
Wave front Set
Wave front Set is an object related to distributions, which reflects in which directions the distribu-

tion is singular.
While we shall talk about it’s definition later on, it’s characterizing properties shall be discussed now.
Let F be a field, and let M be an analytical manifold.
ξ ∈ C−∞(M)
WF (ξ) ⊂ T ∗(M) - WF is the Wavefront set.

WF properties

1. WF (ξ) = WF (ξ) - the wave front set is a closed set

2. (x, v) ∈WF (ξ) =⇒
∀λ∈F

(x, λv) ∈WF (ξ) - the wave front set is a conic with respect to multiplication

by scalars in the fibers of T ∗(M)

3. P (WF (ξ)) = WF{ξ) ∩M = supp(ξ) where P : T ∗M →M

4. ξ - smooth ⇔WF (ξ) ⊂M

5. WF (fξ1 + gξ2) ⊂WF (ξ1) ∪WF (ξ2) where f, g ∈ C∞(M) or f, g ∈ C∞(M,Hom(E1, E2))
Before presenting the rest of the properties, let us recall:
A pull back of function f : Y → C by π is defined asπ∗(f) = f ◦ π

π : X −→ Y
π∗(f) ↘ ↓ f

C

We define the push forward of a distribution to be
< π∗(ξ), f >=< ξ, π∗(f) >
a pull-back of a distribution:

6. Having ξ - a distribution on Y, and a submersion π is a smooth functionπ : X → Y ,a pullback
of ξ along π can be seen as ξ◦π, or
< π∗(ξ), f >=< ξ, π∗(f) > where f ∈ C∞(Y )

7. let π : X → Y be a submersion , ξ ∈ C−∞(Y )
WF (π∗(ξ)) = π∗(WF (ξ)) = {(x, v) ∈ T ∗(X)|∃(y, w) ∈WF (ξ) s.t. π(x) = y and d∗Xπ(w) = v}
where d∗X is a co-differential.

8. For π : X → Y,ξ ∈ C−∞(Y ), π|suppξ-proper map (the inverse map of compact subset is compact)
WF (π∗(ξ)) ⊂ π∗(WF (ξ)) = {(y, w) ∈ T ∗(Y )|∃ (x, v) ∈WF (ξ) s.t. π(x) = y, d∗Xπ(w) = v}
In order to proove the uniqueness of the wavefront, we should consider the following:

The WF is defined uniquly on R by axioms 1-4.
For a linear space V and a function p ∈ V ∗ , take a cutoff functionρ - which takes only a small area
into account.
By characteristic 7 - (*)WF (p∗(ρξ)) ⊂ p∗(WF (ρξ)) ⊂ R which means p∗(ρξ) is a smooth function.
This means that the vectorp is in the wavefront, but not only direction p is relevant, but also nearby
directions.
(*) sets the lower bound. In order to get the upper bound, we need to look at ξ as a push forward
of another function. We shall use the Radon transform to do that: with L the space of lines, C→ V,
C→ L, and Radon : V → L, Radon−1:L→ V
The idea now is to show that the Radon transform turnes the inclusion of character 7 into equality,
and then, with equality from both sides (on characters 6 and 7) we get uniqueness.

EX∗: Prove that the 7 characteristics define the WF uniquely.
We shall prove existance in the general case, in order to cover both real and p-adic cases (Hormander
defined through Fourier transform, which checks how much the function is smooth over the real space).
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Def : for ξ ∈ C−∞(V ),
(0, v) /∈ WF (ξ) ⇔ ∃f ∈ C−∞(V ), f(0) 6= 0, ∃U 3 v s.t.

(
U × R 3(v′, λ) 7→ f̂ ξ(λv′)

)
∈ SR(U × R)

where SR(U × R) are the Schwartz functions along R.
In books you may found the definition for the real case (0, v) /∈ WF (ξ) ⇔ ∀n∃c s.t. f̂ξ(λv′) <

Cn

(
1

1+‖λ‖

)n
and that helps defining a smooth distribution in a certain direction.

In light of the definition, prooving charateristics 1-5 are easy, and 7 is easy given the 6’th charac-
teristic:

X
f→ Y

x 7→ (x, f(x))

X
embedding−→ X × Y
↘ ↓ projection

Y

In order to proove characteristic 6, it is needed to understand why the change of variables is
valid (the proofs of the p-adic case can be found in Heifetz’s work. The relevant part in Hormander’s
book is in chapter 8)
We’ll proove now that the definition is relevant to diffeomorphic variables change: Because ξ ∈ C−∞
acts “nicely” on several directions, we would like to check that its transform acts the same on those
directions. On those directions the differential of the veriables change function operates on ξ.
Takeϕ : V → V, where Id = D0ϕ : V → V , then:

ρ̂ϕ∗(ξ) ∼ ρ̂ξ

By the characteristics, we can calculate:
for

µ ∈ C∞(M,DM ), i : M ↪→ N,WF (i∗(µ)) = CNM
N

where CNM
N ⊂ T ∗M is the co-normal bundle, where N ⊂M

Ex : Calculate:

1. WF (δ)

2. WF (sin)

3. WF (Xλ
+) (from the first lesson)

4. WF (∆w)

5. WF (i∗(µ)) can be calculated manually, but it is difficult. Use characteristics

In the beggining of the lesson, we defined push-forward in a spesific way and developed it. We did not
do the same for pull-back.
Define a pull-back for a smooth distribution regarding some mapping.
C−∞Γ (M) = {ξ|WF (ξ) ⊂ Γ} , Γ ⊂ T ∗M . We have convergence such that

C−∞Γ (M) 3 ξi →
Γ
ξ ∈ C−∞Γ (M)

for π : X → Y we’ll take Sπ ⊂ T ∗Y, Sπ = {(y, v)|∃x s.t. π(x) = y, d∗X(v) = 0}where d∗X is the co-
differential. Sπ gives the zero section on the image, and actually “checks” how much the function is
not an immersion.
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Thm :Y ⊂ Γ ⊂ T ∗(Y ), Γ ∩ Sπ ⊂ Y,
π∗ : C∞(Y ) → C∞(X)

∩ ∩
C−∞Γ (Y ) → C−∞Γ (X)

Ex : Prove the theorem
To show uniqueness, one should show that C∞(Y ) is dense in C−∞Γ (Y ). In order to do so, take
C−∞Γ (Y ) 3 ρi → δ ∈ C∞(Y ) and define ξi := ρi ∗ ξ and that approximates ξ into a smooth function,
then define π∗(ξ) := limπ∗(ξi) and its convergence is all that is left to prove.

ξ1, ξ2 WF (ξ1) ∩WF (ξ2) ⊂ M but we do not know how to call ξ1 · ξ2. Therefore, we shall define
ξ1 � ξ2 ∈ C−∞(M ×M) (�is called outer product). C∞c (M)⊗ C∞c (M)→ C∞c (M ×M)
In order to define the inner multiplication, we shall use an outer one and pull it back through the
diagonal:
M ↪→M ∗M
x 7→ (x, x)
This will work due to the fact that T ∗(x ∗ y) = T ∗(x) ∗ T ∗(y) and this equation shows that the WF of
an outer multiplication is equal to the multiplication of WF’s.
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