
ALGEBRAIC TOPOLOGY-EXC4

ITAY GLAZER

Q0) Let X be path connected, andφ : X̃ → X a covering map, show that:

(a) X̃ is path connected i� π1(X) acts transitively on the �ber of x0.

(b)
∣∣φ=1(x1)

∣∣ = ∣∣φ=1(x2)
∣∣ for any x1, x2 ∈ X.

Proof. a) If X̃is path connected then lets look at some �ber φ−1(x0). We take y1, y2 ∈ φ−1(x0)
and connect them by a path γ̃. Look at γ = p ◦ γ̃. This is a loop in X corresponds to g = [γ].

Notice that g.y1 takes y1 to the endpoint of the unique lift of γ that starting at y1.But γ̃ satisfy

those conditions so it is the unique lift so g.y1 = γ̃(1) = y2. Therefore the π1(X) acts transitively

on the �ber of x0.

b) We take a path γ from x1to x2. For each x ∈ γ(I) take Ux such that φ−1(Ux) ∼= Ux ×D. {Ux}
is a cover of γ(I) and γ(I) is compact so there exists a �nite subcover {Uxi

}ni=1 of γ(I). since I is

connected, then also γ(I) is connected. Lets assume that d =
∣∣φ=1(x1)

∣∣ 6= ∣∣φ=1(x2)
∣∣ = k. Lets look

at Vdto be the union of all Uxi
such that d =

∣∣φ=1(xi)
∣∣and Vndto be the union of all Uxi

such that

d 6=
∣∣φ=1(xi)

∣∣. (Vd ∩ γ(I)) ∪ (Vnd ∩ γ(I)) = γ(I) and both are non empty so they must intersect-

there exists a point x ∈ Vd, Vnd so x ∈ Uxi
∩ Uxj

with φ−1(xi) 6= φ−1(xj) and its impossible. �

Q1) a)Show that a covering map p is always open.

Proof. Let V ⊆ X̃ then we need to prove that p(V ) is open. Let x ∈ P (V ) then it has a small

neighborhood Ux such that p−1(Ux) ∼= Ux ×D. Then p−1(Ux) ∩ V is open in X̃ (from continuity

of p). Now denote µ : p−1(Ux) −→ Ux ×D the homeomorphism such that proj ◦ µ = p. Then:

p(p−1(Ux) ∩ V ) = proj ◦ µ(p−1(Ux) ∩ V ) = proj(∪d∈D (Vd × {d})) = ∪d∈DVd ⊆ p(V )

And ∪d∈DVd is open when Vd = µ(p−1(Ux) ∩ V )|d∈D is open and it is open since W is open in

X ×D i� W |X×{d}is open for any d ∈ D. �

b)Let G act transitively on X, then |Gx| = |Gy| for any x, y ∈ X.
1
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Proof. Let Gx. and let g ∈ G such that g.x = y. then g−1Gyg = Gx. It is clear that g
−1Gyg ⊆ Gx

since for k ∈ Gy we have g−1kg.x = x. But also gGxg
−1 ⊆ Gyso Gx ⊆ g−1Gyg so we get

g−1Gyg = Gx and left/right multiplication is a set theoretic isomporphism since there is an inverse.

So |Gx| = |Gy|. �

Q2) Construct a non normal cover of S1 ∨ S1:

Proof. We showed that a cover X̃ is normal i� π1(X̃) is a normal subgroup. So the idea is to

choose a non-normal subgroup H and take its corresponding cover. We choose H =< a >. Then

it is not normal since bab−1 /∈ H. Its cover looks like this:

We choose a point x0 and attach a loop a to it, and another two �trees� T connected via 2 edges

correponding to b and b−1, when the trees T is the tree of the universal cover. See drawing attached

(or Hatcher p.58 �gure 12). It is clearly a cover in the two �trees� section and also at the other

part as well and we can see that its fundemental group is < a > since any entrance of a path γ to

the �simply connected tree part� can be shrinked to the point x0. �

Q3) Compute the fundamental group of the Klein bottle:

(a) Using its universal cover.

(b) Using Van-Kampen's theorem.

Proof. a) The Klein bottle can be described as I × I/(t, 0) ∼ (1− t, 1), (0, s) ∼ (1, s), so it can be

cover by a torus by taking the 2 squares I × I and make a rectangle [0, 1] × [0, 2] when we glue

them along the x axis. See �gure. Now a torus can be covered by a plane so the plane also covers

the Klein bottle.

Now we will �nd all the deck transformations on the universal cover. Notice that we have a grid

described in the picture. The deck trasformation contains all the posible movements right (a) or

left (a−1) up by (2b) or down (2b) (and more). Notice that it is problematic to move up by (b)

since then we glue the (a) edges in the wrong direction. I claim that the deck transformation group

is generated by the translations (m,n) 7−→ (m+ 1, n) and (m,n) 7−→ (−m,n+ 1):

* It is trivial that the 2 types of translations are homeomorphism so we just need to prove that

they preserves the �bers. The �rst translation clearly preserves the �bers since the covering space

is symmetric according to this movement.

For the second translation, it is clearly preserves the �ber of the base point (0, 0). Now, also

notice that the edge a {(m,n), (m + 1, n)} sent to the edge a {(−m,n + 1), (−m − 1, n + 1)} so
it preserves its orientation (sthe orientation changed when going up one point in the y axis) The

same for b {(m,n), (m,n + 1)} sent to the edge b {(−m,n + 1), (−m,n + 2)} so the orientation
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also preserved. Also, from the way we constructed the cover (by �rst cover by a torus and then

a lot of copies of the torus), it is clear that when looking at the square starting at (m,n) (

(m,n), (m,n+1), (m+1, n+1), (m+1, n) ) then it is a ��ip� of the square above it (m,n+1) and

the square at (m,n+1) is the same as (−m,n+1) so by sending (m,n) to (−m,n+1) we �x this

�ipping and get the �right� gluing. So (m,n) 7−→ (−m,n+ 1) is indeed a Deck transformation.

* We denote τ1 : (m,n) 7−→ (m+ 1, n) and τ2 : (m,n) 7−→ (−m,n+ 1). Notice that by those two

translation we can generate all Deck transformation sending (0, 0) to (m,n). This follows from the

fact that τ22 (m,n) = (m,n + 2) so we if n is even then we can just compose τ1, τ
2
2 the required

times. If n is odd, then we send (0, 0) to (−m,n − 1) by applying τ1, τ
2
2 the required times and

then compose with τ2 to send (−m,n− 1) to (m,n).

Since the deck transformation is determined by one point then, < τ1, τ2 >is the group of deck

transformations.

Notice that we can map F2 =< a, b > to the Deck transformation group by taking a 7−→ τ1

b 7−→ τ2 . it is obviously an homomorphism and surjective. Now, the kernel contains elements

generated by abab−1. In b) we will see that this is exactly the kernel and hence < τ1, τ2 > is

exactly < a, b > /abab−1

b) We can devide to Klein bottle into 2 Mobius strips with an intersection of ∼= S1 × (0, 1).See

�gure. By Van Kampen Theorem, φ : π1(Mob1) ∗ π1(Mob2) −→ π1(Klein) is surjective and the

kernel is the normal subgroup generated by elements i12(w)i
−1
21 (w) when i12 : π1(Mob1∩Mob2) −→

π1(Mob1), i21 : π1(Mob1 ∩Mob2) −→ π1(Mob2) and w ∈ π1(Mob1 ∩Mob2). Now, Lets take the

generator ofMob1∩Mob2: it is maped by the inclutions to the loop on the boundery of the mobius

and its corresponds to twice the generator of the mobius strip, i.e to x2(See �gure). So we have

that:

N =< i12(w)i
−1
21 (w) >=< x2

(
y−1

)2
>

Note that < a, b > /abab−1 ∼=< x, y > /x2 = y2 by the isomorphism i(x) = b and i(y) = ab

notice that i(y2x−2) = abab−1 so it is well de�ned. Also we need to show that it is injective. The

inverse map is j(b) = x j(a) = yx−1 so j(abab−1) = y2x−2 so it is well de�ned. Now i ◦ j(b) = b

and i ◦ j(a) = i(yx−1) = abb−1 = a and the same j ◦ i(x) = x and j ◦ i(y) = j(ab) = y so i an

isomorphism of groups. (its obvius that it is an homomorphism since its de�ned on the generators.)

So We see that the deck transformation group can be represented as < a, b > /abab−1. �

Q4) Prove a version of the Fundamental Theorem of Algebra, a non-constant polynomial p(z) with

coe�cients in C has a root in C:
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(a) De�ne fr(s) =
p(r·exp(2πis)
|p(r·exp(2πis))| ) , for a polynomial p(z) = zn+ an=1z

n=1 + · · ·+ a0 with no roots

in C. Show that fr(s) is a loop in S1 ⊆ C for every r ≥ 0, and compute [fr] ∈ π1(S1). (b) Take

r > max(1, |a0| + · · · + |an=1|), and show that for |z| = r and for every t ∈ [0, 1], we get that

pt(z) = zn + t(p(z)=zn) has no roots on the circle |z| = r.

(c) Construct a homotopy between fr and the loop e2πins, by recalling the non-triviality of

[exp(2πins)] ∈ π1(S1) (why?), and the homotopy class of fr, conclude that we must have that

n = 0 and thus that p(z) must be constant.

Proof. a) fris a loop in S1 since we have fr(0) = fr(1) =
p(r)
|p(r)| ) = (1, 0) when x is the real axis

and y is the imaginary. Notice that we can de�ne an homotopy H(t, s) = fr(1−t)(s) from fr(s) to

the constant loop (we deine f0(s) = (1, 0)). This is well de�ned since p(r · exp(2πis) 6= 0 for any

r, s. H is continous since H(t, s) = p(r(1−t)·exp(2πis)
|p(r(1−t)·exp(2πis))| ) which is a continous (as long as p(z) 6= 0

for any z). Notice that H(t, 0) = H(t, 1) = (1, 0) so this is a base preserving homotopy so [fr] is

trivial.

b) We take r > max(1, |a0|+ ···+ |an=1|), then |pt(z)| = |zn + t(p(z)=zn)| ≥ |zn|−|t(p(z)=zn)|and
for |z| = r we have that |zn| = rn and

|t(p(z)=zn)| =
∣∣t(an−1zn−1 + ...a0)

∣∣ ≤ t ∣∣(|a0|+ ···+ |an=1|) rn−1
∣∣ ≤ trn

So |pt(z)| > 0 for t ∈ (0, 1) and for t = 0 we have |pt(z)| = rn and for t = 1 we have that

|pt(z)| = |p(z)| > 0 since p(z)and has no roots at all so in particulare on the circle above. So pt(z)

has no roots on the circle |z| = r.

c) At �rst can creat an homotopy from frto fr′such that r′ > max(1, |a0| + ··· + |an=1|) by

H1(t, s) = fr+(r′−r)t(s). Now we can creat the homotopy from fr′ to exp(2πins) by:

H2(s, t) =
(r′ · exp(2πis))n + t(p(r′ · exp(2πis))=(r′ · exp(2πis))n)
|(r′ · exp(2πis))n + t(p(r′ · exp(2πis))=(r′ · exp(2πis))n)|

Again, since r′ > max(1, |a0|+ ···+ |an=1|), from the argument in b) we have that H2 is continous,

and for t = 0 we have H2(s, 0) = (exp(2πis))n = exp(2πins) and for t = 1 we have H2(s, 1) =

fr′(s). so fr′(s) ∼ exp(2πins) and exp(2πins) make n loops counterclockwise, so [exp(2πins)] = n.

But const ∼ fr′(s) ∼ exp(2πins), so n = 0 and p(z) constant. contradiction. �

Q5) Let p : XH → X be a path connected covering space, where G = π1(X) and H = π1(XH),

and also set G(XH) to be the group of deck transformations, show that:

(a) G(XH) acts transitively on the �bers⇐⇒ the stabilizer of a point in the �ber under the action

of π1(X) is normal.
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(b) If H is normal then G(XH) ∼= G/H.

Proof. a) We showed in class that G(XH) acts transitively on the �bers i� π1(XH) is normal in

π1(X). But we also showed that π1(X)x̃0
= π1(XH) so it is normal. For the other direction- read

backwards.

b) We showed in the �tirgul� that a Deck transformation is determined by its action on a single

point. If H is normal then also π1(X)x̃0
= H is normal so G(XH) acts transitively on the �bers.

