1 Constructions

We want to show another construction for topological spaces.
Let X, Y be two topological spaces. Consider the space

$$
\begin{equation*}
\operatorname{cont}(X, Y)=\{f: X \rightarrow Y \mid f \text { is continuous }\} \tag{1}
\end{equation*}
$$

We need to define a topology.
Definition 1. The sub basis for the compact open topology is defined as follows:

$$
\begin{equation*}
U_{K, V}=\{f \in \operatorname{cont}(X, Y) \mid f(K) \subseteq V\} \tag{2}
\end{equation*}
$$

s.t. $K \subseteq X$ compact and $V \subseteq Y$ is open.

This construction makes sense if X is compactly generated.
Definition 2. X is compactly generated if
$U \subseteq X$ is open $\Longleftrightarrow \forall K \subseteq X$ compact, $U \cap K$ is compact in K.
What is it good for?
Theorem 1. • $\forall f \in \operatorname{cont}(X \times Y, Z)$ there is a natural induced $f_{*} \in \operatorname{cont}(X, \operatorname{cont}(Y, Z))$ by $f_{*}(x)(y)=f(x, y)$. When X, Y, Z are all compactly generated, then f_{*} is a bijection.

- $\forall g \in \operatorname{cont}\left(X \wedge Y,\left(Z, z_{0}\right)\right)$ there is a natural induced $g_{*} \in \operatorname{cont}\left(\left(X, x_{0}\right), \operatorname{cont}\left(\left(Y, y_{0}\right),\left(Z, z_{0}\right)\right)\right)$ by $g_{*}(x)(y)=g(x, y)$ and $g_{*}\left(x_{0}\right)\left(y_{0}\right)=z_{0}$. If X, Y, Z are compactly generated, then g_{*} is a bijection.

Example 1. Let $Y=S^{1}$. Then

$$
\begin{equation*}
\operatorname{cont}\left(X \wedge S^{1}, Z\right) \cong \operatorname{cont}\left(X, \operatorname{cont}\left(S^{1}, Z\right)\right) \tag{3}
\end{equation*}
$$

which actually means

$$
\begin{equation*}
\operatorname{cont}(\Sigma X, Z) \cong \operatorname{cont}(X, \Omega(Z)) \tag{4}
\end{equation*}
$$

If we take $Z=\Sigma X$ we get the following,

$$
\begin{equation*}
\operatorname{cont}(\Sigma X, \Sigma X) \cong \operatorname{cont}(X, \Omega \Sigma X) \tag{5}
\end{equation*}
$$

and we denote by φ_{1} the image of the id mapping under that correspondence, which is the unit map.

2 The Fundamental Group π_{1}

Definition 3. Let $\left(X, x_{0}\right)$ be a pointed topological space, $\Omega(X)$ is the set of all loops in X with x_{0} as their base point, i.e. loops starting and ending at x_{0}.

Definition 4. If f is a path in X from x_{0} to x_{1} and if g is a path in X from x_{1} to x_{2} we define the concatenation $f * g$ of f and g to be the path h given by the equations:

$$
h(s)= \begin{cases}f(2 s) & s \in[0,1 / 2] \\ g(2 s-1) & s \in[1 / 2,1]\end{cases}
$$

We think of h as the path whose first half is the path f and whose second half is the path g.

Notice however, that concatenation is NOT associative! That is, for f, g and h paths in X from x_{0} to x_{1}, x_{1} to x_{2} and x_{2} to x_{3} respectively, it is almost never the case that $f *(g * h)=(f * g) * h$.

Now, we can consider $\Omega(X) / \sim$ (where $f \sim g \Longleftrightarrow f$ is homotopic to g). We denote this quotient by $\pi_{1}\left(X, x_{0}\right)$. In addition, we define

$$
\begin{equation*}
[f] *[g]=[f * g], \tag{6}
\end{equation*}
$$

and arrive at our first theorem:
Theorem 2. $\left(\pi_{1}\left(X, x_{0}\right), *\right)$ is a group.
Proof. It is easy to verify it using the following two lemmas:
Lemma 1. If $k: X \rightarrow Y$ is continuous, F is a homotopy of paths between f and f^{\prime}, then $k \circ F$ is a homotopy of paths in Y of $k \circ f$ and $k \circ f^{\prime}$.

Lemma 2. If $k: X \rightarrow Y$ is continuous, f, g are paths in X with $f(1)=g(0)$, then $k \circ(f * g)=(k \circ f) *(k \circ g)$.

Lemma 3. If $x_{0}, x_{1} \in X$ are path-connected then $\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(X, x_{1}\right)$.
So, for a path-connected space we can just omit the fixed point and write $\pi_{1}(X)$ as it is well-defined.

Now let us consider a continuous function $\varphi: X \rightarrow Y$. Naturally, φ induces a function $\varphi_{*}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ defined by $\gamma \mapsto \varphi \circ \gamma$. Set $\psi \in \operatorname{cont}(X, Y)$, then it is easy to verify the following:

- φ_{*} is a group homomorphism.
- $(\psi \circ \varphi)_{*}=\psi_{*} \circ \varphi_{*}$.
- $\varphi \sim \psi \Longrightarrow \varphi_{*}=\psi_{*}$

Corollary 1. If $\left(X, x_{0}\right) \simeq\left(Y, y_{0}\right)$ then $\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(Y, y_{0}\right)$.

3 Covering Spaces

Definition 5. Let X be topological space that is path-connected. A covering space of X is pair (E, ρ) s.t. E is a topological space, $\rho: E \rightarrow X$ continuous and surjective s.t. $\forall x \in X$ there is an open neighborhood U_{x} of X s.t. $\rho^{-1}\left(U_{x}\right)=$ $\sqcup_{\alpha \in I} V_{\alpha}$ where $\left.\rho\right|_{V_{\alpha}}$ is homeomorphism on U_{x} and the sets V_{α} are disjoint.

Example 2. - $X \times D$ for any discrete set D with the identity on each copy of X.

- $\varphi: S^{1} \rightarrow S^{1}$ by $z \mapsto z^{n}$.
- $\psi: \mathbb{R} \rightarrow S^{1}$ by $x \mapsto e^{i x}$.

Theorem 3. Let $\left(X, x_{0}\right)$ a topological space, (E, ρ) a covering space and $\rho\left(e_{0}\right)=$ x_{0}.

- if $\gamma:[0,1] \rightarrow X$ is a path s.t. $\gamma(0)=x_{0}$ then there exists a unique path $\bar{\gamma}:[0,1] \rightarrow E$ s.t. $\bar{\gamma}(0)=e_{0}$ and $\rho \circ \bar{\gamma}=\gamma . \bar{\gamma}$ is called the lift of γ to (E, ρ) at the point e_{0}.
- LetF : $[0,1]^{2} \rightarrow X$ be a continuous function, then there exists unique $\bar{F}:[0,1]^{2} \rightarrow E$ s.t. $\bar{F}(0,0)=e_{0}$ and $\rho \circ \bar{F}=F$. Moreover, if F is a homotopy of paths, then so is \bar{F}.

Proof. We will highlight key points in the proof for the first item. The second item is done in a similar way. The idea is to define $\bar{\gamma}$ in parts.
Note that $\bigcup_{x \in X} \rho^{-1}\left(U_{x}\right)$ is an open cover of $[0,1]$.
Since $[0,1]$ is compact, we can find a finite sub-cover, and since ρ is homemorphism on each of these open sets, it has an inverse. Thus, we have only one way to define $\bar{\gamma}$:

$$
\begin{equation*}
\bar{\gamma}(t)=\rho^{-1} \circ \gamma(t) \tag{7}
\end{equation*}
$$

We start with the set containing the start point e_{0}, and continue set by set. After a finite number of steps, we have uniquely defined $\bar{\gamma}$.

4 The Fundamental Group of S^{1}

Theorem 4. The fundamental group of S^{1} is isomorphic to $(\mathbb{Z},+)$.
Proof. Again, we will only highlight key points in the proof.
Let b_{0} be the point $(1,0)$ of S^{1}. We shall construct an isomorphism,

$$
\phi:\left(\pi_{1}\left(S^{1},(1,0)\right), *\right) \rightarrow(\mathbb{Z},+) .
$$

For this purpose, consider the covering map $\rho: R \rightarrow S^{1}$ by $\rho(x)=(\cos 2 \pi x, \sin 2 \pi x)$.
If γ is a loop in S^{1} based at b_{0} let $\tilde{\gamma}$ be the lift of γ to to a path in R beginning at 0 . The point $\tilde{\gamma}(1)$ must be a point of the set $\rho^{-1}\left(b_{0}\right)$; that is, $\tilde{\gamma}(1)$
must equal some integer n. We define $\phi([\gamma])$ to be that integer.
In the next lectures we will see why it is well-defined, and why is it an isomor-
phism.

