
1 Constructions

We want to show another construction for topological spaces.
Let X,Y be two topological spaces. Consider the space

cont(X,Y ) = {f : X → Y |f is continuous} (1)

We need to define a topology.

Definition 1. The sub basis for the compact open topology is defined as follows:

UK,V = {f ∈ cont(X,Y )|f(K) ⊆ V } (2)

s.t. K ⊆ X compact and V ⊆ Y is open.

This construction makes sense if X is compactly generated.

Definition 2. X is compactly generated if

U ⊆ X is open ⇐⇒ ∀K ⊆ X compact, U ∩K is compact in K.

What is it good for?

Theorem 1. • ∀f ∈ cont(X×Y, Z) there is a natural induced f∗ ∈ cont(X, cont(Y, Z))
by f∗(x)(y) = f(x, y). When X,Y, Z are all compactly generated, then f∗
is a bijection.

• ∀g ∈ cont(X∧Y, (Z, z0)) there is a natural induced g∗ ∈ cont((X,x0), cont((Y, y0), (Z, z0)))
by g∗(x)(y) = g(x, y) and g∗(x0)(y0) = z0. If X,Y, Z are compactly gen-
erated, then g∗ is a bijection.

Example 1. Let Y = S1. Then

cont(X ∧ S1, Z) ∼= cont(X, cont(S1, Z)), (3)

which actually means

cont(ΣX,Z) ∼= cont(X,Ω(Z)). (4)

If we take Z = ΣX we get the following,

cont(ΣX,ΣX) ∼= cont(X,ΩΣX) (5)

and we denote by ϕ1 the image of the id mapping under that correspondence,
which is the unit map.
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2 The Fundamental Group π1

Definition 3. Let (X,x0) be a pointed topological space, Ω(X) is the set of all
loops in X with x0 as their base point, i.e. loops starting and ending at x0.

Definition 4. If f is a path in X from x0 to x1 and if g is a path in X from
x1 to x2 we define the concatenation f ∗ g of f and g to be the path h given by
the equations:

h(s) =

{
f(2s) s ∈ [0, 1/2]

g(2s− 1) s ∈ [1/2, 1]

We think of h as the path whose first half is the path f and whose second half
is the path g.

Notice however, that concatenation is NOT associative! That is, for f, g and
h paths in X from x0 to x1, x1 to x2 and x2 to x3 respectively, it is almost
never the case that f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Now, we can consider Ω(X)/ ∼ (where f ∼ g ⇐⇒ f is homotopic to g). We
denote this quotient by π1(X,x0). In addition, we define

[f ] ∗ [g] = [f ∗ g], (6)

and arrive at our first theorem:

Theorem 2.
(
π1(X,x0), ∗

)
is a group.

Proof. It is easy to verify it using the following two lemmas:

Lemma 1. If k : X → Y is continuous, F is a homotopy of paths between f
and f ′, then k ◦ F is a homotopy of paths in Y of k ◦ f and k ◦ f ′.

Lemma 2. If k : X → Y is continuous, f, g are paths in X with f(1) = g(0),
then k ◦ (f ∗ g) = (k ◦ f) ∗ (k ◦ g).

Lemma 3. If x0, x1 ∈ X are path-connected then π1(X,x0) ∼= π1(X,x1).

So, for a path-connected space we can just omit the fixed point and write
π1(X) as it is well-defined.

Now let us consider a continuous function ϕ : X → Y . Naturally, ϕ induces
a function ϕ∗ : π1(X)→ π1(Y ) defined by γ 7→ ϕ ◦ γ. Set ψ ∈ cont(X,Y ), then
it is easy to verify the following:

• ϕ∗ is a group homomorphism.

• (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

• ϕ ∼ ψ =⇒ ϕ∗ = ψ∗

Corollary 1. If (X,x0) ' (Y, y0) then π1(X,x0) ∼= π1(Y, y0).
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3 Covering Spaces

Definition 5. Let X be topological space that is path-connected. A covering
space of X is pair (E, ρ) s.t. E is a topological space, ρ : E → X continuous
and surjective s.t. ∀x ∈ X there is an open neighborhood Ux of X s.t. ρ−1(Ux) =
tα∈IVα where ρ

∣∣
Vα

is homeomorphism on Ux and the sets Vα are disjoint.

Example 2. • X×D for any discrete set D with the identity on each copy
of X.

• ϕ : S1 → S1 by z 7→ zn.

• ψ : R→ S1 by x 7→ eix.

Theorem 3. Let (X,x0) a topological space, (E, ρ) a covering space and ρ(e0) =
x0.

• if γ : [0, 1] → X is a path s.t. γ(0) = x0 then there exists a unique path
γ̄ : [0, 1] → E s.t. γ̄(0) = e0 and ρ ◦ γ̄ = γ. γ̄ is called the lift of γ to
(E, ρ) at the point e0.

• LetF : [0, 1]2 → X be a continuous function, then there exists unique
F̄ : [0, 1]2 → E s.t. F̄ (0, 0) = e0 and ρ ◦ F̄ = F . Moreover, if F is a
homotopy of paths, then so is F̄ .

Proof. We will highlight key points in the proof for the first item. The second
item is done in a similar way. The idea is to define γ̄ in parts.
Note that

⋃
x∈X

ρ−1(Ux) is an open cover of [0,1].

Since [0, 1] is compact, we can find a finite sub-cover, and since ρ is homemor-
phism on each of these open sets, it has an inverse. Thus, we have only one way
to define γ̄:

γ̄(t) = ρ−1 ◦ γ(t) (7)

We start with the set containing the start point e0, and continue set by set.
After a finite number of steps, we have uniquely defined γ̄.

4 The Fundamental Group of S1

Theorem 4. The fundamental group of S1 is isomorphic to (Z,+).

Proof. Again, we will only highlight key points in the proof.
Let b0 be the point (1,0) of S1. We shall construct an isomorphism,

φ : (π1(S1, (1, 0)), ∗)→ (Z,+).

For this purpose, consider the covering map ρ : R→ S1 by ρ(x) = (cos 2πx, sin 2πx).
If γ is a loop in S1 based at b0 let γ̃ be the lift of γ to to a path in R

beginning at 0. The point γ̃(1) must be a point of the set ρ−1(b0); that is, γ̃(1)
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must equal some integer n. We define φ([γ]) to be that integer.
In the next lectures we will see why it is well-defined, and why is it an isomor-
phism.
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