Algebraic Topology - Exercise 10

Solve the following questions:

- Let f : X → Y be a continuous map, and let φ : Y → C_f be the inclusion of Y into the mapping cone of f. Show that there are maps f₁ : C_φ → S(X) and f₂ : S(X) → C_φ such that f₁ restricted to C_X (the cone of X) maps onto S(X)\{X × {1}} and that f₂ restricted to {(x, t) ∈ S(X)|t > 1/2} is the identity map of {(x, t) ∈ C_X|t ≠ 1}. [Note, this shouldn't be hard, and is mainly for you to convince yourself better of the Barret-Puppe construction.]
- 2. Let $X = \bigcup_{i=0}^{\infty} X_i$ be a topological space with $X_0 \subseteq X_1 \subseteq \ldots, X_i$ closed sets s.t. $C_{\eta_{n-1}} \simeq \bigvee S^n$, where $\eta_{n-1} : X_{n-1} \to X_n$ is the inclusion, and X_0 is discrete. Let h be a homology theory.
 - (a) Show that there is a map $\tilde{\partial}_n : h_n(X_n/X_{n-1}) \to h_{n-1}(X_{n-1}/X_{n-2})$ (We will prove it in Exercise Sesion 11, no need to hand in.).
 - (b) Prove that the maps $\hat{\partial}_n$ together with h_n form a chain complex (that is, that $\tilde{\partial}_n \circ \tilde{\partial}_{n+1} = 0$).
 - (c) Prove that for this complex we have that $h_n(X_{n+1}) = h_n(X_{n+k})$.
 - (d) Deduce that if $X = \bigcup_{i=0}^{n} X_i$, then the homologies of the chain complex above are exactly h(X).