction map.

Solution: Let U = U;U;. Denote by ¢ : S(U;) — S(U) the extension by
zero. Then @, : S*(U) — S*(U;), (p&)(f) = &(p o f) is the restriction map of
distributions.

Lemma: Given a compact set K C X and an open (finite) cover K C U U,
there exists a partition on unity on K, sub-ordinate to the open cover.

Proof. We choose a refinement cover of open compact sets: For every x € KNU;
we take open compact z € K; , C U;, so

n
Kcu ( U K,L@)
i=1 \ze KNU;

Since K is compact, there exists a finite sub-cover, K C U;;K; ;, which is
a refinement of the original cover. We can assume that this union is disjoint
(taking Kiﬁj = Ki,j \ (Ul<i,k<jKl,k))~ Define:

1 =z € K,  for some j
pi(z) = .
0 otherwise

These are smooth functions (locally constant), supp(p;) C U; and > p; = 1.
O

L. Let £ € S(U), and suppose &; = {|y, = 0. For every f € S(U), let {p;}i
be a partition of unity of supp(f), sub-ordinate to the cover {U;}. So
f=>",pif, where each p; f ”comes from” a distribution in S(U;). Thus:

§(f) = Zf(ﬂif) = Zii (¢ pif)) =0



2. Let & € U; such that Vi, 5 &;

_ N2
_zi:& (ijj>

Clearly ¢ is linear, and for h € S(Uy):

i poh
£|Uk( ) QOOh Z& (pzsopj ) Pz‘@hi&:kh gk(h)

ie. f‘Uk :fk
Exercise 3. Show that the map ¢ : S(X) — S(Z) is onto.

Solution: For f € S(Z), denote by Y C Z the compact (and open) support
of f. Since the topology on Z is the induced topology from X, there exists
open U (in X) such that Y = U N X. For every x € Y we take open compact
xe U, CU, and get a cover Y C U,U,. There exists a finite sub-cover, as Y is

compact: Y C U U; =Y. The set Y is open and compact. We define f € S (X)

in the followmg way

= ) fw) xEUny/
f(x){o reX\Y

Exercise 4. Let L C V be vector spaces. Show thatVf :L — K, 3g:V — K
such that g|p, = f

Solution: Consider the collection of pairs (Lg, fo) such that L C L, CV and
falL = f, with the partial order:

(Lavfoc) < (Lﬁvfﬁ) <~ L, C Lﬁa fﬁ‘La = f

Given a chain {(Lq, fa)},c, there exists an upper bound: (Lo, fso) where
Lo = UyLy and foo(z) = {fa(z) : @ € Ls}. Therefore, by Zorn’s lemma
there exists a maximal element (Lag, fo,)- Suppose V' # L, , the there exists
y e V\ Loé0 Consider F' = span{L,,,y} and search for h € F* such that
hlL., = fao- But, by linearity, for z € La,,

h(l’ + )‘y) = fao (x) + )\71(3/)
Choosing for example h(y) = 1 we get that h € F* and:

(Lag, fao) < (F, D)

in contradiction to the maximality of (La,, fa,). Thus we get Lo, =V, g = fa,-



Exercise 5. Show that the map ¢ : S(X)® S(Y) — S(X xY) defined by:

fi® fo = f(z,y) = fi(z) - f2(y)
1s well defined and is a linear isomorphism.

Solution: By linearity of ¢, it is enough to check for the basic elements fi ® fo.

o Well defined: Need to show that o(f1 @ f2) € S(X xY). Indeed,f is

compactly supported, since supp(f) = supp(f1) x supp(f2) is compact. f
is locally constant:

V(z,y) € X XY
dU; € X, x € Uy, s.t. f1|U1 =1
U, C 'Y, y € Us, s.t. f2|U2 =Cy

Denoting U = U; x Uy C X X Y open, we get:

(x,y) €U, flv = filv, - falu, = 12
i.e. f is indeed locally constant.

e ¢ is injective: Take 0 # Y. f; ® g; € S(X) ® S(Y), then we can assume
that f; are linearly independent and that g; are non-zero.

@ (Z fi ®gi> (z,y) = Zfi(x) - gi(y)

Taking y such that ¢1(y) # 0, we get (for linearly independence of {f;})
that there exists = such that the function above does not vanish, i.e.,

® <Zfi®gi> #0

e ¢ is surjective: Consider g(z,y) € S(X x Y) with compact support K.
Since ¢ is locally constant, Vp € X X Y, EIUP open such that 9|Up is
constant. Since we have a basis of open compact product sets, we can
assume Up = U, x V,, open and compact. We got an open cover K C
Ue,y)ek Uz X Vy, therefore there exists a finite open compact product
sub-cover:

K C U?:lUL', X Vq

such that g is constant on every set in this cover. Subtracting from every
set in the cover the previous sets we get a disjoint open compact cover.
Since every set which is a difference between two product set is a finite
disjoint union of product sets, by splitting these sets we have an open
compact product disjoint cover, such that g is constant on every set. Let



fi(x) = 1 in U,,, and zero outside (i.e. supp( fi ) = Uy,), and fi(y) =
g Uy, x V,,) in V,, and zero outside (i.e. supp(fs) =V,,). Then:

g(z,y) = Z fi@) - f5(y) = (Z fi® f%)

for Y7 | fi® fi € S(X)® S(Y), meaning ¢ is onto.