Therefore, for any x̃0, x̃1 ∈ p−1(x0) there exists an isomorphism of covers ϕ : XH −→ XH s.t

ϕ(x̃0) = x̃1.

So we can de�ne φ : π1(X) −→ G(XH) by φ([γ]) = τ when τ is the deck transformation taking

γ̃(0) = x̃0 to γ̃(1) = x̃1 when γ̃ is the lift of γ. This map is well de�ned since π1(X) acts on

a �ber p−1(x0), and since G(XH) acts transitively on the �bers, then there always exists such

deck transformation taking γ̃(0) = x̃0 to γ̃(1) = x̃1 and it is unique since Deck transformation is

determined by its action on a single point.

φ is an homomorphism since φ([γ1] ∗ [γ2]) goes to the deck transformation takes γ̃1(0) = x̃0 to

γ̃2
′(1) = x̃2 when γ̃′2 is the lift starting from γ̃1(1) = γ̃′2(0) = x̃1. So φ([γ1] ∗ [γ2]) = τ = τ2 ◦ τ1

when τ1is the deck transformation from x̃0 to x̃1and τ2 taking x̃1 to x̃2. Notice that φ([γ1]) = τ1

so we need to prove that φ([γ2]) = τ−11 ◦ τ2 ◦ τ1 and the we will get that:

φ([γ1] ∗ [γ2]) = τ2 ◦ τ1 = τ1 ◦ τ−11 ◦ τ2 ◦ τ1 = φ([γ1]) ◦ φ([γ2])

But notice that if γ̃2 is a lift of γ2 at x̃0 then τ1(̃γ2) lifts γ2 at x̃1 so by the uniqueness of the lifting

(at a point) we get γ̃′2 = τ1(̃γ2) so γ̃2(1) = τ−11 γ̃′2(1) = τ−11 (x̃2) so φ([γ2]) takes x̃0 to τ−11 (x̃2) and

also τ−11 ◦ τ2 ◦ τ1 takes x̃0 to τ−11 (x̃2) so φ([γ2]) = τ−11 ◦ τ2 ◦ τ1 . So φ is an homomorphism.

The kernal of φ is the loops γ that lifts to loops that stabilize x̃0 so its π1(X)x̃0
= π1(XH) = H so

we have an isomorphism G/H ∼= G(XH). �

Q6) Construct a non-normal covering space of the Klein bottle by a Klein bottle and by a torus.

Proof. We construct a non normal cover by a Klein bottle. We make a 3-fold copy of the klein

bottle as in the �gure. This cover is a Klein bottle, so its fundemental group consists of all the

loops generated by a and b3with the relation ab3ab−3. Now, p∗(Kcover) =< b3, a > /abab−1. But

it is not a normal subgroup of < a, b > /abab−1 since if we take aba−1it is not in < b3 > /abab−1.

If aba−1 ∈< b3, a > /abab−1 then also b ∈< b3, a > /abab−1 and then p∗(Kcover) = π1(Klein)

and then the cover is trivial. So This cover is not normal. �
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Q7) Compute the fundamental group of the Hawaiian earring, that is the bouquet of countably

many circles of radius 1/n and center (1/n, 0) at their common point (0, 0).

Proof. The fundemental group will be di�erent from a countable bouquet of S1, since in the

countable bouquet of S1, the image of all of the paths are inside a �nite number of S1(from

compactness of I . But the hawaiian earring is a compact space and therefor we can do a path

that cover in�nite number of loops. So The fundemental group will be more close to a free group

with in�nite generators ∗α∈NZα. But this group is too big since for example the path that takes

the in�nite concatenation of path on the �rst circle of radius 1 is not a valid loop (i.e continous)

since this path need to the the loop in a faster and faster pace in order for the concatination to

be in�nite but then we loose the continuity. So we need to quatient out by those loops, so the

fundemental group will be a quatient ∗α∈NZα/H where H consists of all the loops with �radius�

that does not converge to 0 (and maybe some other conditions im not aware of). �

Q9) Show that generally, for any H ≤ G we have that G(XH) ∼= N(H)/H, where N(H) is the

normalizer of H.

Proof. See proof in Hatcher p.71 proposition 1.39. �


