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Problem 0

Let us look at X, a cover of n+ 1 genus. We can think of this as a tori with
one whole in the middle and the other n wholes, surrounding the middle one.
In this way we can see that there exists a cover, X̃, of kn + 1 genuses. We
first let the ‘extra’ one whole in X̃ cover the whole in the middle of X. Then
we can do an easy induction on k, to see how it will cover it. Let k = 1, we
get the trivial cover by mapping each outer genus to its respective on in X.
Let us assume that it is true for k = m, then we for (m + 1)n + 1 genuses,
the extra one genus is still covering the middle whole in X and the ‘new’ n
genuses will each cover one of the n genuses in X.

In order for this cover to be well defined, we need to define an order of
covering and we need to show that all the points have a neighbourhood that
is covered by a union of disjoint sets that are homeomorphic to itself. Let us
call the leaves of the cover or the space, the area around a genus whole up
to the boundary of the genus in the middle. Then if we start at any leaf in
X̃ and use this one to cover a given leaf in X, then as we move to the right,
each leaf will cover the next leaf in X, so that in a cyclic mode in X, we
will cover each leaf m + 1 times. We can see this more easily in the picture
below, where each boundary in X̃ has been colored to match its respective
projection in X. As we can see in the picture, all the points in X have a
neighbourhood that is covered m + 1 times, even on the boundary of the
middle genus. Note that the middle genus is eventually also covered k times.
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Figure 1: Courtesy of Gil Goffer. This picture represents the space X with
n = 3 (bottom) and its cover X̃, with k = 2. We can see that each leaf
was coloured to match the leaves in the cover that correspond to that in the
original space. If the covering map is π, we can see the pre-images of the
different neighbourhoods, U and V .

Problem 1

Torus

We know the n-torus is S1 × S1 × ... × S1, thus its universal cover is easily
identified as Rn and its fundamental group as Zn.

Cylinder

The cylinder is written as R× S1, hence its universal cover is R2, since R is
its own cover as it is simply connected and it is also the universal cover of
S1. Again, since R is contractible, π1(R× S1) = π1(S

1) = Z.

Projective Plane

We can think of the projective plane as the sphere under an equivalence re-
lation that joins two points in the same line. Hence X = RP 2 = S2/x ∼ −x.

2



Thus by defining a map P : S2 → S2/x ∼ −x by x 7→ {x,−x} we can see
how S2 covers RP 2 and since it is simply connected, it is its universal cover.
Now in order to find the loop we must look at the group of deck transfor-
mations of X. Since the only non-trivial map that preserves fibers is exactly
f : S2 → S2 as f(x) = −x, and this transformation has order two as an
element of the group, then we can say that π1(RP

2) = Z/{2Z}.

Bouquet of n circles

As we saw in the targul, in a generalized way, the fundamental group of the
bouquet of n circles, glued at the same point, is the free group generated by
n elements. Hence π1(S

1 ∨ ... ∨ S1) = F<a1,...,an>. Furthermore, its universal
cover is the Cayley graph of the free group, which in this case would have
n generators. It is contractible and covers all the bouquets. Another way
of seeing it inductively, using a two dimensional representation of the graph,
where one of the axis is k < n dimensional.

Finite Graph

For a finite graph, we will proceed in a similar way as for the bouquet of n
circles. First let us find a maximal spanning tree, H < G. This tree does not
have any loops so it is contractible, hence G is homotopically equivalent to its
quotient by H. We can easily check that the quotient G/H is homotopically
equivalent to the bouquet of m = |G| − |H| circles (an example represented
in the figure below), since m is exactly the number of edges that are not part
of the tree and that will be glued to a single point, each generating one circle.
Hence we conclude that π1(G) = π1(G/H) = π1(S

1 ∨ ... ∨ S1) = F<a1,...,am>,
the free group of m generators.

Figure 2: Courtesy of Gil Goffer. This picture depicts the homotopy between
the maximal spanning tree and the bouquet of the spheres, glued at the same
point.
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Problem 2

(a)

First let us look at the bouquet Y = S2∨D1∨S2. These are glued at a special
point (s0, 0, s

′
0) ∈ (S2, D1, S2). Since the disc is contractible to a point, this

means that Y is homotopically equivalent to S2 ∨ S2. This equivalence is
achieved when we make the equivalence relation s0 ∼ D1 ∼ s′0 by identifying
them with one new base point s̃0. It is easy to write this equivalence since
we can easily show that D1 ' {0}.

