
ALGEBRAIC TOPOLOGY-EXC 2

ITAY GLAZER

Q1) Show that:

a) π0 ◦ Ω = π1.

b) Ω(Ω(X)) = Mor(S2, X) .

Proof. a) Let (X,x0) be a pointed topological space. Ω(X,x0) = cont((S1, s0), (X,x0), {f0}) when
f0(S1) = x0 . We want to prove that f, g ∈ Ω(X,x0) are path connected in inΩ(X,x0) i� they are

homotopic in (X,x0),i.e [f ] = [g] ∈ π1(X,x0).

There is an homeomorphism between cont(X × Y,Z) to cont(X, cont(Y,Z) ( if Y locally compact

Hausdor� and X is Hausdor�) by f 7−→ (x 7−→ fx) when fx(y) = f(x, y) . So for any f1, f2 :

S1 −→ X such that f1 ∼ f2, there is an homotopy H : I × S1 −→ X . This homotpoy correponds

to the path γ : I −→ cont(S1, X) by γ(t)(s) = H(t, s), when γ(0) = f1 to γ(1) = f2. We do the

same for the other direction and we get that π0 ◦ Ω = π1.

b)

Ω(Ω(X)) = Ω(cont(S1, X)) = cont(S1, cont(S1, X))

And we showedin class that

cont(ΣX,Z) ∼= cont(X,Ω(Z))

So we have:

Ω(Ω(X)) = cont(S1,Ω(X)) = cont(ΣS1, X) = cont(S2, X)

Since

ΣS1 = S1 × I/
((
S1, {0}

)
∼ (s0, {0}),

(
S1, {1}

)
∼ (s0, {1})

)
, (s0 × I) ∼ (point)

And this equals S2/p where p is gluing the arc between the north and the south pole into one point

and it is homeomorphic to a sphere. �
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Q2) (Hatcher Chapter 1.1, Ex. 5) Show that for a space X TFAE:

a) Every map S1 → X is homotopic to a constant map, with image a point.

b) Every map S1 → X extends to a map D2 → X.

c) π1(X,x0) = 0 for all x0 ∈ X.

Proof. a) =⇒ b). Let f : S1 −→ X. We de�ne f̃ : D −→ X as follows f̃(x) = H( x
‖x‖ , 1 − ‖x‖)

for ‖x‖ > 0 and f̃(0) = x0 when H is the homotopy from f to a constant map, i.e H(x, 0) = f(x)

and H(x, 1) = x0. Notice that f̃ |S1 = f . Also f̃ = H ◦ g when g : D/{0} −→ S1 × I by

x 7−→ ( x
‖x‖ , 1− ‖x‖) and g,H continous at x 6= 0 so we only need to prove that f̃ continous at 0.

Let V be an open neighborhood of x0 in X. Then H−1(V ) is open in S1× I and contains S1×{1},
and hence also S1×(1−ε, 1] (for any s ∈ S1 there is Us ⊆ S1 and V1,s ⊆ I such that Us×V1,scovers
({s}, {1}), and since S1is compact we can cover S1×{1} by �nite such sets get that S1×

n
∩
i=1
V1,si is

an open neighborhood of S1 × {1} so it contains some open neighborhood S1 × (1− ε, 1] of it).

so:

f̃−1(V ) = g−1 ◦H−1(V ) ∪ {0} ⊇ g−1(S1 × (1− ε, 1]) ∪ ∪{0} ⊇ Bε(0)

So f̃ continous at 0 and hence is continous in all D.

b) =⇒ c) Let f : S1 −→ X , f(s0) = x0 So it can be extended to f̃ : D −→ X. We can de�ne the

following homotopy H1(−→s , t) = f̃(−→s (1− t)). So H1(s, 0) = f̃(s) = f(s) and H1(s, 1) = f̃(0) = y0.

But this homotopy is not �good� since its not always holds that H1(s0, t) = x0. Lets try to �x it:

For convenience, we can identify S1 with the interval [0, 1] and demand that H1(1, t) = H1(0, t) so

we can write H1 : I × I −→ X.

Notice that have a path γ(t) = H1(0, t) (or H1(1, t)) . We creat an homotopy H that at time t

has:

- H(s, t) = γ(3st) for s ≤ 1/3

-H(s, t) = H1(3s− 1, t) for 1/3 ≤ s ≤ 2/3 .

