Generalized Functions Exercise 6

Shai Keidar

1. Let ω_{1} be the set of countable ordinals, endowed with the discrete topology, and let $L \subseteq \omega_{1}$ be the set of limit countable ordinals. Define $X:=[0,1] \times \omega_{1} \backslash\{0\} \times L$. We define the requested topological space M by gluing the end-points of successor ordinals. i.e.

$$
M=X /(0, \alpha+1) \sim(1, \alpha)
$$

So M is a "really long line".
Let $[x, \alpha] \in M$. If $0<x<1$ then $(0,1) \times\{\alpha\}$ is an open neighborhood of $[x, \alpha]$ homeomorphic to \mathbb{R}. Otherwise, if $x=0$ then α is a successor, and whence $[1, \alpha-1]=[0, \alpha]$ so we may assume $x=1$, and now $\left(\frac{1}{2}, 1\right] \times$ $\{\alpha\} \cup\left[0, \frac{1}{2}\right) \times\{\alpha+1\}$ is an open neighborhood of $[x, \alpha]$ homeomorphic to \mathbb{R}. So M is locally homeomorphic to \mathbb{R}, and it is obviously Hausdorff. Define $U_{\alpha}:=\cap_{\beta \leq \alpha}(0,1] \times\{\beta\} \backslash 1 \times\{\alpha\}$ for $\alpha<\omega_{1}$. It is an open cover of M which does not admit a locally finite refinement. So M is not paracompact.
2. Let Vect denote the category of finite-dimensional real vector spaces endowed with the Euclidean topology. For a smooth manifold or a p adic analytic manifold M let $\mathbf{V B}(M)$ denote the category of real vector bundles over M.

Definition. Let $\lambda:$ Vect $^{k} \times\left(\text { Vect }^{o p}\right)^{l} \rightarrow$ Vect be a functor, where Vect ${ }^{\text {op }}$ is the opposite (dual) category of Vect. We say that λ is topologicallycontinuous if for any $V_{1}, \ldots, V_{k+l}, V_{1}^{\prime}, \ldots, V_{k+l}^{\prime} \in$ Vect
$\lambda: \prod_{i=1}^{k} \operatorname{Hom}\left(V_{i}, V_{i}^{\prime}\right) \times \prod_{i=k+1}^{l} \operatorname{Hom}\left(V_{i}^{\prime}, V_{i}\right) \rightarrow \operatorname{Hom}\left(\lambda\left(V_{1}, \ldots, V_{k+l}\right), \lambda\left(V_{1}^{\prime}, \ldots, V_{k+l}^{\prime}\right)\right)$
is continuous as a map of real spaces.
Claim. Let $\lambda:$ Vect $^{k} \times\left(\text { Vect }^{o p}\right)^{l} \rightarrow$ Vect be a topologically-continuous functor, then for any smooth manifold or a p-adic analytic manifold M,
there exists a unique functor $\lambda_{M}: \mathbf{V B}(M)^{k} \times\left(\mathbf{V B}(M)^{o p}\right)^{l} \rightarrow \mathbf{V B}(M)$ s.t.

$$
\left(\lambda_{M}\left(E_{1}, \ldots, E_{k+l}\right)\right)_{x}=\lambda\left(\left(E_{1}\right)_{x}, \ldots,\left(E_{k+l}\right)_{x}\right)
$$

for any $E_{1}, \ldots, E_{k+l} \in \mathbf{V B}(M), x \in M$.
Proof. Let E_{1}, \ldots, E_{k+l} be real vector bundles over M. Define $\Lambda=$ $\lambda_{M}\left(E_{1}, \ldots, E_{k+l}\right)$ as the set

$$
\left\{\left(x, \lambda\left(\left(E_{1}\right)_{x}, \ldots,\left(E_{k+l}\right)_{x}\right) \mid x \in M\right\}\right.
$$

