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1 Motivation

We want to find invariant properties of topological spaces so that when mapped
to other topological spaces by “special maps” (i.e. homeomorphisms or homotopy
equivalences), these properties are preserved.

For example, let X be a topological space, the following properties are some
invariants of X:

Compactness A subset W ⊆ X is a compact set if every open cover of W has a
finite subcover.

Connectedness A subset W ⊆ X is said to be connected if we can not find two
disjoint open sets such that W is their union.

Path Connectedness A subset W ⊆ X is said to be path connected if any two
points in W are connected by a continuous path.

Note: Homeomorphisms preserve more invariants than homotopy equivalences,
which are thus more ”general” maps between topological spaces.

2 First Definitions

Definition 2.1 (Homotopy). Let X
g
//

f
// Y be continuous maps. We say that f ∼ g

are homotopic if there exists a continuous ϕ : X× I → Y such that ϕ|X×{0} = f and
ϕ|X×{1} = g.
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Definition 2.2 (Homotopy Equivalence). Two topological spaces X, Y are homotopy
equivalent if there exists continuous maps f : X → Y and g : Y → X such that
f ◦ g ∼ Id and g ◦ f ∼ Id, that is homotopic to the identity map, we then write
X ' Y .

Remark 2.3. If f ◦ g and g ◦ f are not only homotopic to the identity map, but
are actually equal to their respective identity maps, then f and g are actually home-
omorphisms. The notion of homotopy equivalence therefore generalizes the notion
of homeomorphism, as noted previously. In particular, all homeomorphic spaces are
homotopy equivalent.

Example 2.4. Let I = [0, 1], take f : {p} → I for a space of one point {p}, and
f(p) = 0 ∈ I. Also, let g : I → p, where g(x) = p for all x ∈ I. Clearly, g ◦ f = Id{p}
and f ◦ g ∼ IdI by letting F (x, t) = tx, so at t = 0, we have that f ◦ g(x) = 0∀x ∈ I
and at t = 1, that f ◦ g(x) = x ∀x ∈ I.

3 Some Category Theory

Definition 3.1. In the language of Category Theory, we will talk about the category
of topological spaces where the objects in this category are topological spaces and for
every two such spaces X and Y , we define the morphisms between them, Cont(X, Y ),
to be the set of all continuous functions between X and Y .

If we let ∼ to be the homotopic equivalence relation between continuous maps,
we denote by H(X, Y ) = Cont(X, Y )/∼ the set of equivalence classes under homo-
topy, which is the set of maps between objects (which are topological spaces) in the
homotopical category.

4 Invariant Sets

Let X be a topological space and let I(X) be a set associated to X via some invari-
ant, for example π0(X) = {path-connected components of X}. We are interested in
knowing when the invariant sets are equal up to set isomorphism, i.e bijection.

Let f : X → Y be a continuous map, we define If : I(X) → I(Y ). This is a
well-defined map of sets, as illustrated in the next example.

Example 4.1. Let I(X) = π0(X) = {Xj}j∈J , where Xj are the path components of
X. We then write If = π0(f), where f : X → Y and π0(f) : π0(X)→ π0(Y ). Now,
pick a point x0 ∈ Xj ∈ π0(X), we require that If (Xj) = Yj, where f(x0) = y0 ∈ Yj.
This makes If well defined.
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X Y
f

f(x0) = y0

π0[f ](X3) = Y2

Corollary 4.2. If X and Y are homotopically equivalent, as in definition 2.2, then
I(X) ∼= I(Y ), as an isomorphism of sets, i.e., a bijection. For example 4.1, we get
a bijection between the path-connected components, π0(X) ∼= π0(Y ).

Proof. Exercise number 5 in the first Exercise sheet.

5 Operations on Topological Spaces

Definition 5.1 (Pointed Topological Space). We say a topological space (X, x0) is
pointed when x0 is given as a special point in X and for any other pointed topological
space (Y, y0) and a continuous map f : X → Y , we have that f(x0) = y0.

Definition 5.2 (Contractible). We say a pointed topological space (X, x0) is con-
tractible if (X, x0) is homotopy equivalent to a one-point space, that is, if the identity
map on X is homotopic to a constant map. (if we can write f : X × [0, 1]→ X such
that f(x, 0) = x and f(x, 1) = x0.)

Definition 5.3 (Cartesian Product). A product of topological spaces X and Y ,
M = X × Y , is given by the following diagram,
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X × Y
πX

{{

πY

##

X Y

S
∀PX

cc

∀PY

;;
∃f

OO
.

Where in this diagram, f(s) = (PX(s), PY (s)) for all topological spaces S that have
such maps. A subset W ⊆ X×Y is open if it is the product of a pair of open subsets
of X and Y , respectively, or if it is the union of an arbitrary number of such subsets.