- H(s, t) = γ((3− 3s)t) for 2/3 ≤ s ≤ 1 .

So H(s, t) at time t , starts in x0 in s = 0, do the path from x0to γ(t) until s = 1/3 (3 times faster)

and then do H1(s, t) (3 times faster) and goes back to x0.

Its easy to see that H(s0, t) = x0 . If we prove that H is indeed an homotopy, then we get:
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H(s, 1) is tha path from x0to y0 and then back to x0 in the same way, so H(s, 1) ∼ const(x0)

and H(s, 0) is the map that start from x0stays in place until s = 1/3 and then do the path

H1(s, 0) = f̃(s) = f(s) 3 times faster and then stay in place until s = 1, so by shrinking to waiting

time continuously we get that H(s, 0) ∼ H1(s, 0) = f̃(s) = f(s). And we get that f(s) ∼ const so
π1(X,x0) = 0.

It is left to show that H is continous:

It is easy to see that H|[0,1/3]×I , H|[1/3,2/3]×I , H|[2/3,1]×Iare continous in their domain since they

are restrictions of continous functions, so we need to show continuity only on the gluing points. Let

(s, t) = {1/3, t}. If we take a neighborhood V of H(s, t) then , H−1(V ) ∩ [0, 1/3]× I is open and

H−1(V )∩[1/3, 2/3]×I is open. so they contains balls [1/3, 1/3+ε)×Bε(t), and [1/3, 1/3−δ)×Bδ(t)
so if we take m = min(ε, δ) then we have Bm(1/3)×Bm(t) ⊆ H−1(V ) and H is continous.

c) =⇒ a) π1(X,x0) = 0 for all x0 ∈ X so for every map f : S1 −→ X by de�nition f ∼
const(x0). �

Q3) (Hatcher Chapter 1.1 Ex 16 revised):

a) Let i : A ↪→ X be the inclusion, prove that if A is a retract of X then the induced homomorphismi∗ :

π1(A)→ π1(X) is injective.

Proof. If there exists r : X −→ A such that r|A = id|Athen we have that r ◦ i = idA so (r ◦ i)∗ :

π1(A) −→ π1(A) is the identity. So if i∗is not injective then there exists g 6= 1 such that i∗(g) = 1

so g = (r ◦ i)∗ (g) = r∗ ◦ i∗(g) = 1 6= g. Contradiction. So i∗is injective. �

b) Show that there are no retractions r : X → A in the following cases:

i. X = R3 with any subspace A homeomorphic to S1 .

ii. X = S1 ×D2 with A = S1 × S1 its boundary torus.

Proof. i) If there is a retraction , than we have in injection from π1(A) ∼= π1(S1) = Z to the trivial

group which is imposible.

ii) Again, we have an injection from π1(A) = Z×Z to π1(S1
ÖD2). We will prove that π1(S1

ÖD2) =

Z and we will reach a contradiction since if there exists an injection i : Z×Z −→ Z then i(1, 0) = m

and i(0, 1) = n and we have that i(n, 0) = mn = i(0,m) so its not injective.

Lets calculate π1(S1 ×D2): At �rst, a map f : Z −→ X × Y is continous i� the maps f1, f2 are

both continous, when f = (f1, f2). So also, a map H : Z × I −→ X ×Y is continous i� H1, H2 are

continuous whenH = H1, H2. So we have a bijection π1(S1×D2, (s0, d0)) = π1(S1, s0)×π1(D2, d0)

and since all the spaces are path connected we have π1(S1 ×D2) = π1(S1)× π1(D2) = Z �
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Q4) Given a topological space X, de�ne a topological monoid Ω′(X) which is homotopically equiv-

alent to Ω(X) and a map that sends the product of Ω′(X) to the non-associative product on Ω(X)

.

Proof. The intuition for �xing the non-associativity is as follows:

* We look at the space Ω′(X) = {(γ, r)} when γ : S1 −→ X is a loop and r ∈ R+ . We can think

of the elements in Ω′(X) as loops γ′ : [0, r] −→ X s.t γ′(0) = x0 and γ′(1) = x0 . We give it the

topology of Ω(X)×R (so a sub basis of open sets consists of UK,V × (a, b) ).