Exercise 6. Consider the map ¢ : S*(X)® S*(Y) — S*(X xY), such that for
every f ® g, ¥(f ® g) is a functional on S(X)® S(Y)=S5(X xY):

Vhi ® ho € S(X) @ S(Y), ¥ (f1 ® f2) (h1 ® ha) = fi(h1) - fa(h2)

Show that 1 is injective with dense image.

Solution: By linearity of 1, it is enough to check for the basic elements f; ® fa.

e ¢ is injective: Take Y f; ® g; € S*(X) ® S*(Y) such that f; are linearly
independent and g; # 0, then the joint kernel of fs,..., f,, is not empty
(otherwise we would get an embedding from S*(X) ® S*(Y) to C"~!
contradiction, since the dimension of S*(X) ® S*(Y) is higher). Denote

by K = '%2 ker f; and consider the quotient *(X) /x-. Then fo,..., f, form
1=

a basis for this quotient space. If f; vanishes on K, we would get that f;
is a linear combination of fo,..., f,, in contradiction to our assumption.
Therefore, there exists v € K C S(X) such that f1(v) # 0. Taking
w € S(Y) such that g1 (w) =1 we get:

(Zfi@gi) (v@w)#0

e 1 has a dense image: Using the previous exercise, we actually need to
show that the map ¢ : V* @ W* — (V @ W)" has a dense image. Notice
that a subspace of a dual space is dense if and only if the only element this
subspaces vanishes on is the zero element. Take any > v, @ w; € V@ W
(like before we assume v; are linearly independent and w; are non-zero),
then F' = ¢(f ® g) acts on this element by:

F(Zvi@)wi) Zf (vi) w;)

Taking f such that f(v;) = d1; (possible since v; are linearly independent)
and g such that g(w;) = 1, we get F (D> v; ® w;) # 0, meaning I'm(v) is
dense in (V@ W)".

Exercise 7. Show the following linear isomorphisms:

1 S(X, V)2 S(X)®V.



2. If V is finite-dimensional: S*(X,V) = S*(X) @ V*.
Solution:

1. Consider the map ¢ : S(X)®@V — S(X,V), o(f ®v) = f-v. Itis
well-defined, linear and injective (as before, we assume that v; are linearly
independent and that f is non-zero, then Y f-v; # 0). In order to define
a map in the other direction, we choose a basis of V, {e;} and define
P:S(X,V)— S(X)®V by:

Y(F) = Z (F(z),e) @ e

This is a linear map (and continuous). It is easy to see that ¢ o ¢ = id
and ¢ o1 = id. This yields the required isomorphism.

2. Consider the map ® : S*(X) ® V* — S*(X,V) that sends every f ® ¢ €
S*(X)@V*to F e S*(X,V) = (S(X)® V)" where:

F(h®v) = f(h)-£(v)

Clearly @ is linear and injective (the same proof as in exercise 6). Like
before, we present the map in the other direction: ¥ : S*(X,V) —
S*X)@V*, U(F) =", fi ® 4, where:

filh) = F(h-e:), £(v) = (v, ¢

So W is also linear and injective, and one can see that it does not depend
on the basis (similar to the previous question). Clearly, ¥ o & = id and
PoV¥ =1d.

Exercise 8. Let F be a local field, F # R, C, and let V be a vector space over
F. Show that h(V') =2 D(V).

Solution: Recall that we defined D(V) = |Q°P(V)], so for every Haar measure
we wish to define a bilinear form w € QP(V) such that w(Avy,...,Av,) =
|det A| - w(vy,...,v,). Given a Haar measure h we define:

wh(V1, ..y 0n) = h ({avr + -+ apop : lag]] < 13)
We need to show the property above for every matrix A, i.e.:
h({anAvy + - + anAv, oyl < 1}) = | det A|-h ({aqv1 + -+ + anoy ¢ las|| <

when the norm is of course the p-adic norm. By Gauss decomposition it is
enough to show for A diagonal, and matrices of the form: I+aE;; (and of course
we can assume v; = ¢;). Start with diagonal matrices - A = diag(A1, ..., \n).
As mentioned in class, the Haar measures on V' are the product measures of
the Haar measures on F'. In addition we defined the absolute value on p-adics:



K] := 1u(kS)/u(S). Demote by § = faner - —+anen : flasl) < 1} = Sy %+ xS,
S; C F. Therefore we get:

he ({aad1er + -+ apdpen t||ai]l <1} = hi(A1S1) X -+ X hyy (A Sn)
= [A]h1(S1) X -+ X |An]hn(Sn)
= |A1... Ap]h(9)
= |det A|h(S)

Now consider matrices of the form A = I + aE;;, for some a € F. In this case
we get:

h({oardey + -+ andey : [lagl| < 1}) =
h({oaner + -+ (i +aaj)e; + -+ aney : |lagl| < 1})

== h(S)

Notice that if |la|| < 1 then since ||a; + ac;|| = max(|las]l, |Jac;||) we get that
when |la;|| < 1, it holds that ||o;|| <1 <= |la; + aa;|| < 1. So in this case
(under the assumption of ||a|| < 1) we get the set equality S = S, i.e.:

{oner+ - +H(ai+aaj)ei+- - Fane, : |la;]| < 1} = {agvi+- - Fanoy @ [Joy]] < 1}

In case where |ja|| > 1, we can split S to a finite number of sets such that
llac,|] < 1: Given a; € By we present the unit ball as a union of e-balls:
By,1 = Uk By, for € < 1/||al|. This gives a split of the set S: S = UjSy, where:

Sk::{alel+"'+(ai+aaj)ei+"'+anen:aj eBi,e/\VZ#jv ||al|| < 1}

By translation we can center the balls around zero and get a set of the same
measure:

Ny, :{04161+"'+(ai+aaj)€i+"'+0én6n2ij €BO’E/\Vl7éj, HO[[H < 1}

h(Ni) = h(Sk)

Now, as in N, |la;|| <€, we again get that ||a;|| <1 <= || +aa;|| <1 and
s0 h(Ny) = h(Sk) (where Sy is the corresponding split of S). So:

h(8) = h(Sk)=> h(Ni) =Y h(Sk)=h(S)

Exercise 9. Show:

~ . supp(€) is compact and 3 open compact subgroup
S(V.hy) = {5 €SVl K C Vsuch that Vk € K, ké = ¢



Solution: DO: Clearly every £ €eRHS is compactly supported. For every x € V,
Kz is an open neighborhood of x, and £(Kz) = K&(z) = &(z), meaning & is
locally constant, so we can identify & with some f € S(V, hy).

C: Take f € S(V,hy), then for every z € V there exists an open group G,
that stabilize f in an open neighborhood U, of z (since f is locally constant).
These neighborhoods cover supp(f) (which is compact) so there exists a finite
sub-cover: supp(f) C U, U,,. Consider the finite intersection:

n
G= NG,
=1 .

It is an open (and thus non-empty) group, that stabilize f everywhere. Thus
we can identify f with £ eRHS, with K = G.

Exercise* 10. 1. Find (M,C®) which is "almost” a smooth manifold, but
is not Hausdorff.

2. Find (M,C>) which is “almost” a smooth manifold, but is not para-
compact.

Solution:

1. Consider the line with two origins: M =R x {a} UR x {b}/ ~, with the
equivalence: Vo # 0, (z,a) ~ (x,b). Clearly M is second countable and
has a smooth atlas, but is not Hausdorff.

2. Consider the long open ray: M = w; x [0,1) \ (0,0). We have a topology

with respect to the order on M. Clearly M is Hausdorff, and has a smooth
atlas, but it is not para-compact:
Start with the open covering [0, «) for every ordinal @ < wy. Let X be
some refinement of this covering, and let S be the set of limit ordinals
below wy. Then S is a stationary subset of wy (i.e., it intersects every club
set in wy). For each 8 € S, we pick a Y3 € X such that that 5 € V3.
Consider the function f : S — w; which sends (8 to the least ordinal in
Ys. For any 8 € S, f(f) < [ since 3 is a limit ordinal. So by Fodor’s
Lemma, There exists a stationary subset S’ C S, such that f is constant
on S’. Let v be the value of f on S’, then:

VeSS, veYs
Thus the refinement X is not finite (or even countable) at .

Exercise 11. Let E = {(9,35):96 Sl xe Lg/g}, where Ly is a line in
direction 0/2. Define a structure of a vector bundle on E and show that it is
not homeomorphic to the cylinder.

Solution: We show that E has a structure of a vector bundle over S*. Clearly
they are both topological spaces with the continuous projection:

n(0,2) =0 ¢c S



In addition, for every § € S, 7=1(0) = Ly, which has a structure of a finite-
dimensional real vector space. Finally, take any § € S', let U C S' be an open
half circle, such that # € U and consider 7= 1(U) = {(9,3:) :0eU, x e Lg/z}.
It is clearly homeomorphic to R2, and so E is indeed a vector bundle over S*.
It is obviously not homeomorphic to the trivial vector bundle over S!, as it is
not orientable(and the trivial is). Note that E is homeomorphic to the Mobius
ring - by rescaling the fibers.