Definition 5.4 (Co-product). The co-product of two topological spaces X and Y
is the dual object to the Cartesian product and is denoted by X t Y , which is the
disconnected union of X and Y and is defined by the following diagram,

S

X

gX

;;

� r

iX ##

Y

gY

cc

mM

iY{{

X t Y

∃f

OO
.

We define the topology on the co-product to be as follows. A subset W ⊆ X t Y
is open if W ∩X and W ∩ Y are open in the spaces X and Y respectively.

In order to define the quotient, we need an equivalence relation E on X ×X and
we let X/E be the set of equivalence classes. We choose the weakest topology on
X/E such that the quotient map is continuous.

Definition 5.5 (Quotient Map). Let q : X → X/E be the natural map sending each
x ∈ X to its equivalence class in X/E. This map is called the quotient map, and a
subset of X/E is declared to be open if its pre-image in X is open.

Example 5.6 (Quotient for pointed topological spaces). Let (Y, x0) ⊂ (X, x0) be
a pointed subspace of a pointed topological space (with the same special point).
For the sake of simplicity, write X = (X, x0) and Y = (Y, x0). Let the equivalence
relation E := Y × Y ∪∆X ⊂ X ×X, we define for pointed topological the quotient
as X/Y = X/E.

Definition 5.7 (Bouquet). The bouquet (or wedge) is the co-product of pointed
topological spaces. We write X ∨ Y := X t Y/{x0, y0}. We can interpret this op-
eration geometrically as gluing the two disjoint spaces, X and Y , at their respective
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special points x0 and y0. The following diagram helps us understand the co-product
for pointed spaces.

(S, s0)

(X, x0)

gX
66

iX ((

(Y, y0)

gY
gg

iYww

(X ∨ Y, {x0, y0})

∃f

OO

Where each of the maps sends the special point to the corresponding special point. In
the case of the inclusions, iX(xo) = x0 and iY (y0) = y0.

Definition 5.8 (Smash Product). The smash product of two topological spaces is
defined as X ∧ Y = X × Y/X ∨ Y = X × Y/(X u Y/{x0, y0}). In simple terms we
are looking at the equivalence classes of the bouquet relation over the product space
of X and Y .

Example 5.9. The smash product of the unit circle with the unit circle is a sphere,
that is S1 ∧S1 = S2. If we consider the product S1×S1 as a square with equivalent
parallel sides, we can easily look at the bouquet equivalence relation as making the
square become a four petal rose, which specific arcs equivalent to others, as induced
from the square we started with. This show S1 × S1 is homeomorphic to a sphere.

Definition 5.10 (Cone, Suspension and Mapping Cylinder of X).

Cone
Cone(X) := X × I/(X × {1}), meaning that if we span our space X over the
interval I and we collapse all points (x, 1) to a single point, as a representative
of the equivalence class, we get the construction, which “looks like a cone”.
Note that cone(X) is contractible to a point.

Suspension
Suspension(X) = S(X) = Cone(X)/(X × {0}), so following the cone con-
struction, we now do the same kind of contraction to a point at the other end
of the interval in order to get the suspension. As a small example, S(S1) looks
like a two way cone, with S1 as the base of both cones, which is homeomorphic
to a sphere.
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Reduced Suspension for pointed topological spaces
Σ(X, x0) = ΣX = S(X)/(x0 × I) where X means (X, x0) as a pointed topo-
logical space. The reduced suspension only exists for pointed topological spaces.
As an exercise we can show that ΣX = S1 ∧X.

Cylinder and Mapping Cylinder The cylinder of X, Cyl(X) = C(X), is liter-
ally what is sounds like, making our space X into a cylinder by spanning it
over an interval I. Now, if f : X → Y , we call the cylinder of f , Cyl(f) =
Cf = (C(X) t Y )/((x0, 0) ∼ f(x)), where we are gluing X to Y through the
image of X in Y . Finally, Cone(f) := Cf/(X × {1}) is called the mapping
cone of f . We can think of it as going one step further and glue all the points
on the other end of C(X) at t = 1. This construction is known as the ”witch
hat”.

Remark 5.11. We have an alternative way of constructing the suspension of X. Let
i : X → Cone(X) be the inclusion of X ⊆ Cone(X) by identifying X with (X, 1).
Then we let suspension(X) = S(X) = Ci, the mapping cylinder of i.

Definition 5.12 (Push-out). We define the push-out of two spaces as a different
form of gluing. Instead of gluing two disjoint spaces X and Y at one point, we glue
them along a subset Z of X and Y and we say that we glue them through Z. Let
Z ⊆ X and Z ⊆ Y we write GZ = XtZY = XtY/{f(z) ∼ g(z)}, where f : Z ↪→ X
and g : Z ↪→ Y as shown in the diagram below.

X tZ Y

X

iX
::

Y

iY
dd

ZR2
f

dd

, �
g

::

.

It is clear how we can glue these two sets together through Z.
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