(1)

SECTIQN ALG TOP\#1
$X \cong Y$ ore hamcomorphic
f. $x \rightarrow y$

$$
9: y-3 x
$$

$$
\begin{aligned}
& g \circ f=i d_{x} \\
& f \circ g=i l_{y}
\end{aligned}
$$

f, y chs. (f contimuous, bjection, open map)
$X \approx Y$ are hooot equivalent

$$
\begin{array}{rr}
\text { If } f: X \rightarrow x & \text { s.t. fog } \sim \text { idy } \\
g: Y \rightarrow X & g: f \sim i d x \\
& \text { horothopiz ho id. }
\end{array}
$$

NOTE:
Homeorerphism \Rightarrow honotropically equitalence.
(2)
(1) Exi show that toproxs upo a soint is hom.eq hoo a boupset of 2 circles. $T \backslash\{*\} \simeq s^{\prime} v s^{\prime}$

Bouqklet/: glasing at ore point.
wedge
Show $T^{\prime} \mid\{*\} \simeq \int^{1} V S^{1}$

frick

evply

Qtsame circle
(3)

$$
\begin{aligned}
& f, T \rightarrow Y \\
& x \longmapsto \frac{x}{\|x\|} \\
& f_{L}: Y \longrightarrow T \\
& x \longmapsto x \\
& f_{1} \cdot F_{2}=i d_{y} \\
& x \longmapsto x \longmapsto \frac{x}{\|x\|}=x \\
& f_{2} \circ f_{1}=\frac{x}{\|x\|} \imath^{2} x \underbrace{}_{\substack{\text { also } \\
\text { and } x, t) \text { is } \\
\text { contimuons }}} \text { a homotopy between } f_{2} \cdot f_{1} \\
& f(x, t)=\frac{x}{\|x\|} t+(1-t) x \\
& \left.\begin{array}{rl}
u(x, 0) & =x \\
v(x, 1) & =\frac{x}{\|x\|}
\end{array}\right\} \Rightarrow f_{2} \cdot f_{2} \simeq i d_{T} \\
& \Rightarrow T \simeq Y .
\end{aligned}
$$

(2) Ex: Slow torus rod a stadard circle is lomet. eqvir to $\mathrm{S}^{\prime} V \mathrm{~S}^{2}$

Solikion:

Wront: $\quad X / A \simeq X_{\text {if }}^{i t}$

$$
\left.\begin{array}{l}
\text { is cortrictible } \\
\left(i_{A} \simeq \operatorname{const}\right.
\end{array} A_{A}\right)
$$

Def: (X, A) bas hanot.
extension meperty (HED) if givenfig and ($*$),
$g: X \times\{0\} \rightarrow 4<$ then coan extend
$f: A \times I \rightarrow Y$ to a hornotopys:

$$
\begin{aligned}
& H: X \times I \rightarrow Y \\
& H(a, t)=f(a, t) \\
& H(X, o))=g(x)
\end{aligned}
$$

S. 1.
(5)

Lemma. if $A \times I \cup X \times\{0\}$ is of $X \times I$ then (X, A) has $[K \in P]$.

PE: $f r: X \times I \rightarrow A \times I \cup \times x\} 0\}$
s.t. $\left.r\right|_{A \times I \cup X \times\{02}=$ id $\binom{$ (tefinition }{ of }
the if given

$$
\begin{aligned}
& f: A \times I \rightarrow Y \\
& \text { red bigyer } \\
& \text { furchion whizhis } \\
& g=X \times\{0\} \rightarrow Y \\
& \text { a hanelopy oul } \\
& \begin{array}{l}
\left.f\right|_{A \times\{0\}}=g\left(A \times\{0\} \left\lvert\, \begin{array}{l}
\text { can restrit. } \\
K: A \times I \cup X \times\{0\} \rightarrow Y \\
\left.K\right|_{A \times I}=f
\end{array}\right.\right. \\
\left.K\right|_{X \times\{0\}}=9
\end{array} \\
& \Rightarrow W(x, r)=K \cdot r(n, r) \\
& \text { s.t. } \\
& \left.\begin{array}{l}
W(x, 0)=g(x) \\
W(a, t)=f(a, t)
\end{array}\right\} \begin{array}{l}
\text { We extentat } f \text { and } g \\
\text { to H. }
\end{array}
\end{aligned}
$$

(6)

