1 Constructions

We want to show another construction for topological spaces. Let X, Y be two topological spaces. Consider the space

$$cont(X,Y) = \{f : X \to Y | f \text{ is continuous}\}$$
 (1)

We need to define a topology.

Definition 1. The <u>sub basis</u> for the compact open topology is defined as follows:

 $U_{K,V} = \{ f \in cont(X,Y) | f(K) \subseteq V \}$ $\tag{2}$

s.t. $K \subseteq X$ compact and $V \subseteq Y$ is open.

This construction makes sense if X is compactly generated.

Definition 2. X is compactly generated if

 $U \subseteq X$ is open $\iff \forall K \subseteq X$ compact, $U \cap K$ is compact in K.

What is it good for?

- **Theorem 1.** $\forall f \in cont(X \times Y, Z)$ there is a natural induced $f_* \in cont(X, cont(Y, Z))$ by $f_*(x)(y) = f(x, y)$. When X, Y, Z are all compactly generated, then f_* is a bijection.
 - $\forall g \in cont(X \land Y, (Z, z_0))$ there is a natural induced $g_* \in cont((X, x_0), cont((Y, y_0), (Z, z_0)))$ by $g_*(x)(y) = g(x, y)$ and $g_*(x_0)(y_0) = z_0$. If X, Y, Z are compactly generated, then g_* is a bijection.

Example 1. Let $Y = S^1$. Then

$$cont(X \wedge S^1, Z) \cong cont(X, cont(S^1, Z)), \tag{3}$$

which actually means

$$cont(\Sigma X, Z) \cong cont(X, \Omega(Z)).$$
 (4)

If we take $Z = \Sigma X$ we get the following,

$$cont(\Sigma X, \Sigma X) \cong cont(X, \Omega \Sigma X)$$
 (5)

and we denote by φ_1 the image of the *id* mapping under that correspondence, which is the unit map.

2 The Fundamental Group π_1

Definition 3. Let (X, x_0) be a pointed topological space, $\Omega(X)$ is the set of all loops in X with x_0 as their base point, i.e. loops starting and ending at x_0 .

Definition 4. If f is a path in X from x_0 to x_1 and if g is a path in X from x_1 to x_2 we define the concatenation f * g of f and g to be the path h given by the equations:

$$h(s) = \begin{cases} f(2s) & s \in [0, 1/2] \\ g(2s-1) & s \in [1/2, 1] \end{cases}$$

We think of h as the path whose first half is the path f and whose second half is the path g.

Notice however, that concatenation is NOT associative! That is, for f, g and h paths in X from x_0 to x_1 , x_1 to x_2 and x_2 to x_3 respectively, it is almost never the case that f * (g * h) = (f * g) * h.

Now, we can consider $\Omega(X)/\sim$ (where $f\sim g \iff f$ is homotopic to g). We denote this quotient by $\pi_1(X, x_0)$. In addition, we define

$$[f] * [g] = [f * g], \tag{6}$$

and arrive at our first theorem:

Theorem 2. $(\pi_1(X, x_0), *)$ is a group.

Proof. It is easy to verify it using the following two lemmas:

Lemma 1. If $k : X \to Y$ is continuous, F is a homotopy of paths between f and f', then $k \circ F$ is a homotopy of paths in Y of $k \circ f$ and $k \circ f'$.

Lemma 2. If $k : X \to Y$ is continuous, f, g are paths in X with f(1) = g(0), then $k \circ (f * g) = (k \circ f) * (k \circ g)$.

Lemma 3. If $x_0, x_1 \in X$ are path-connected then $\pi_1(X, x_0) \cong \pi_1(X, x_1)$.

So, for a path-connected space we can just omit the fixed point and write $\pi_1(X)$ as it is well-defined.

Now let us consider a continuous function $\varphi : X \to Y$. Naturally, φ induces a function $\varphi_* : \pi_1(X) \to \pi_1(Y)$ defined by $\gamma \mapsto \varphi \circ \gamma$. Set $\psi \in cont(X, Y)$, then it is easy to verify the following:

- φ_* is a group homomorphism.
- $(\psi \circ \varphi)_* = \psi_* \circ \varphi_*.$
- $\varphi \sim \psi \Longrightarrow \varphi_* = \psi_*$

Corollary 1. If $(X, x_0) \simeq (Y, y_0)$ then $\pi_1(X, x_0) \cong \pi_1(Y, y_0)$.

3 Covering Spaces

Definition 5. Let X be topological space that is path-connected. A covering space of X is pair (E, ρ) s.t. E is a topological space, $\rho : E \to X$ continuous and surjective s.t. $\forall x \in X$ there is an open neighborhood U_x of X s.t. $\rho^{-1}(U_x) = \bigcup_{\alpha \in I} V_{\alpha}$ where $\rho|_{V_{\alpha}}$ is homeomorphism on U_x and the sets V_{α} are disjoint.

Example 2. • $X \times D$ for any discrete set D with the identity on each copy of X.

- $\varphi: S^1 \to S^1$ by $z \mapsto z^n$.
- $\psi : \mathbb{R} \to S^1$ by $x \mapsto e^{ix}$.

Theorem 3. Let (X, x_0) a topological space, (E, ρ) a covering space and $\rho(e_0) = x_0$.

- if $\gamma : [0,1] \to X$ is a path s.t. $\gamma(0) = x_0$ then there exists a unique path $\bar{\gamma} : [0,1] \to E$ s.t. $\bar{\gamma}(0) = e_0$ and $\rho \circ \bar{\gamma} = \gamma$. $\bar{\gamma}$ is called the lift of γ to (E, ρ) at the point e_0 .
- LetF: [0,1]² → X be a continuous function, then there exists unique *F*: [0,1]² → E s.t. *F*(0,0) = e₀ and ρ ∘ *F* = F. Moreover, if F is a homotopy of paths, then so is *F*.

Proof. We will highlight key points in the proof for the first item. The second item is done in a similar way. The idea is to define $\bar{\gamma}$ in parts. Note that $\bigcup_{x \in X} \rho^{-1}(U_x)$ is an open cover of [0,1].

Since [0, 1] is compact, we can find a finite sub-cover, and since ρ is homemorphism on each of these open sets, it has an inverse. Thus, we have only one way to define $\bar{\gamma}$:

$$\bar{\gamma}(t) = \rho^{-1} \circ \gamma(t) \tag{7}$$

We start with the set containing the start point e_0 , and continue set by set. After a finite number of steps, we have uniquely defined $\bar{\gamma}$.

4 The Fundamental Group of S^1

Theorem 4. The fundamental group of S^1 is isomorphic to $(\mathbb{Z}, +)$.

Proof. Again, we will only highlight key points in the proof. Let b_0 be the point (1,0) of S^1 . We shall construct an isomorphism,

$$\phi: (\pi_1(S^1, (1, 0)), *) \to (\mathbb{Z}, +).$$

For this purpose, consider the covering map $\rho: R \to S^1$ by $\rho(x) = (\cos 2\pi x, \sin 2\pi x)$.

If γ is a loop in S^1 based at b_0 let $\tilde{\gamma}$ be the lift of γ to to a path in R beginning at 0. The point $\tilde{\gamma}(1)$ must be a point of the set $\rho^{-1}(b_0)$; that is, $\tilde{\gamma}(1)$

must equal some integer n. We define $\phi([\gamma])$ to be that integer. In the next lectures we will see why it is well-defined, and why is it an isomorphism.