Algebraic Topology - Exercise 8

Solve the following questions:

- 1. (a claim from class) Let S be a simplicial complex and $\alpha : S \to S$ a map from the realization of S to itself. Show that if the induced map $\pi_S(\alpha) : \pi(S, S) \to \pi(S, S)$ is identity (Recall that $\pi(T, S)$ is the set of all continuous maps from T to S up to homotopy.), then α is homotopic to Id_S .
- 2. Let $g \in \pi_1(X)$, prove that:
 - (a) g is a commutator, i.e. $\exists a, b \in \pi_1(X)$ s.t. $g = [a, b] \iff$ there exists a map $\phi : (T^2 D^2) \to X$ with $\phi|_{\partial(T^2 D^2)} = g$.
 - (b) g is a product of commutators, that is $g = [a_1, b_1] \cdot \ldots \cdot [a_n, b_n]$ \iff there exists a map $\phi : (T^2 \# \ldots \# T^2 - D^2) \to X$ with $\phi|_{\partial(T^2 \# \ldots \# T^2 - D^2)} = g.$
- 3. Show that $\partial^2 = 0$.
- 4. Compute the Euler characteristic of the following spaces (using triangulations):
 - (a) An orientable genus two surface.
 - (b) The Mobius strip.
 - (c) The Klein bottle.
 - (d) The projective plane.
 - (e) An *n*-dimensional sphere.

Extra:

5. Finish the proof of Whitehead's theorem: let X be a topological space, construct a homotopy equivalence between the realization of the set (V,S) of maps from simplices to X we constructed in class to X.