Leman $2:$ If (X, A) has $[H \in p]$ and A is cortractisle then

$$
X / A \simeq X \quad \text { (Hakcher prop 0.17) }
$$

ff: ft $q: X \rightarrow X / A, f_{0}: A \rightarrow A$ the pergine quatient - ap s.t. $f_{0}=i d_{A} \approx$ cont $_{A}$ ad fir ho be a honolepy asumption exlending f_{0}. (thinh of $F_{f}(x)$ as $H(x, t)$

$$
\begin{aligned}
& n: A \times I \rightarrow A \rightarrow A \\
& d A_{x}: x \rightarrow A \\
& x \times 40\} \\
& f_{f}(A) \subseteq A^{(1)}, q \circ f_{r}(A)=\mid \text { paint }\left.\right|^{(2)} \\
& \text { can write the map }
\end{aligned}
$$

$q^{\text {woft as }}$ irst q them somethingtuchors fhrough 9 .

$$
q \circ f_{r}=\bar{f}_{f}: q \text { where } \bar{f}_{f}: X / A \rightarrow \frac{X}{A}
$$

(ㄱ)
Notice that $f_{1}(A)=$ [paint $]$

$$
\Rightarrow f_{1}=99 \text { sit. } g \cdot X / A \rightarrow X
$$

But sow, $q \cdot g=\overline{f_{1}}$:
will be the
(30 $\quad \bar{n} \in X / A)$ other sine of the hoontry equivalence

$$
\begin{aligned}
& q \cdot g\left(h^{-}\right)=9 g q(x)=9 f_{1}(x) \\
& =\bar{f}_{2} \circ q(x)=\overline{f_{1}}(\bar{x}) \\
& g: X / A \rightarrow X \quad q \circ g=\bar{f}_{1}(\bar{x})=\bar{f}_{0}(\bar{x}) \\
& q: X \rightarrow X / A \Rightarrow g \circ q=f_{1}(x) \simeq f_{0}(x) \quad i d x_{1} \\
& \text { and rise done. } \\
& =i d_{x}
\end{aligned}
$$

Show that if $f: x \rightarrow y$ hem. equiv
Hen rapping were C_{f} is contractible

Fact: $f: X \rightarrow Y$ (For f which is a homotopy equivalma)
(*) $C_{f}{ }^{\stackrel{\downarrow}{\simeq} C_{f}}$

$$
f^{\prime}=x \rightarrow f(n)
$$

Want $_{\text {to show }}$ id $^{1} C_{f} \simeq$ cost C_{f}

$$
f \circ g=i d_{x}
$$

$$
\begin{aligned}
& \text { by } \\
& \text { assumption }
\end{aligned}\left\{\begin{array}{l}
u_{1}(n, 1)=1 d_{x} \\
u_{1}(x, 0)=f \circ F(n)
\end{array}\right.
$$

$$
g \circ f=i d y
$$

(i) Proof of fact: Assume if a hon. equivalence.

Define $i: x \times I \Perp f(x) / \sim \rightarrow x \times I \Perp Y / \sim \quad$ by the inclusion $(x, t) \mapsto(x, t))$

$$
h: x \times I \Perp Y / \sim \rightarrow x \times I \Perp f(x) / \sim \quad \text { by } \quad h(x, s)=(g \circ f(x), s)
$$

Note that h is melldefined. $\quad h(y)=f \circ g(y) \sim(g(y), 1)$
Since $g \circ f \simeq i \alpha_{x}, f \circ g \simeq i \alpha_{y}$,

$$
\begin{aligned}
& h \circ i \simeq i d_{c^{\prime}} \\
& i \circ h \simeq i c_{f}
\end{aligned} \quad \Rightarrow \quad c_{f} \simeq c_{f^{\prime}}
$$

$(x, s) \sim y \Leftrightarrow y=f(x), s=1$

$$
h(x, 1)=(g \circ f(x), 1)=(g(y), 1)=(f \circ g(y), 1)=h(y)
$$

$$
\begin{aligned}
& U((x, s), t)=\left(U_{1}(x, t), s t\right) \\
& K: C_{f^{\prime}} \times I \rightarrow C_{f^{\prime}} \\
& U((n, s), 1)=(k,(x, 1), s)=(n, s)=i d_{c} \\
& U((x, s), 0)=\left(U_{1}(x, 0), 0\right)=\text { in } x \times\{0\} \text { part constrap } \\
& (x, 0) \sim\left(x^{\prime}, 0\right) \quad \forall x, x^{\prime} \in x \text {. }
\end{aligned}
$$