D1

Figure 3: This figure shows the homotopic equivalence between a triple bou-
quet of a sphere, a cirlce and a sphere (with two ‘different’ base points) with
a bouquet of two spheres, glued at a common base point.Note that here,
D1 is represented as a line for convenience of drawing, instead of drawing a
segment of the helix.

This is easily generalized when we think of infinitely many of these triples
(with a D1 disc in between each of them) and infinitely many base points.
The way to contract them is by thinking of this as having a sphere glued
at each integer on the real line. We pick any of these, S2

0 , and we look
simultaneously at the next one on each side and contract the intervals to the
base point of S2

0 . Then we contract each consecutive D1 at half the speed of
the previous one, into the same base point. This will make each D1 and the
base points of each sphere to be equivalent under the identification relation.
We do this as follows. Let F : I × Y → X be a homotopy such that in the
first half of the interval I, the first disc on each side of S2

0 is contracted into
the base point of S2

0 , thus joining the three spheres at a common base point.
Then on the interval [1

2
, 3
4
] the next discs on each side are contracted, joining
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the two spheres to the previous three at a common base point. We continue
in this manner, by halving the time of each contraction for every following
disc (on both sides). In this way, since the series of timings converges to 1,
we have that in finite time we contract R into a point, where at each integer
there is a sphere glued.

Thus we have showed that the space ...∨D1∨S2∨D1∨... is homotopically
equivalent to the infinite bouquet of spheres glued at one point.

(b)

If we let Y = S2 ∨ R, we can see how this is the universal cover for S2 ∨ S1

since S2 is simply connected so it covers itself and R is the universal cover
of S1. Since they are glued at a point, this works.

Problem 3

(a)

Let X and Y be two spaces such that Ω(X) and Ω(Y ) are the loops spaces
respectively. Then we can define Ω(X)×Ω(Y ) by the map f : Ω(X × Y )→
Ω(X)×Ω(Y ) = Ω. Let ω ∈ Ω(X × Y ), then ω : I → X × Y is a loop in two
variables such that ω(0) = ω(1) = (x0, y0) and ω(t) = (xt, yt), which means
that every loop in the product space actually is divided into two coordinate-
wise loops. Thinking of it like this, we let f(ω) = (ωX , ωY ) where each
ωX and ωY are the coordinate-wise loops so that ωX(t) = xt and ωY (t) = yt,
with the same end points as the corresponding coordinates x0, y0 respectively.
Clearly f is invertible since every loop in the product space of loops can be
put together to form a loop on a product of two spaces. Hence the two are
equivalent.

Now we just need to show that the loops that are homotopic equivalent
in Ω(X × Y ) induce homotopic equivalent loops coordinate-wise in Ω, thus
showing that the equivalent classes are the same in both and proving the
first part. Let γ ∼ ω in Ω(X × Y ), thus there is a homotopy H : I × I →
X × Y such that H(0, t) = γ and H(1, t) = ω. Now, this induces two
homotopies HX : I × I → X and HY : I × I → Y such that HX(0, t) = γX ,
HY (0, t) = γY and HX(1, t) = ωX and HY (1, t) = ωY . Hence we get that
(γX , γY ) ∼ (ωX , ωY ) ∈ Ω. Again, we can easily check that the backward
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direction holds too, hence showing that the homotopies in one space yield
unique homotopies in the other space, thus there is a bijection between the
equivalence classes and we conclude that π1(X × Y ) = π1(X)× π1(Y ).

(b)

Let X̃, Ỹ be the universal covers of X and Y respectively, with maps pX
and pY . Then we consider X̃ × Ỹ as the universal cover of X × Y by the
map p : X̃ × Ỹ → X × Y by p(x̃, ỹ) = (pX(x̃), pY (ỹ)). This a cover map
for X × Y since for every (x, y) ∈ X × Y , there exists x ∈ U ⊆ X and
y ∈ V ⊆ Y where U and V are open, such that p−1X (U) and p−1Y (V ) are
disjoint union of open neighbourhoods, mapped homeomorphically onto U
and V respectively. Then take U×V an open neighbourhood of (x, y) ∈ X×Y
such that p−1(U × V ) = p−1X (U)× p−1Y (V ), which is a disjoint union of open

neighbourhoods homeomorphic to U × V , so we have showed that X̃ × Ỹ is
a cover for X × Y , we just need to show that it is the universal cover.

In order to prove this final step, let us use part (a) of this problem. Since
we know that the equivalent classes are preserved under the product action
of two spaces, since X̃ and Ỹ have trivial fundamental groups (as they are

simply connected), then it follows that X̃ × Ỹ also has trivial fundamental

group, hence it is simple connected and we have showed that X̃×Ỹ = X̃ × Y .
the universal cover of X × Y .

Problem 4

First of all, we know that R2\{n points} is homotopically equivalent to the
wedge of n circles, S1 ∨ ... ∨ S1, thus clearly their fundamental groups are
isomorphic, i.e.: π1(R2\{n points}) = F<a1,...,an> and similarly π1(R2\{n −
1 points}) = F<b1,...,bn−1>. Hence we can just see how the inclusion occurs by
identifying one of the generators ai with the identity e, which in this case is
the class of constant loops. Thus we need to find 0 6= x ∈ F<a1,...,an>, which
is some word in the free group and a loop over R2\{n points} that will map
to the constant loop by i∗(x). Now let us say that without loss of generality,
we identify a1 as the identity in the inclusion i. We will look at two examples
and then prove the general case.

Let n = 1, we just let x = a1.
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Let n = 2, we take the word of the form x = a1a2a
−1
1 a−12 and thus by

mapping i∗(x) = i∗(a1a2a
−1
1 a−12 ) = ea2ea

−1
2 = a2a

−1
2 = e.

Thus assume n = k, let x = a1aja
−1
1 a−1j for any j = 0, ..., k, where we

map a1 by the inclusion to the identity. Hence, i∗(x) = e, as before. And we
know that x 6= e since x is in the free group.

Problem 5

Let X̃ be the cover of X. In order to prove this, we will first look at a
neighbourhood of any point in y1 ∈ Y . Since ft(Y ) = f(Y, t) is continuous,
every point (y1, t) ∈ Y × I has a product neighbourhood Nt × (at, bt) such
that f(Nt × (at, bt)) ⊂ Ut ⊂ X for some neighbourhood Ut of f(y1, t). By
compactness of {y1} × I, finitely many products Nt × (at, bt) cover {y1} × I.
This implies that we can chose a single neighbourhood y1 ∈ N and a partition
of I, such that for each cell of the partition, f(N × [ti, ti+1]) is contained
in some neighbourhood, call it Ui. Now we can start constructing the lift
homotopy f̃t(y) = f̃(y, t). Assuming by induction that we have constructed

the lift on N× [0, t1], starting by the given f̃0 on N . Then we have that since

X̃ is a cover of X, there exists a set Ũi ⊂ X̃ projecting homeomorphically
onto f(N × [ti.ti+1]) ⊂ Ui by the covering map p, such that f̃(y1, ti) ∈ Ũi.
After replacing N with a smaller neighbourhood of y1, we may assume that
f̃(N×{ti}) is contained in Ũi, namely by replacing N×{ti} by its intersection

with f̃ |−1N×{ti}(Ũi). Now we can define f̃ on N× [ti, ti+1] to be the composition

of ft with the homeomorphism p−1 : Ui → Ũi. After a finite number of steps
we eventually get a lift f̃ : N × I → X̃ for some neighbourhood N of y1 ∈ Y .
Clearly this a continuous map.

Finally, we need to make sure that this lift is unique for any point and
neighbourhood we pick as we extend it to the whole of Y . Yet this follows
simply by the path lifting property that we proved in class, where it states
that it is a unique lift for one point in Y (as this would make it a path).

Thus, however, this implies that by continuity of f̃t on a neighbourhood of a
point in Y , we can say that it is continuous and unique on all of Y .
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EXTRA EXERCISES

Problem 8

Let p : C → X be a covering map. Then let A ⊂ C be open. Given x ∈ p(A),
chose a neighbourhood U of x that is evenly covered by p. Let {Vα} be the
disjoint sets of the pre-image p−1(U). Since there exists a point y ∈ A such
that p(y) = x, then we must have that y ∈ Vβ. Then we have that Vβ ∩A is
open in C and hence open in Vβ. Now, because p maps Vβ homeomorphically
onto U , p(Vβ∩A is open in U and hence open in X, which is a neighbourhood
of x contained in p(A), as desired.
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