Generalized Functions Exercise 5

Shai Keidar

1.

$$
\begin{aligned}
C^{-\infty}(V) \otimes E & =C_{c}^{\infty}(V, \operatorname{Haar}(V))^{*} \otimes E \\
& \cong\left(C_{c}^{\infty}(V) \otimes \operatorname{Haar}(V)\right)^{*} \otimes E \\
& \cong\left(C_{c}^{\infty}(V) \otimes \operatorname{Haar}(V) \otimes E^{*}\right)^{*} \\
& =\left(C_{c}^{\infty}(V) \otimes\left(\operatorname{Haar}(V) \otimes E^{*}\right)\right)^{*} \\
& \cong C_{c}^{\infty}\left(V, \operatorname{Haar}(V) \otimes E^{*}\right)^{*}
\end{aligned}
$$

2. In order to define an embedding $C_{c}^{\infty}(V, E) \hookrightarrow C^{-\infty}(V, E)$ it is enough to find an embedding $C_{c}^{\infty}(V) \hookrightarrow C^{-\infty}(V)$ since $C_{c}^{\infty}(V, E)=C_{c}^{\infty}(V) \otimes E$ and $C^{-\infty}(V, E)=C^{-\infty}(V) \otimes E$.
Let $f \in C_{c}^{\infty}(V)$. Define $\xi_{f}: C_{c}^{\infty}(V) \times \operatorname{Haar}(V) \rightarrow \mathbb{R}$ by

$$
\xi_{f}(g, \mu):=\int_{V} f g d \mu
$$

Note that ξ_{f} is bilinear:

$$
\begin{aligned}
\xi_{f}\left(a_{1} g_{1}+a_{2} g_{2}, \mu\right) & =\int_{V} f\left(a_{1} g_{1}+a_{2} g_{2}\right) d \mu \\
& =a_{1} \int_{V} f g_{1} d \mu+a_{2} \int_{V} f g_{2} d \mu \\
& =a_{1} \xi_{f}\left(g_{1}, \mu\right)+a_{2} \xi_{f}\left(g_{2}, \mu\right) \\
\xi_{f}\left(g, a_{1} \mu 1+a_{2} \mu_{2}\right) & =\int_{V} f g d\left(a_{1} \mu_{1}+a_{2} \mu_{2}\right) \\
& =a_{1} \int_{V} f g d \mu_{1}+a_{2} \int_{V} f g d \mu_{2} \\
& =a_{1} \xi_{f}\left(g, \mu_{1}\right)+a_{2} \xi_{f}\left(g, \mu_{2}\right)
\end{aligned}
$$

Whence it defines a linear function

$$
\xi_{f}: C_{c}^{\infty}(V, \operatorname{Haar}(V))=C_{c}^{\infty}(V) \otimes \operatorname{Haar}(V) \rightarrow \mathbb{R}
$$

i.e. $\xi_{f} \in C^{-\infty}(V)=C_{c}^{\infty}(V, \operatorname{Haar}(V))^{*}$. We got a function $\xi: C_{c}^{\infty}(V) \rightarrow$ $C^{-\infty}(V)$ given by

$$
\left\langle\xi_{f}, g \otimes \mu\right\rangle=\int_{V} f g d \mu
$$

It is obviously linear. Assume that $\xi_{f}=0$ for some f, i.e.

$$
\int_{V} f g d \mu=0 \forall g \in C_{c}^{\infty}(V), \mu \in \operatorname{Haar}(V)
$$

Fix some non-zero Haar measure μ. Assume that $f(x) \neq 0$ for some x. Wlog $f(x)>0$. Let U be a neighborhood of x s.t. $f>0$ on U. Choose a bump function g s.t. $g>0$ on U and $g=0$ outside of U. Then

$$
0=\int_{V} f g d \mu=\int_{U} f g d \mu
$$

But since $f g>0$ on $U, \mu(U)=0$ in contradiction, as μ is a Haar measure.
3. Let V be an n-dimensional vector space.
$\Omega^{\mathrm{top}}(V)=\Omega^{n}(V)=\Lambda^{n}\left(V^{*}\right) \cong\left\{f: V^{n} \rightarrow \mathbb{R}\right.$ multilinear and anti-symmetric $\}$
We show that $f: V^{n} \rightarrow \mathbb{R}$ is multilinear and anti-symmetric if and only if $f\left(A v_{1}, \ldots, A v_{n}\right)=\operatorname{det}(A) f\left(v_{1}, \ldots, v_{n}\right)$ for any $A \in \operatorname{End}(V)$:
Let $f: V^{n} \rightarrow \mathbb{R}$ be a multilinear and anti-symmetric function. Choose a basis e_{1}, \ldots, e_{n} for V, and write $A=\left(a_{i, j}\right)$ as a matrix w.r.t it. First notice that