* We give it a monoid structure by the action (γ, r) ∗ (β, t) = (γ ∗ β, r + t), when γ ∗ β(t) = γ(t)

for 0 ≤ t ≤ r and γ ∗ β(t) = β(t) for r ≤ t ≤ r + t . So it is easy to see that this operation is

associative.

* The identity element will be ({x0}, 0) so ({x0}, 0) ∗ (γ, r) = ({x0} ∗ γ, r) = (γ, r) (the same for

right multiplication).

*Now we have to check that this operation ∗ : Ω′(X) × Ω′(X) −→ Ω′(X) is continuous. Let

UK,V × (a, b) ⊆ Ω(X) × R and look at ∗−1(UK,V × (a, b)) and lets pick some (γ1, r1), (γ2, r2) ∈
∗−1(UK,V ×(a, b)). Then we know that γ1∗γ2(K) ⊆ V (when we look at γ1∗γ2 as a loop in [0,1] , i.e,

shrunk by r1 + r2, so in [0, r1
r1+r2

] we have γ1( r1+r2r1
t) and in [ r1

r1+r2
, 1] we have γ2( r1+r2r2

(t− r1
r1+r2

))

and that r1 + r2 ∈ (a, b) .

We denote K1 := K ∩ [0, r1
r1+r2

] and K2 := K ∩ [ r1
r1+r2

, 1] . Also there exists ε > 0 such that

Bε(r1) +Bε(r2) ⊆ (a, b) from continuity of addition. Now, If K1 is empty, then we can look at:

V1 × V2 :=

{(
US1,V ×Bε(r1)

)
,

(
U r1+r2

r2
(K− r1

r1+r2
),V
×Bε(r2)

)}
and we get that if we concatenate paths from V1 and V2 we get a path γ = γ1 ∗ γ2 of length

d ∈ (a, b) and γ(K) = γ2( r1+r2r2
(K − r1

r1+r2
)) ⊆ V . So V1 ∗ V2 ⊆ UK,V × (a, b) as required.

If K2 is empty we do the same trick. If K1,K2 6= /O, then we look at:

V1 × V2 :=

{(
U r1+r2

r1
K1,V

×Bε(r1)

)
,

(
U r1+r2

r2
(K2− r1

r1+r2
),V
×Bε(r2)

)}

And get that γ(K1) = γ1( r1+r2r1
K1) ⊆ V and that γ(K2) = γ2( r1+r2r2

(K− r1
r1+r2

)) ⊆ V so γ(K) ⊆ V
and again V1 ∗ V2 ⊆ UK,V × (a, b) as required. So * is continuous.

*We need also to check that Ω′(X) ∼ Ω(X) . We set f : Ω′(X) −→ Ω(X) by (γ, r) 7−→ γ . And

g : Ω(X) −→ Ω′(X) by γ 7−→ (γ, 1) . So we get that f ◦g = id and that g ◦f((γ, r)) = (γ, 1) is just
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dividing by r so we can create an homotopy H(((γ, r), t) = (γ, r − (r − 1)t) ant it is an homotopy

since its continuous in R (and id in Ω(X)).

*Last thing, if we look at the map f as above, then f((γ1, 1) ∗ (γ2, 1)) = f((γ1, 1)) ∗ f (γ1, 1). �

Q5) Show that the torus is covered by a plane and by a cylinder.

Proof. A torus is covered by a plane by the map p : R2 −→ R2/(x, y) ∼ (x, y) + Z2. Now, for

every x ∈−→ R2/(x, y) ∼ (x, y) +Z2 there exists a small disc B1/4(x) such that p−1(B1/4(x)) is a

disjoint countable union of discs B1/4(yi) ∼= B1/4(x) so it is a covering space.

For a cylinder we do the same idea only create the map p : S1×R −→
(
S1 × [0, 1]/(s, 0) ∼ (s, 1)

)
=

S1 × S1 by gluing (S1, r) ∼ (S1, r + z)∀z ∈ Z . Again, by choosing small neighborhood of a point

(s, t) of the form S1 ×B1/2(t) we get that p−1(S1 ×B1/2(t)) is a disjoint union of sets of the form

S1 ×B1/2(t+ z), so its a cover map. �


