Algebraic Topology - Exercise 9

Solve the following questions:

- 1. Compute the simplicial homology of the following spaces:
 - (a) A closed surface of genus 2.
 - (b) The Klein bottle.
 - (c) The 2-torus \mathbb{T}^2 .
 - (d) \mathbb{R}^3 .
- 2. Let $f: C \to D$ be an injective map of chain complexes. Show that the projection from C_f to D/C induces a quasi-isomorphism (Note that C_f is the chain complex mapping cone and D/C is isomorphic to D/f[C] as f is injective.)
- 3. Let $0 \to C \to D \to E \to 0$ be a short exact sequence of chain complexes, prove the existence of a long exact sequence of homology groups.
- 4. Let S be a simplicial complex, show that $H_0(S)$ is generated by the path components of S.
- 5. Show that if f g is null-homotopic then f and g induce the same homomorphism on the homologies.
- 6. Show that $\widetilde{H}_k(X) = H_k(X)$ for k > 0 and $\widetilde{H}_0(X) \oplus \mathbb{Z} = H_0(X)$ where $\widetilde{H}_k(X)$ stands for the k-th reduced homology of X.