$$
\begin{aligned}
& f\left(A e_{1}, \ldots, A e_{n}\right)= f\left(\sum_{j} a_{1, j} e_{j}, \ldots, \sum_{j} a_{n, j} e_{j}\right) \\
&= \sum_{j_{1}, \ldots, j_{n}} a_{1, j_{1}} \cdots a_{n, j_{n}} f\left(e_{j_{1}}, \ldots, e_{j_{n}}\right) \\
& \quad \text { Since } f \text { is multilinear } \\
&= \sum_{\pi \in S_{n}} a_{1, \pi(1)} \cdots a_{n, \pi(n)} f\left(e_{\pi(1)}, \ldots, e_{\pi(n)}\right) \\
& \quad \text { Since } f\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=0 \text { if } j_{i}=j_{i^{\prime}} \text { for some } i, i^{\prime} \\
&= \sum_{\pi \in S_{n}} \operatorname{sign}(\pi) a_{1, \pi(1)} \cdots a_{n, \pi(n)} f\left(e_{1}, \ldots, e_{n}\right) \\
& \quad \text { Since } f \text { is anti-symmetric }
\end{aligned}
$$

Now let $v_{1}, \ldots, v_{n} \in V$. Write $B=\left(\begin{array}{ccc}\mid & & \mid \\ v_{1} & \cdots & v_{n} \\ \mid & & \mid\end{array}\right)$.

$$
\begin{aligned}
f\left(A v_{1}, \ldots, A v_{n}\right) & =f\left(A B e_{1}, \ldots, A B e_{n}\right) \\
& =\operatorname{det}(A B) f\left(e_{1}, \ldots, e_{n}\right) \\
& =\operatorname{det}(A) \operatorname{det}(B) f\left(e_{1}, \ldots, e_{n}\right) \\
& =\operatorname{det}(A) f\left(B e_{1}, \ldots, B e_{n}\right) \\
& =\operatorname{det}(A) f\left(v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

Now, assume that $f: V^{n} \rightarrow \mathbb{R}$ satisfies $f\left(A v_{1}, \ldots, A v_{n}\right)=\operatorname{det}(A) f\left(v_{1}, \ldots, v_{n}\right)$ for any $A \in \operatorname{Aut}(V)$. Choose a basis e_{1}, \ldots, e_{n} for V, and write $C:=$ $f\left(e_{1}, \ldots, e_{n}\right)$. Let v_{1}, \ldots, v_{n}, and write $B=\left(\begin{array}{ccc}\mid & & \mid \\ v_{1} & \cdots & v_{n} \\ \mid & & \mid\end{array}\right)$. Thus
$f\left(v_{1}, \ldots, v_{n}\right)=f\left(B e_{1}, \ldots, B e_{n}\right)=\operatorname{det}(B) f\left(e_{1}, \ldots, e_{n}\right)=C \operatorname{det}\left(v_{1}, \ldots, v_{n}\right)$
So $f=C \cdot \operatorname{det}$ and thus is multilinear and anti-symmetric.
4. (a) We define a function $\phi: \operatorname{Haar}(W) \times \operatorname{Haar}(V / W) \rightarrow \operatorname{Haar}(V)$ in the following way: Let $(\mu, \nu) \in \operatorname{Haar}(W) \times \operatorname{Haar}(V / W)$ and let $f \in C_{c}(V)$. For every $\alpha=v+W \in V / W$ define $f_{\alpha}=\int_{W} f(v+w) d \mu$. Since μ is translation-invariant, it does not depend on the choice of representative. Define

$$
\langle f, \phi(\mu, \nu)\rangle:=\int_{V / W} f_{\alpha} d \nu(\alpha)=\int_{V / W} \int_{W} f(v+w) d \mu(w) d \nu(v+W)
$$

ϕ is well defined, i.e. $\phi(\mu, \nu)$ is a Haar measure: Let $x \in V$, and look at $f_{x}(v):=f(x+v)$.

