ALGEBRAIC TOPOLOGY-EXC 2

ITAY GLAZER

Q1) Show that:
a) $\pi_{0} \circ \Omega=\pi_{1}$.
b) $\Omega(\Omega(X))=\operatorname{Mor}\left(S^{2}, X\right)$.

Proof. a) Let $\left(X, x_{0}\right)$ be a pointed topological space. $\Omega\left(X, x_{0}\right)=\operatorname{cont}\left(\left(S^{1}, s_{0}\right),\left(X, x_{0}\right),\left\{f_{0}\right\}\right)$ when $f_{0}\left(S^{1}\right)=x_{0}$. We want to prove that $f, g \in \Omega\left(X, x_{0}\right)$ are path connected in in $\Omega\left(X, x_{0}\right)$ iff they are homotopic in $\left(X, x_{0}\right)$,i.e $[f]=[g] \in \pi_{1}\left(X, x_{0}\right)$.

There is an homeomorphism between $\operatorname{cont}(X \times Y, Z)$ to $\operatorname{cont}(X, \operatorname{cont}(Y, Z)$ (if Y locally compact Hausdorff and X is Hausdorff) by $f \longmapsto\left(x \longmapsto f_{x}\right)$ when $f_{x}(y)=f(x, y)$. So for any f_{1}, f_{2} : $S^{1} \longrightarrow X$ such that $f_{1} \sim f_{2}$, there is an homotopy $H: I \times S^{1} \longrightarrow X$. This homotpoy correponds to the path $\gamma: I \longrightarrow \operatorname{cont}\left(S^{1}, X\right)$ by $\gamma(t)(s)=H(t, s)$, when $\gamma(0)=f_{1}$ to $\gamma(1)=f_{2}$. We do the same for the other direction and we get that $\pi_{0} \circ \Omega=\pi_{1}$.
b)

$$
\Omega(\Omega(X))=\Omega\left(\operatorname{cont}\left(S^{1}, X\right)\right)=\operatorname{cont}\left(S^{1}, \operatorname{cont}\left(S^{1}, X\right)\right)
$$

And we showedin class that

$$
\operatorname{cont}(\Sigma X, Z) \cong \operatorname{cont}(X, \Omega(Z))
$$

So we have:

$$
\Omega(\Omega(X))=\operatorname{cont}\left(S^{1}, \Omega(X)\right)=\operatorname{cont}\left(\Sigma S^{1}, X\right)=\operatorname{cont}\left(S^{2}, X\right)
$$

Since

$$
\Sigma S^{1}=S^{1} \times I /\left(\left(S^{1},\{0\}\right) \sim\left(s_{0},\{0\}\right),\left(S^{1},\{1\}\right) \sim\left(s_{0},\{1\}\right)\right),\left(s_{0} \times I\right) \sim(\text { point })
$$

And this equals S^{2} / p where p is gluing the arc between the north and the south pole into one point and it is homeomorphic to a sphere.

Q2) (Hatcher Chapter 1.1, Ex. 5) Show that for a space X TFAE:
a) Every map $S^{1} \rightarrow X$ is homotopic to a constant map, with image a point.
b) Every map $S^{1} \rightarrow X$ extends to a map $D^{2} \rightarrow X$.
c) $\pi_{1}\left(X, x_{0}\right)=0$ for all $x_{0} \in X$.

Proof. $a) \Longrightarrow b$). Let $f: S^{1} \longrightarrow X$. We define $\tilde{f}: D \longrightarrow X$ as follows $\tilde{f}(x)=H\left(\frac{x}{\|x\|}, 1-\|x\|\right)$ for $\|x\|>0$ and $\widetilde{f}(0)=x_{0}$ when H is the homotopy from f to a constant map, i.e $H(x, 0)=f(x)$ and $H(x, 1)=x_{0}$. Notice that $\left.\widetilde{f}\right|_{S^{1}}=f$. Also $\tilde{f}=H \circ g$ when $g: D /\{0\} \longrightarrow S^{1} \times I$ by $x \longmapsto\left(\frac{x}{\|x\|}, 1-\|x\|\right)$ and g, H continous at $x \neq 0$ so we only need to prove that \widetilde{f} continous at 0 . Let V be an open neighborhood of x_{0} in X. Then $H^{-1}(V)$ is open in $S^{1} \times I$ and contains $S^{1} \times\{1\}$, and hence also $S^{1} \times(1-\epsilon, 1]$ (for any $s \in S^{1}$ there is $U_{s} \subseteq S^{1}$ and $V_{1, s} \subseteq I$ such that $U_{s} \times V_{1, s}$ covers $(\{s\},\{1\})$, and since S^{1} is compact we can cover $S^{1} \times\{1\}$ by finite such sets get that $S^{1} \times \bigcap_{i=1}^{n} V_{1, s_{i}}$ is an open neighborhood of $S^{1} \times\{1\}$ so it contains some open neighborhood $S^{1} \times(1-\epsilon, 1]$ of it $)$.
so:

$$
\tilde{f}^{-1}(V)=g^{-1} \circ H^{-1}(V) \cup\{0\} \supseteq g^{-1}\left(S^{1} \times(1-\epsilon, 1]\right) \cup \cup\{0\} \supseteq B_{\epsilon}(0)
$$