with the obvious projection $\pi: \Lambda \rightarrow M$. For $x \in M$ let U_{x} be an open neighborhood of x s.t. there exists trivializations $\varphi_{x, i}:\left.E_{i}\right|_{U_{x}} \xrightarrow{\sim}$ $U_{x} \times\left(E_{i}\right)_{x}$.
For $U \subseteq M$ open, define $\left.\Lambda\right|_{U}:=\pi^{-1}(U)$. Define the set-functions ξ_{x} : $\left.\Lambda\right|_{U_{x}} \rightarrow U_{x} \times \lambda\left(\left(E_{1}\right)_{x}, \ldots,\left(E_{k+l}\right)_{x}\right)$ in the following way:
For $y \in U_{x}$ we have linear isomorhpisms $\varphi_{i, x, y}:\left(E_{i}\right)_{y} \rightarrow\left(E_{i}\right)_{x}$ given by $v \mapsto \varphi_{x, i}(y, v)$. λ is a functor of linear spaces, so we have a morphism

$$
\lambda\left(\varphi_{1, x, y}, \ldots, \varphi_{k+l, x, y}\right): \lambda\left(\left(E_{1}\right)_{y}, \ldots,\left(E_{k+l}\right)_{y}\right) \rightarrow \lambda\left(\left(E_{1}\right)_{x}, \ldots,\left(E_{k+l}\right)_{x}\right)
$$

(which is an isomorphism of linear spaces since each of the above morphisms is an isomorphism). It induces the function $\xi_{x}:\left.\Lambda\right|_{U_{x}} \rightarrow U_{x} \times$ $\lambda\left(\left(E_{1}\right)_{x}, \ldots,\left(E_{k+l}\right)_{x}\right)$ given by

$$
\xi_{x}(y, v)=\left(y, \lambda\left(\varphi_{1, x, y}, \ldots, \varphi_{k+l, x, y}\right)(v)\right)
$$

Topologise Λ with the weakest topology s.t. each ξ_{x} is continuous. i.e. a basis for the topology is
$\left\{\xi_{x}^{-1}(U \times V) \mid x \in M, U \subseteq M\right.$ open, $V \subseteq \lambda\left(\left(E_{1}\right)_{x}, \ldots,\left(E_{k+l}\right)_{x}\right) \cong \mathbb{R}^{d}$ open $\}$
Since λ is topologically-continuous, each ξ_{x} is also a homeomorphism. Now Λ is a topological space with a continuous surjection $\pi: \Lambda \rightarrow M$ satisfying
(a) $\Lambda_{x}=\pi^{-1}(x)=\lambda\left(\left(E_{1}\right)_{x}, \ldots,\left(E_{k+l}\right)_{x}\right)$, which is a finite-dimensional real vector space.
(b) For every $x \in M$ there exists an open neighborhood $x \in U_{x}$ and a trivialization $\xi_{x}:\left.\Lambda\right|_{U_{x}} \xrightarrow{\sim} U_{x} \times \Lambda_{x}$ which is a homeomorphism satisfying $\pi \circ \xi_{x}=\pi$.
(c) For every $y \in U_{x} v \mapsto \xi_{x}(y, v)$ is a linear isomorphism $\Lambda_{y} \rightarrow \Lambda_{x}$.