$$
\begin{aligned}
\left\langle f_{x}, \phi(\mu, \nu)\right\rangle & =\int_{V / W} \int_{W} f_{x}(v+w) d \mu(w) d \nu(v+W) \\
& =\int_{V / W} \int_{W} f(x+v+w) d \mu(w) d \nu(v+W) \\
& =\int_{V / W} \int_{W} f(x+v+w) d \mu(w) d \nu(x+v+W)(\nu \text { is a Haar measure }) \\
& =\int_{V / W} \int_{W} f(v+w) d \mu(w) d \nu(v+W) \\
& =\langle f, \phi(\mu, \nu)\rangle
\end{aligned}
$$

It is also easy to see that ϕ is bilinear, since it is bilinear w.r.t scalar multiplication and $\operatorname{Haar}(W)$ and $\operatorname{Haar}(V / W)$ are both onedimensional. So ϕ defines a morphism $\bar{\phi}: \operatorname{Haar}(W) \otimes \operatorname{Haar}(V / W) \rightarrow$ $\operatorname{Haar}(V)$ by

$$
\langle f, \bar{\phi}(\mu \otimes \nu)\rangle=\int_{V / W} \int_{W} f(v+w) d \mu(w) d \nu(v+W)
$$

Since $\bar{\phi}$ is not 0 and both spaces are one-dimensional, it is an isomorphism.
(b) Let $B_{1}=\left\{w_{1}, \ldots, w_{p}\right\}$ be a basis of W and $B_{2}=\left\{v_{1}+W, \ldots, v_{q}+\right.$ $W\}$ be a basis of V / W, so $B=\left\{w_{1}, \ldots, w_{p}, v_{1}, \ldots, v_{q}\right\}$ is a basis of V. We know that using those bases, the spaces $\Omega^{\text {top }}$ equal Span $\{\operatorname{det}\}$, so we define $\Omega^{\mathrm{top}}(W) \otimes \Omega^{\mathrm{top}}(V / W) \rightarrow \Omega^{\mathrm{top}}(V)$ by

$$
\left(a \operatorname{det}_{B_{1}}\right) \otimes\left(b \operatorname{det}_{B_{2}}\right) \mapsto a b \operatorname{det}_{B}
$$

It is obviously an isomorphism of linear spaces. Note that it does not depend on the choices we made: Let $B_{1}^{\prime}=\left\{w_{1}^{\prime}, \ldots, w_{p}^{\prime}\right\}$ be another basis for W and $B_{2}^{\prime}=\left\{v_{1}^{\prime}+W, \ldots, v_{q}^{\prime}+W\right\}$ be a basis for V / W (or same basis with other representatives). We let $B^{\prime}=$ $\left\{w_{1}^{\prime}, \ldots, w_{p}^{\prime}, v_{1}^{\prime}, \ldots, v_{q}^{\prime}\right\}$ be a basis for V. Now

$$
\begin{aligned}
\operatorname{det}_{B_{1}^{\prime}} & =\operatorname{det}\left(M_{B_{1}}^{B_{1}^{\prime}}\right) \operatorname{det}_{B_{1}} \\
\operatorname{det}_{B_{2}^{\prime}} & =\operatorname{det}\left(M_{B_{2}^{\prime}}^{B_{2}^{\prime}}\right) \operatorname{det}_{B_{2}} \\
\operatorname{det}_{B^{\prime}} & =\operatorname{det}\left(M_{B}^{B^{\prime}}\right) \operatorname{det}_{B}
\end{aligned}
$$

Notice that

$$
M_{B}^{B^{\prime}}=\left(\begin{array}{cc}
M_{B_{1}}^{B_{1}^{\prime}} & 0 \\
* & M_{B_{2}}^{B_{2}^{\prime}}
\end{array}\right)
$$