So \tilde{f} continous at 0 and hence is continous in all D.
$b) \Longrightarrow c)$ Let $f: S^{1} \longrightarrow X, f\left(s_{0}\right)=x_{0}$ So it can be extended to $\tilde{f}: D \longrightarrow X$. We can define the following homotopy $H_{1}(\vec{s}, t)=\widetilde{f}(\vec{s}(1-t))$. So $H_{1}(s, 0)=\widetilde{f}(s)=f(s)$ and $H_{1}(s, 1)=\widetilde{f}(0)=y_{0}$. But this homotopy is not "good" since its not always holds that $H_{1}\left(s_{0}, t\right)=x_{0}$. Lets try to fix it:

For convenience, we can identify S^{1} with the interval $[0,1]$ and demand that $H_{1}(1, t)=H_{1}(0, t)$ so we can write $H_{1}: I \times I \longrightarrow X$.

Notice that have a path $\gamma(t)=H_{1}(0, t)\left(\right.$ or $\left.H_{1}(1, t)\right)$. We creat an homotopy H that at time t has:

- $H(s, t)=\gamma(3 s t)$ for $s \leq 1 / 3$
$-H(s, t)=H_{1}(3 s-1, t)$ for $1 / 3 \leq s \leq 2 / 3$.
- $H(s, t)=\gamma((3-3 s) t)$ for $2 / 3 \leq s \leq 1$.

So $H(s, t)$ at time t, starts in x_{0} in $s=0$, do the path from x_{0} to $\gamma(t)$ until $s=1 / 3$ (3 times faster) and then do $H_{1}(s, t)$ (3 times faster) and goes back to x_{0}.

Its easy to see that $H\left(s_{0}, t\right)=x_{0}$. If we prove that H is indeed an homotopy, then we get:
$H(s, 1)$ is tha path from x_{0} to y_{0} and then back to x_{0} in the same way, so $H(s, 1) \sim \operatorname{const}\left(x_{0}\right)$ and $H(s, 0)$ is the map that start from x_{0} stays in place until $s=1 / 3$ and then do the path $H_{1}(s, 0)=\widetilde{f}(s)=f(s) 3$ times faster and then stay in place until $s=1$, so by shrinking to waiting time continuously we get that $H(s, 0) \sim H_{1}(s, 0)=\widetilde{f}(s)=f(s)$. And we get that $f(s) \sim$ const so $\pi_{1}\left(X, x_{0}\right)=0$.

It is left to show that H is continous:
It is easy to see that $\left.H\right|_{[0,1 / 3] \times I},\left.H\right|_{[1 / 3,2 / 3] \times I},\left.H\right|_{[2 / 3,1] \times I}$ are continous in their domain since they are restrictions of continous functions, so we need to show continuity only on the gluing points. Let $(s, t)=\{1 / 3, t\}$. If we take a neighborhood V of $H(s, t)$ then,$H^{-1}(V) \cap[0,1 / 3] \times I$ is open and $H^{-1}(V) \cap[1 / 3,2 / 3] \times I$ is open. so they contains balls $[1 / 3,1 / 3+\epsilon) \times B_{\epsilon}(t)$, and $[1 / 3,1 / 3-\delta) \times B_{\delta}(t)$ so if we take $m=\min (\epsilon, \delta)$ then we have $B_{m}(1 / 3) \times B_{m}(t) \subseteq H^{-1}(V)$ and H is continous.
$c) \Longrightarrow a) \pi_{1}\left(X, x_{0}\right)=0$ for all $x_{0} \in X$ so for every map $f: S^{1} \longrightarrow X$ by definition $f \sim$ $\operatorname{const}\left(x_{0}\right)$.

Q3) (Hatcher Chapter 1.1 Ex 16 revised):
a) Let $i: A \hookrightarrow X$ be the inclusion, prove that if A is a retract of X then the induced homomorphism i^{*} : $\pi_{1}(A) \rightarrow \pi_{1}(X)$ is injective.

Proof. If there exists $r: X \longrightarrow A$ such that $\left.r\right|_{A}=\left.i d\right|_{A}$ then we have that $r \circ i=i d_{A}$ so $(r \circ i)^{*}$: $\pi_{1}(A) \longrightarrow \pi_{1}(A)$ is the identity. So if i^{*} is not injective then there exists $g \neq 1$ such that $i^{*}(g)=1$ so $g=(r \circ i)^{*}(g)=r^{*} \circ i^{*}(g)=1 \neq g$. Contradiction. So i^{*} is injective.
b) Show that there are no retractions $r: X \rightarrow A$ in the following cases:
i. $X=R^{3}$ with any subspace A homeomorphic to S^{1}.
ii. $X=S^{1} \times D^{2}$ with $A=S^{1} \times S^{1}$ its boundary torus.

Proof. i) If there is a retraction, than we have in injection from $\pi_{1}(A) \cong \pi_{1}\left(S^{1}\right)=Z$ to the trivial group which is imposible.
ii) Again, we have an injection from $\pi_{1}(A)=Z \times Z$ to $\pi_{1}\left(S^{1} \times D^{2}\right)$. We will prove that $\pi_{1}\left(S^{1} \times D^{2}\right)=$ Z and we will reach a contradiction since if there exists an injection $i: Z \times Z \longrightarrow Z$ then $i(1,0)=m$ and $i(0,1)=n$ and we have that $i(n, 0)=m n=i(0, m)$ so its not injective.

Lets calculate $\pi_{1}\left(S^{1} \times D^{2}\right)$: At first, a map $f: Z \longrightarrow X \times Y$ is continous iff the maps f_{1}, f_{2} are both continous, when $f=\left(f_{1}, f_{2}\right)$. So also, a map $H: Z \times I \longrightarrow X \times Y$ is continous iff H_{1}, H_{2} are continuous when $H=H_{1}, H_{2}$. So we have a bijection $\pi_{1}\left(S^{1} \times D^{2},\left(s_{0}, d_{0}\right)\right)=\pi_{1}\left(S^{1}, s_{0}\right) \times \pi_{1}\left(D^{2}, d_{0}\right)$ and since all the spaces are path connected we have $\pi_{1}\left(S^{1} \times D^{2}\right)=\pi_{1}\left(S^{1}\right) \times \pi_{1}\left(D^{2}\right)=Z$

Q4) Given a topological space X , define a topological monoid $\Omega^{\prime}(X)$ which is homotopically equivalent to $\Omega(X)$ and a map that sends the product of $\Omega^{\prime}(X)$ to the non-associative product on $\Omega(X)$

Proof. The intuition for fixing the non-associativity is as follows:

* We look at the space $\Omega^{\prime}(X)=\{(\gamma, r)\}$ when $\gamma: S^{1} \longrightarrow X$ is a loop and $r \in R^{+}$. We can think of the elements in $\Omega^{\prime}(X)$ as loops $\gamma^{\prime}:[0, r] \longrightarrow X$ s.t $\gamma^{\prime}(0)=x_{0}$ and $\gamma^{\prime}(1)=x_{0}$. We give it the topology of $\Omega(X) \times R$ (so a sub basis of open sets consists of $U_{K, V} \times(a, b)$).
* We give it a monoid structure by the action $(\gamma, r) *(\beta, t)=(\gamma * \beta, r+t)$, when $\gamma * \beta(t)=\gamma(t)$ for $0 \leq t \leq r$ and $\gamma * \beta(t)=\beta(t)$ for $r \leq t \leq r+t$. So it is easy to see that this operation is associative.
* The identity element will be $\left(\left\{x_{0}\right\}, 0\right)$ so $\left(\left\{x_{0}\right\}, 0\right) *(\gamma, r)=\left(\left\{x_{0}\right\} * \gamma, r\right)=(\gamma, r)$ (the same for right multiplication).
Now we have to check that this operation $: \Omega^{\prime}(X) \times \Omega^{\prime}(X) \longrightarrow \Omega^{\prime}(X)$ is continuous. Let $U_{K, V} \times(a, b) \subseteq \Omega(X) \times R$ and look at $*^{-1}\left(U_{K, V} \times(a, b)\right)$ and lets pick some $\left(\gamma_{1}, r_{1}\right),\left(\gamma_{2}, r_{2}\right) \in$ $*^{-1}\left(U_{K, V} \times(a, b)\right)$. Then we know that $\gamma_{1} * \gamma_{2}(K) \subseteq V$ (when we look at $\gamma_{1} * \gamma_{2}$ as a loop in [0,1], i.e, shrunk by $r_{1}+r_{2}$, so in $\left[0, \frac{r_{1}}{r_{1}+r_{2}}\right]$ we have $\gamma_{1}\left(\frac{r_{1}+r_{2}}{r_{1}} t\right)$ and in $\left[\frac{r_{1}}{r_{1}+r_{2}}, 1\right]$ we have $\gamma_{2}\left(\frac{r_{1}+r_{2}}{r_{2}}\left(t-\frac{r_{1}}{r_{1}+r_{2}}\right)\right)$ and that $r_{1}+r_{2} \in(a, b)$.