So $\operatorname{det}\left(M_{B}^{B^{\prime}}\right)=\operatorname{det}\left(M_{B_{1}}^{B_{1}^{\prime}}\right) \operatorname{det}\left(M_{B_{2}}^{B_{2}^{\prime}}\right)$ and therefore, using both choices, $\operatorname{det}_{B_{1}^{\prime}} \otimes \operatorname{det}_{B_{2}^{\prime}}=\operatorname{det}\left(M_{B_{1}}^{B_{1}^{\prime}}\right) \operatorname{det}_{B_{1}} \otimes \operatorname{det}\left(M_{B_{2}}^{B_{2}^{\prime}}\right) \operatorname{det}_{B_{2}}$ would map to $\operatorname{det}_{B^{\prime}}=\operatorname{det}\left(M_{B}^{B^{\prime}}\right) \operatorname{det}_{B}=\operatorname{det}\left(M_{B_{1}}^{B_{1}^{\prime}}\right) \operatorname{det}\left(M_{B_{2}}^{B_{2}^{\prime}}\right) \operatorname{det}_{B}$, so the isomorphism does not depend on our choices.
(c)

$$
\begin{aligned}
\operatorname{Ori}(V) & =\Omega^{\operatorname{top}}(V) \otimes\left|\Omega^{\operatorname{top}}(V)\right| \\
& =\Omega^{\operatorname{top}}(W) \otimes \Omega^{\operatorname{top}}(V / W) \otimes\left|\Omega^{\operatorname{top}}(W) \otimes \Omega^{\operatorname{top}}(V / W)\right| \\
& =\Omega^{\operatorname{top}}(W) \otimes \Omega^{\operatorname{top}}(V / W) \otimes\left|\Omega^{\operatorname{top}}(W)\right| \otimes\left|\Omega^{\operatorname{top}}(V / W)\right| \\
& =\Omega^{\operatorname{top}}(W) \otimes\left|\Omega^{\operatorname{top}}(W)\right| \otimes \Omega^{\operatorname{top}}(V / W) \otimes\left|\Omega^{\operatorname{top}}(V / W)\right| \\
& =\operatorname{Ori}(W) \otimes \operatorname{Ori}(V / W)
\end{aligned}
$$

(d) Remember that over non-archemedian fields, $S(X)=C_{c}^{\infty}(X)$. We saw that over non-archemedian fields, since $W \subseteq V$ is closed, we have an exact sequence

$$
0 \rightarrow S(V \backslash W) \rightarrow S(V) \rightarrow S(W) \rightarrow 0
$$

And thus, since $\operatorname{Dist}(X)=S^{*}(X)$, we have an exact sequence

$$
0 \rightarrow \operatorname{Dist}(W) \rightarrow \operatorname{Dist}(V) \rightarrow \operatorname{Dist}(V \backslash W) \rightarrow 0
$$

So we have an inclusion $\operatorname{Dist}(W) \hookrightarrow \operatorname{Dist}(V)$ with image equal to $\operatorname{Ker}(\operatorname{Dist}(V) \rightarrow \operatorname{Dist}(V \backslash W))=\{\xi \in \operatorname{Dist}(V) \mid \operatorname{supp}(\xi) \subseteq W\}=$ $\operatorname{Dist}_{W}(V)$. Therefore $\operatorname{Dist}(W) \cong \operatorname{Dist}_{W}(V)$.
(e) Let $B=\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V and $C=\left\{f_{1}, \ldots, f_{n}\right\}$ it's dual basis. Let M and P be the parallelepipeds spanned by B and C respectively. Let $\mu \in \operatorname{Haar}(V)$ be the Haar measure satisfying $\mu(M)=1$ and $\nu \in \operatorname{Haar}\left(V^{*}\right)$ be the Haar measure satisfying $\nu(P)=$ 1. Define an isomorphism $\operatorname{Haar}\left(V^{*}\right) \rightarrow \operatorname{Haar}(V)^{*}$ by

$$
\langle\nu, \mu\rangle=1
$$

Since both spaces are one-dimensional it defines an isomorphism between $\operatorname{Haar}\left(V^{*}\right)$ and $\operatorname{Haar}(V)^{*}$.
Let $B^{\prime}=\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ be another basis of V and $C^{\prime}=\left\{f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right\}$ it's dual basis, M^{\prime}, P^{\prime} the parallelepipeds spanned by these bases $\mu^{\prime} \in \operatorname{Haar}(V), \nu^{\prime} \in \operatorname{Haar}\left(V^{*}\right)$ the Haar measures achieving 1 on M^{\prime}, P^{\prime} respectively. We let

$$
\left\langle\mu^{\prime}, \nu^{\prime}\right\rangle^{\prime}=1
$$

Note that

$$
\begin{aligned}
& \mu\left(M^{\prime}\right)=\left|\operatorname{det}\left(M_{B^{\prime}}^{B}\right)\right| \mu(M)=\left|\operatorname{det}\left(M_{B^{\prime}}^{B}\right)\right| \\
& \nu\left(P^{\prime}\right)=\left|\operatorname{det}\left(M_{C^{\prime}}^{C}\right)\right| \nu(P)=\left|\operatorname{det}\left(\left(M_{B}^{B^{\prime}}\right)^{t}\right)\right|=\left|\operatorname{det}\left(M_{B^{\prime}}^{B}\right)\right|^{-1}
\end{aligned}
$$