We denote $K_{1}:=K \cap\left[0, \frac{r_{1}}{r_{1}+r_{2}}\right]$ and $K_{2}:=K \cap\left[\frac{r_{1}}{r_{1}+r_{2}}, 1\right]$. Also there exists $\epsilon>0$ such that $B_{\epsilon}\left(r_{1}\right)+B_{\epsilon}\left(r_{2}\right) \subseteq(a, b)$ from continuity of addition. Now, If K_{1} is empty, then we can look at:

$$
V_{1} \times V_{2}:=\left\{\left(U_{S^{1}, V} \times B_{\epsilon}\left(r_{1}\right)\right),\left(U_{\frac{r_{1}+r_{2}}{r_{2}}\left(K-\frac{r_{1}}{r_{1}+r_{2}}\right), V} \times B_{\epsilon}\left(r_{2}\right)\right)\right\}
$$

and we get that if we concatenate paths from V_{1} and V_{2} we get a path $\gamma=\gamma_{1} * \gamma_{2}$ of length $d \in(a, b)$ and $\gamma(K)=\gamma_{2}\left(\frac{r_{1}+r_{2}}{r_{2}}\left(K-\frac{r_{1}}{r_{1}+r_{2}}\right)\right) \subseteq V$. So $V_{1} * V_{2} \subseteq U_{K, V} \times(a, b)$ as required.

If K_{2} is empty we do the same trick. If $K_{1}, K_{2} \neq \phi$, then we look at:

$$
V_{1} \times V_{2}:=\left\{\left(U_{\frac{r_{1}+r_{2}}{r_{1}} K_{1}, V} \times B_{\epsilon}\left(r_{1}\right)\right),\left(U_{\frac{r_{1}+r_{2}}{r_{2}}\left(K_{2}-\frac{r_{1}}{r_{1}+r_{2}}\right), V} \times B_{\epsilon}\left(r_{2}\right)\right)\right\}
$$

And get that $\gamma\left(K_{1}\right)=\gamma_{1}\left(\frac{r_{1}+r_{2}}{r_{1}} K_{1}\right) \subseteq V$ and that $\gamma\left(K_{2}\right)=\gamma_{2}\left(\frac{r_{1}+r_{2}}{r_{2}}\left(K-\frac{r_{1}}{r_{1}+r_{2}}\right)\right) \subseteq V$ so $\gamma(K) \subseteq V$ and again $V_{1} * V_{2} \subseteq U_{K, V} \times(a, b)$ as required. So $*$ is continuous.
*We need also to check that $\Omega^{\prime}(X) \sim \Omega(X)$. We set $f: \Omega^{\prime}(X) \longrightarrow \Omega(X)$ by $(\gamma, r) \longmapsto \gamma$. And $g: \Omega(X) \longrightarrow \Omega^{\prime}(X)$ by $\gamma \longmapsto(\gamma, 1)$. So we get that $f \circ g=i d$ and that $g \circ f((\gamma, r))=(\gamma, 1)$ is just
dividing by r so we can create an homotopy $H(((\gamma, r), t)=(\gamma, r-(r-1) t)$ ant it is an homotopy since its continuous in R (and id in $\Omega(X)$).
*Last thing, if we look at the map f as above, then $f\left(\left(\gamma_{1}, 1\right) *\left(\gamma_{2}, 1\right)\right)=f\left(\left(\gamma_{1}, 1\right)\right) * f\left(\gamma_{1}, 1\right)$.

Q5) Show that the torus is covered by a plane and by a cylinder.

Proof. A torus is covered by a plane by the map $p: R^{2} \longrightarrow R^{2} /(x, y) \sim(x, y)+Z^{2}$. Now, for every $x \in \longrightarrow R^{2} /(x, y) \sim(x, y)+Z^{2}$ there exists a small disc $B_{1 / 4}(x)$ such that $p^{-1}\left(B_{1 / 4}(x)\right)$ is a disjoint countable union of discs $B_{1 / 4}\left(y_{i}\right) \cong B_{1 / 4}(x)$ so it is a covering space.

For a cylinder we do the same idea only create the map $p: S^{1} \times R \longrightarrow\left(S^{1} \times[0,1] /(s, 0) \sim(s, 1)\right)=$ $S^{1} \times S^{1}$ by gluing $\left(S^{1}, r\right) \sim\left(S^{1}, r+z\right) \forall z \in \mathbb{Z}$. Again, by choosing small neighborhood of a point (s, t) of the form $S^{1} \times B_{1 / 2}(t)$ we get that $p^{-1}\left(S^{1} \times B_{1 / 2}(t)\right)$ is a disjoint union of sets of the form $S^{1} \times B_{1 / 2}(t+z)$, so its a cover map.