So

$$
\begin{aligned}
\mu & =\left|\operatorname{det}\left(M_{B^{\prime}}^{B}\right)\right| \mu^{\prime} \\
\nu & =\left|\operatorname{det}\left(M_{B^{\prime}}^{B}\right)\right|^{-1} \nu^{\prime}
\end{aligned}
$$

Therefore

$$
\langle\mu, \nu\rangle^{\prime}=\langle | \operatorname{det}\left(M_{B^{\prime}}^{B}\right)\left|\mu^{\prime},\left|\operatorname{det}\left(M_{B^{\prime}}^{B}\right)\right|^{-1} \nu^{\prime}\right\rangle^{\prime}=\left\langle\mu^{\prime}, \nu^{\prime}\right\rangle^{\prime}=1
$$

So $\langle\cdot, \cdot \cdot\rangle$ and $\langle\cdot, \cdot\rangle^{\prime}$ define the same isomorphism and therefore the isomorphism does not depend on the choice of basis.
5. Choose a basis e_{1}, \ldots, e_{k} of W and complete it to a basis e_{1}, \ldots, e_{n} of V. Define the distribution $\xi \in \operatorname{Dist}(V \backslash W)$ by

$$
\langle\xi, f\rangle=\int_{\mathbb{R}^{n}} e^{e^{\frac{1}{x_{n}}}} f\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right) d x_{1} \cdots d x_{n-1} d x_{n}
$$

i.e. ξ is $e^{\frac{1}{x_{n}}} d x$. Since f is compactly supported in $V \backslash W$, then it is well defined $\left(\exists \epsilon>0\right.$ s.t. $\left.f\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=0 \forall\left|x_{n}\right| \leq \epsilon\right)$. Assume that $\exists \eta \in \operatorname{Dist}(V)$ s.t. $\left.\eta\right|_{V \backslash W}=\xi$. Let $f_{m} \in C_{c}^{\infty}(V)$ be functions, compactly supported on $V \backslash W$ s.t. $f_{m} \rightarrow f$ and f is some non-negative, compactly supported function, exponentially decreasing to 0 at W (so all of its derivations of any order at W are 0 , and thus it is in the closure of $C_{c}^{\infty}(V \backslash W)$ in $\left.C_{c}^{\infty}(V)\right)$. Then

$$
\begin{array}{rlr}
\langle\eta, f\rangle & =\lim _{m \rightarrow \infty}\left\langle\eta, f_{m}\right\rangle & \eta \text { is continuous } \\
& =\lim _{m \rightarrow \infty}\left\langle\xi, f_{m}\right\rangle & f_{m} \in C_{c}^{\infty}(V \backslash W) \\
& =\lim _{m \rightarrow \infty} \int_{\mathbb{R}^{n}} e^{\frac{1}{x_{n}}} f_{m}\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right) d x_{1} \cdots d x_{n-1} d x_{n} \\
& =\int_{\mathbb{R}^{n}} e^{e^{\frac{1}{x_{n}}}} f\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right) d x_{1} \cdots d x_{n-1} d x_{n}=\infty
\end{array}
$$

Where the last equality is true since f decreases exponentially and $e^{e^{\frac{1}{x_{n}}}}$ grows super-exponentially and the functions are non-negative. Therefore there is not $\eta \in \operatorname{Dist}(V)$ s.t. $\left.\eta\right|_{V \backslash W}=\xi$.
6.

$$
G_{i}=\left\{f \in C_{c}^{\infty}(V)|D f=0 \forall| D \mid \leq i \text { differntial operation }\right\}
$$

$\Phi: G_{i-1} / G_{i} \rightarrow C_{c}^{\infty}\left(W, \operatorname{Sym}^{i}\left(W^{\perp}\right)\right)$ is given by

$$
\Phi(f)(w)\left(v_{1}, \ldots, v_{i}\right)=\partial_{v_{1}} \cdots \partial_{v_{i}} f(w)
$$

Where we identify $\operatorname{Sym}^{i}\left(W^{\perp}\right)=\operatorname{Sym}^{i}\left((V / W)^{*}\right)=\operatorname{Sym}^{i}(V / W)^{*}$ with $\left\{f: V^{i} \rightarrow \mathbb{R}\right.$ symmetric and multilinear $\left.|f|_{W \times V \times V \times \cdots \times V}=0\right\}$.

Choose a basis $\left\{e_{1}, \ldots, e_{k}\right\}$ of W and complete it to a basis of $V:\left\{e_{1}, \ldots, e_{n}\right\}$.

Let $\varphi \in C_{c}^{\infty}\left(W, \operatorname{Sym}^{i}\left(W^{\perp}\right)\right)$. For a multi-index $\alpha=\left(\alpha_{k+1}, \ldots, \alpha_{n}\right)$ with $|\alpha|=i$ denote by $e^{\alpha}=\left(e_{k+1}, \ldots, e_{k+1}, e_{k+2}, \ldots, e_{k+2}, \ldots, e_{n}, \ldots, e_{n}\right)$ where each e_{j} apears α_{j} times. Define $f: V \rightarrow \mathbb{R}$ by

$$
f\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right):=\sum_{\alpha=\left(\alpha_{k+1}, \ldots, \alpha_{n}\right)|\alpha|=i} \frac{x^{\alpha}}{\alpha!} \varphi\left(x_{1} e_{1}+\cdots+x_{k} e_{k}\right)\left(e^{\alpha}\right)
$$

Where $x^{\alpha}=x_{k+1}^{\alpha_{k+1}} \cdots x_{n}^{\alpha_{n}}$ and $\alpha!=\alpha_{k+1}!\cdots \alpha_{n}!$.
Let $\partial_{j}:=\partial_{e_{j}}$, and for some multi-index $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$, let $\partial^{\beta}:=$ $\partial_{1}^{\beta_{1}} \cdots \partial_{n}^{\beta_{n}}$. Notice that $\partial^{\beta} f(w)=0$ for every $|\beta| \leq i-1$ and $w \in W$ (since all of the expresseions in the sum contain monomials of degree i in the coeffiecients of basis elements which are not in W). Now, for every v_{1}, \ldots, v_{r} with $r<i, \partial_{v_{1}} \cdots \partial_{v_{r}}$ is linearly dependent on $\left\{\partial^{\beta}| | \beta \mid \leq i-1\right\}$ and thus $\partial_{v_{1}} \cdots \partial_{v_{r}} f(w)=0$. I.e. $f \in G_{i-1}$.
We want to show that $\varphi=\Phi(f)$. It is sufficient to prove that $\varphi(w)\left(e^{\beta}\right)=$ $\Phi(f)(w)\left(e^{\beta}\right)$ for every $|\beta|=i$. Let $|\beta|=i$. For $\alpha=\left(\alpha_{k+1}, \ldots, \alpha_{n}\right)$ with $|\alpha|=i$, denote $f_{\alpha}\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right):=\frac{x^{\alpha}}{\alpha!} \varphi\left(x_{1} e_{1}+\cdots+x_{k} e_{k}\right)\left(e^{\alpha}\right)$, so $f=\sum_{|\alpha|=i} f_{\alpha} . \partial^{\beta} f_{\alpha}$ is a linear combination of polynomials in x_{k+1}, \ldots, x_{n} multiplied by the derivativies of $\varphi\left(x_{1} e_{1}+\cdots+x_{k} e_{k}\right)\left(e^{\alpha}\right)$. Notice that since $|\beta|=i$, each monomial containing some none-trivial derivation of φ will also be multiplied by a non-trivial monomial in x_{k+1}, \ldots, x_{n} and thus will be 0 on W. Therefore

$$
\partial^{\beta} f_{\alpha}(w)=\frac{\partial^{\beta}\left(x^{\alpha}\right)}{\alpha!} \varphi(w)\left(e^{\alpha}\right)
$$

If $\beta \neq \alpha$ then it is 0 , otherwise it is exactly $\varphi(w)\left(e^{\beta}\right)$. Thus

$$
\Phi(f)(w)\left(e^{\beta}\right)=\partial^{\beta} f(w)=\sum_{|\alpha|=i} \partial^{\beta} f_{\alpha}(w)=\varphi(w)\left(e^{\beta}\right)
$$

So $\Phi(f)=\varphi$ and Φ is surjective.