Now, notice that $(-)_{M}$ is indeed a functor, for if $\eta: \lambda_{1} \rightarrow \lambda_{2}$ is a natural transformation, then we can define $\eta_{M}:\left(\lambda_{1}\right)_{M} \rightarrow\left(\lambda_{2}\right)_{M}$ locally as the product with the identity. And it is obvious that $(\mathbb{1})_{M}=\mathbb{1}$ and that $\left(\eta \circ \eta^{\prime}\right)_{M}=\eta_{M} \circ \eta_{M}^{\prime}$.
(a) Consider the functor $(-)^{*}$: Vect ${ }^{\text {op }} \rightarrow$ Vect and apply the lemma.
(b) Look at the functor $\oplus:$ Vect $^{2} \rightarrow$ Vect and apply the lemma. It is easy that it satisfies the universal property: Let E_{1} and E_{2} be two real vector bundles. Near every point $x \in M$ there is a neighborhood U_{x} and trivializations $\varphi_{x}:\left.E_{1}\right|_{U_{x}} \xrightarrow{\sim} U_{x} \times\left(E_{1}\right)_{x}, \psi_{x}$: $\left.E_{2}\right|_{U_{x}} \xrightarrow{\sim} U_{x} \times\left(E_{2}\right)_{x}, \xi_{x}:\left.E_{1} \oplus E_{2}\right|_{U_{x}} \xrightarrow{\sim} U_{x} \times\left(E_{1}\right)_{x} \oplus\left(E_{2}\right)_{x}$. Thus locally it obviously satisfies the universal property.
Build morphisms $\iota_{j}: E_{j} \rightarrow E_{1} \oplus E_{2}$ locally: Near x it will be given by the natural morphism $\iota_{j}:\left.\left.\left.E_{j}\right|_{U_{x}} \rightarrow E_{1}\right|_{U_{x}} \oplus E_{2}\right|_{U_{x}}$. It agrees on the intersection because $\left.\left(\left.\left.E_{1}\right|_{U_{x}} \oplus E_{2}\right|_{U_{x}}\right)\right|_{U_{y}}$ and $\left.\left(\left.\left.E_{1}\right|_{U_{y}} \oplus E_{2}\right|_{U_{y}}\right)\right|_{U_{x}}$ both satisfy the universal property of direct sum of $\left.E_{1}\right|_{U_{x} \cap U_{y}}$ and $\left.E_{2}\right|_{U_{x} \cap U_{y}}$.
In the same way, if there are morphisms $f_{1}: E_{1} \rightarrow G, f_{2}: E_{2} \rightarrow G$ for some vector bundle G, there exists a unique morphism $f: E_{1} \oplus$ $E_{2} \rightarrow G$ satisfying $f \circ \iota_{j}=f_{j}$.
It is also easy to see that it satisfies the universal propery of a product in this category.
(c) Consider the functor $\otimes:$ Vect $^{2} \rightarrow$ Vect and apply the lemma.
(d) Let $E_{1} \subseteq E_{2}$. Define E_{1} / E_{2} as the set

$$
\left\{\left(x,\left(E_{1}\right)_{x} /\left(E_{2}\right)_{x}\right) \mid x \in M\right\}
$$

with the obvious projection $\pi: E_{1} / E_{2} \rightarrow M$. For $x \in M$ let U_{x} be an open neighborhood of x s.t. there exists trivializations φ_{x} : $\left.E_{1}\right|_{U_{x}} \xrightarrow{\sim} U_{x} \times\left(E_{1}\right)_{x}$, and $\psi_{x}:=\left.\varphi_{x}\right|_{E_{2}}:\left.E_{2}\right|_{U_{x}} \xrightarrow{\sim} U_{x} \times\left(E_{2}\right)_{x}$, and $\left(E_{2}\right)_{x} \subseteq\left(E_{1}\right)_{x}$.
For $U \subseteq M$ open, define $\left.\left(E_{1} / E_{2}\right)\right|_{U}:=\pi^{-1}(U)$. Define the setfunctions $\xi_{x}:\left.\left(E_{1} / E_{2}\right)\right|_{U_{x}} \rightarrow U_{x} \times\left(E_{1}\right)_{x} /\left(E_{2}\right)_{x}$ in the following way: For $y \in U_{x}$ we have linear isomorhpisms $\varphi_{x}:\left(E_{j}\right)_{y} \rightarrow\left(E_{j}\right)_{x}$ given by $v \mapsto \varphi_{x}(y, v)$. We have a morphism

$$
\overline{\varphi_{x}}:\left(E_{1}\right)_{x} /\left(E_{2}\right)_{x}\left(E_{1}\right)_{y} /\left(E_{2}\right)_{y}
$$

which is an isomorphism of linear spaces. It induces the function $\xi_{x}:\left.\left(E_{1} / E_{2}\right)\right|_{U_{x}} \rightarrow U_{x} \times\left(E_{1}\right)_{x} /\left(E_{2}\right)_{x}$ given by

$$
\xi_{x}(y, v)=\left(y, \overline{\varphi_{x}}(v)\right)
$$

Topologise Λ with the weakest topology s.t. each ξ_{x} is continuous. i Topologise E_{1} / E_{2} with the weakest topology s.t. each ξ_{x} is continuous. i.e. a basis for the topology is

$$
\left\{\xi_{x}^{-1}(U \times V) \mid x \in M, U \subseteq M \text { open, } V \subseteq\left(E_{1}\right)_{x} /\left(E_{2}\right)_{x} \cong \mathbb{R}^{d} \text { open }\right\}
$$

Now E_{1} / E_{2} is a topological space with a continuous surjection π : $E_{1} / E_{2} \rightarrow M$ satisfying
i. $\left(E_{1} / E_{2}\right)_{x}=\pi^{-1}(x)=\left(E_{1}\right)_{x} /\left(E_{2}\right)_{x}$ which is a finite-dimensional real vector space.
ii. For every $x \in M$ there exists an open neighborhood $x \in U_{x}$ and a trivialization $\xi_{x}:\left.\left(E_{1} / E_{2}\right)\right|_{U_{x}} \xrightarrow{\sim} U_{x} \times\left(E_{1} / E_{2}\right)_{x}$ which is a homeomorphism satisfying $\pi \circ \xi_{x}^{x}=\pi$.
iii. For every $y \in U_{x} v \mapsto \xi_{x}(y, x)$ is a linear isomorphism $\left(E_{1} / E_{2}\right)_{y} \rightarrow$ $\left(E_{1} / E_{2}\right)_{x}$.
We can show locally that it satisfies the universal condition of cokernel, the same as in the direct sum part.
(e) Look at the functors Λ^{k} : Vect \rightarrow Vect and Sym ${ }^{k}:$ Vect \rightarrow Vect, and apply the lemma.
(f) Look at the functor Dens : Vect \rightarrow Vect and apply the lemma.
3. (a) We gave 3 constructions to the tangent space at a point x of a smooth manifold M :
i. $T_{x} M=$ The set of smooth curves $\alpha:(-\epsilon, \epsilon) \rightarrow M$ s.t. $\alpha(0)=x$ under the identification of 2 curves α, β if for some chart (and thus for all charts) $\varphi: x \in U \subseteq M \hookrightarrow \mathbb{R}^{m}$ near $x,(\varphi \alpha)^{\prime}(0)=$ $(\varphi \beta)^{\prime}(0)$.
We give it a vector space structure by

$$
a[\alpha]+b[\beta]:=\left[\varphi^{-1}(a \varphi \alpha+b \varphi \beta)\right]
$$

This structure does not depend on the chart: Assume $\psi: x \in$ $V \subseteq M \hookrightarrow \mathbb{R}^{m}$ is another chart. Wlog $U=V$, so $\varphi \psi^{-1}$ is a smooth map of open subsets in $\mathbb{R}^{n} .(U, \varphi)$ is a chart so to show that the structure is unique it is enough to show that

$$
\begin{aligned}
\left(\varphi\left(\varphi^{-1}(a \varphi \alpha+b \varphi \beta)\right)\right)^{\prime}(0) & =\left(\varphi\left(\psi^{-1}(a \psi \alpha+b \psi \beta)\right)\right)^{\prime}(0) \\
\varphi\left(\psi^{-1}(a \psi \alpha+b \psi \beta)\right)^{\prime}(0) & =D_{x}\left(\varphi \psi^{-1}\right)\left(a(\psi \alpha)^{\prime}(0)+(b \psi \beta)^{\prime}(0)\right) \\
& =a D_{x}\left(\varphi \psi^{-1}\right)(\psi \alpha)^{\prime}(0)+b D_{x}\left(\varphi \psi^{-1}\right)(\psi \beta)^{\prime}(0) \\
& =a(\varphi \alpha)^{\prime}(0)+b(\varphi \beta)^{\prime}(0) \\
& =\left(\varphi\left(\varphi^{-1}(a \varphi \alpha+b \varphi \beta)\right)\right)^{\prime}(0)
\end{aligned}
$$

ii. The set of derivations at x on the global sections of M :

$$
\operatorname{Der}_{x}(M)=\left\{\delta: C^{\infty}(M) \rightarrow \mathbb{R} \mid \text { s.t. } \delta(f g)=f(x) \delta g+g(x) \delta f\right\}
$$

iii. $\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}$ where $\mathfrak{m}_{x}=\left\{f \in C^{\infty}(M) \mid f(x)=0\right\}$.

Choose local coordinates $\varphi: U \rightarrow U^{\prime}$ where $x \in U \subseteq M$ open and $U^{\prime} \subseteq \mathbb{R}^{m}$ open for M around x. We define a morphism $D: T_{x} M \rightarrow$ $\operatorname{Der}_{x}(M)$: For $[\alpha] \in T_{x} M$ and $f \in C^{\infty}(M)$

$$
D([\alpha])(f):=\left.\frac{d}{d t}\right|_{t=0}(f \alpha)=d\left(f \varphi^{-1}\right)\left((\varphi \alpha)^{\prime}(0)\right)
$$

D obviuosly does not depend on the choice of local coordinates.
D is well defined: Assume $\alpha \sim \beta$ then $(\varphi \alpha)^{\prime}(0)=(\varphi \beta)^{\prime}(0)$ so $D([\alpha])(f)=D([\beta])(f)$.
D is linear: Let $[\alpha],[\beta] \in T_{x} M$ and $a, b \in \mathbb{R}$, then

$$
\begin{aligned}
D(a[\alpha]+b[\beta]) & =D\left(\left[\varphi^{-1}(a \varphi \alpha+b \varphi \beta)\right]\right) \\
& =d\left(f \varphi^{-1}\right)\left(\left(\varphi \varphi^{-1}(a \varphi \alpha+b \varphi \beta)\right)^{\prime}(0)\right) \\
& =d\left(f \varphi^{-1}\right)\left((a \varphi \alpha+b \varphi \beta)^{\prime}(0)\right) \\
& =d\left(f \varphi^{-1}\right)\left(a(\varphi \alpha)^{\prime}(0)+b(\varphi \beta)^{\prime}(0)\right) \\
& =a d\left(f \varphi^{-1}\right)\left((\varphi \alpha)^{\prime}(0)\right)+b d\left(f \varphi^{-1}\right)\left((\varphi \beta)^{\prime}(0)\right) \\
& =a D([\alpha])+b D([\beta])
\end{aligned}
$$

D is injective: If $D([\alpha])=0$ then $d\left(f \circ \varphi^{-1}\right)\left((\varphi \circ \alpha)^{\prime}(0)\right)=0$ for any f, so $(\varphi \circ \alpha)^{\prime}(0)=0$ and whence $\alpha \sim 0$ so D is injective.
Let $\delta: C^{\infty}(M) \rightarrow \mathbb{R}$ be a derivation at x. Using the local coordinates U at x and multiplying by a bump function we get a derivation $\delta: C^{\infty}\left(U \subseteq \mathbb{R}^{m}\right) \rightarrow \mathbb{R}$. First we may assume wlog that x is 0 in those local coordinates and that U is the open ball around the origin $B=B(0,1)$.
Notice that $\delta(1)=\delta(1 \cdot 1)=1 \cdot \delta(1)+1 \cdot \delta(1)=2 \delta(1)$ so $\delta(1)=0$. Since δ is linear, $\delta(c)=0$ for every constant function c. Let x_{i} : $B \rightarrow \mathbb{R}$ be the i-th coordinate function, and write $c_{i}:=\delta x_{i} \in \mathbb{R}$. For a smooth function $f: B \rightarrow \mathbb{R}$ and a point $y \in B$,

$$
\begin{gathered}
f(y)=f(0)+\int_{0}^{1} \frac{d f}{d t}(t y) d t=f(0)+\sum_{i=1}^{m} \int_{0}^{1} \frac{\partial f}{\partial x_{i}}(t y) \cdot y_{i} d t= \\
f(0)+\sum_{i=1}^{m} y_{i} \int_{0}^{1} \frac{\partial f}{\partial x_{i}}(t y) d t
\end{gathered}
$$

Denote by $g_{i}(y):=\int_{0}^{1} \frac{\partial f}{\partial x_{i}}(t y) d t$, then $f=f(0)+\sum_{i=1}^{m} x_{i} g_{i}$. Now
$\delta f=\delta(f(0))+\sum_{i=1}^{m} \delta\left(x_{i} g_{i}\right)=\sum_{i=1}^{m}\left(\left.x_{i}\right|_{0} \cdot \delta g_{i}+c_{i} g_{i}(0)\right)=\sum_{i=1}^{m} c_{i} \frac{\partial f}{\partial x_{i}}(0)$
Let $\alpha:(-\epsilon, \epsilon) \rightarrow M$ be written in local coordinates by $\alpha(t):=$ $\sum_{i=1}^{m} c_{i} t$, then in local coordinates

$$
D([\alpha])(f)=d f\left(\alpha^{\prime}(0)\right)=\left\langle\nabla f,\left(c_{i}\right)_{i=1}^{m}\right\rangle=\sum_{i=1}^{m} c_{i} \frac{\partial f}{\partial x_{i}}=\delta f
$$

So $\delta=D([\alpha])$.
Now let res: $\operatorname{Der}_{x}(M) \rightarrow \operatorname{Hom}\left(\mathfrak{m}_{x}, \mathbb{R}\right)$ be given by

$$
(\operatorname{res} \delta)(f):=\delta f
$$

Notice the if $f \in \mathfrak{m}_{x}^{2}$, then f has the form $f=\sum_{i} g_{i} h_{i}$ where $g_{i}, h_{i} \in \mathfrak{m}_{x}$, and whence

$$
(\operatorname{res} \delta)(f)=\delta f=\sum \delta\left(g_{i} h_{i}\right)=\sum\left(g_{i}(x) \delta h_{i}+h_{i}(x) \delta g_{i}\right)=0
$$

Thus we may define $\pi: \operatorname{Der}_{x}(M) \rightarrow\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}$ by

$$
\pi(\delta)\left(f+\mathfrak{m}_{x}^{2}\right):=\delta f
$$

It is one-to-one, because if $\pi(\delta)=0$, then for any $f \in C^{\infty}(M)$, $f-f(x) \in \mathfrak{m}_{x}$, so
$\delta f=\delta(f-f(x)+f(x))=\delta(f-f(x))+\delta(f(x))=\pi(\delta)\left(f-f(x)+\mathfrak{m}_{x}^{2}\right)=0$
and whence $\delta=0$.
Let $\varphi \in\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}$. We define $\delta: C^{\infty}(M) \rightarrow \mathbb{R}$ by

$$
\delta f:=\varphi\left(f-f(x)+\mathfrak{m}_{x}^{2}\right)
$$

It is obviously linear. Let $f, g \in C^{\infty}(M)$, then

$$
\begin{aligned}
\delta(f g) & =\varphi\left(f g-f(x) g(x)+\mathfrak{m}_{x}^{2}\right) \\
& =\varphi\left(f g-f(x) g(x)-(f-f(x))(g-g(x))+\mathfrak{m}_{x}^{2}\right) \\
& =\varphi\left(f(x)(g-g(x))+\mathfrak{m}_{x}^{2}\right)+\varphi\left(g(x)(f-f(x))+\mathfrak{m}_{x}^{2}\right) \\
& =f(x) \delta g+g(x) \delta f
\end{aligned}
$$

so δ is a derivation, and it is obvious that $\pi(\delta)=\varphi$. So π is surjective.

$$
T_{x} M \xrightarrow{D} \operatorname{Der}_{x}(M) \xrightarrow{\pi}\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}
$$

are canonical isomorphisms and thus all the definitions are equivalent.
(b) Let $T:\left(C^{\infty}\right)_{*} \rightarrow$ Vect, where $\left(C^{\infty}\right)_{*}$ is the category of based smooth real manifolds, be the functor given by

$$
T(M, x):=T_{x} M
$$

For $f:(M, x) \rightarrow(N, y)$, we define

$$
T_{x} f=f_{*}: T_{x} M \rightarrow T_{y} N
$$

by $f_{*}([\alpha])=[f \alpha]$. It is well defined: Assume that $\alpha \sim \beta$, then for some chart $\varphi: x \in U \hookrightarrow \mathbb{R}^{m},(\varphi \alpha)^{\prime}(0)=(\varphi \beta)^{\prime}(0)$. Let $\psi: y \in V \subseteq$ $N \hookrightarrow \mathbb{R}^{n}$ be a chart of N. Denote by $F:=\psi f \varphi^{-1}: \varphi(U) \subseteq \mathbb{R}^{m} \rightarrow$ \mathbb{R}^{n}. Then

$$
\begin{gathered}
(\psi f \alpha)^{\prime}(0)=(F \circ(\varphi \alpha))^{\prime}(0)=D_{\varphi(x)} F \cdot(\varphi \alpha)^{\prime}(0)= \\
D_{\varphi(x)} F \cdot(\varphi \beta)^{\prime}(0)=(F \circ(\varphi \beta))^{\prime}(0)=(\psi f \beta)^{\prime}(0)
\end{gathered}
$$

So $f \alpha \sim f \beta$.
Now it obvious that $\mathbb{1}_{*}=\mathbb{1}$ and that $(g \circ f)_{*}=g_{*} \circ f_{*}$ so T is indeed a functor.
i. Let V be a real vector space, and look at $(V, 0) \in\left(C^{\infty}\right)_{*}$. Choose a basis v_{1}, \ldots, v_{n} for V. Let $\varphi: V \rightarrow \mathbb{R}^{n}$ be the morphism given by $v_{i} \mapsto e_{i}$. φ is a diffeomorphism (and in particular a chart). We define a function $L: T_{0} V \rightarrow V$ by

$$
L([\alpha])=\varphi^{-1}\left((\varphi \alpha)^{\prime}(0)\right)
$$

And it is exactly the definition we gave for the vector space structure on $T_{0} V$ so it is well defined isomorphism which does not depend on the chart (and in particular on the basis of V). So $T_{0} V=V$.
ii. Assume $f, g:(M, x) \rightarrow(\mathbb{R}, 0)$ s.t. in local coordinates around x, $\left(f_{1}-f_{2}\right)(y)=o(|y-x|)$, i.e. in local coordinates $\nabla_{0} f_{1}=\nabla_{0} f_{2}$. Let $[\alpha] \in T_{x} M$. Then in local coordinates

$$
T_{x} f_{1}([\alpha])=\nabla_{0} f_{1} \cdot \alpha^{\prime}(0)=\nabla_{0} f_{2} \cdot \alpha^{\prime}(0)=T_{x} f_{2}([\alpha])
$$

So $T_{x} f_{1}=T_{x} f_{2}$.
iii. Let $U \subseteq M$ be an open submanifold. Since our definition of tangent space is local it is obvious that $T_{x} U=T_{x} M$ for any $x \in U$.

Thus T abide the axioms of a tangent space.
4. Let $f \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$, then for any $\mu \in C^{\infty}\left(\mathbb{R}^{k}\right), f^{*} \mu=\mu \circ f$ is smooth. So we have an inclusion

$$
C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right) \subseteq\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} \mid f^{*} \mu \in C^{\infty}\left(\mathbb{R}^{n}\right) \forall \mu \in C^{\infty}\left(\mathbb{R}^{k}\right)\right\}
$$

On the other hand, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ s.t. $f^{*} \mu \in C^{\infty}\left(\mathbb{R}^{n}\right) \forall \mu \in C^{\infty}\left(\mathbb{R}^{k}\right)$. i.e. for any smooth $\mu: \mathbb{R}^{k} \rightarrow \mathbb{R}, \mu \circ f$ is also smooth. In particular $\pi_{j} \circ f$ is smooth, where $\pi_{j}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is the projection on the j-th coordinate. Therefore f is smooth. Whence we have an equality

$$
C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} \mid f^{*} \mu \in C^{\infty}\left(\mathbb{R}^{n}\right) \forall \mu \in C^{\infty}\left(\mathbb{R}^{k}\right)\right\}
$$

5. Let $\phi: M \rightarrow N$ be a smooth map between manifolds.
(a) Assume that ϕ is a closed embedding, then it is an injective immersion by definition. Let $K \subseteq N$ be a compact subset, then $\phi^{-1}(K)=K \cap M$ is a closed subset of K and hence compact. So ϕ is proper.
Assume now that ϕ is a proper injective immersion. Since ϕ is an injective immersion, $\phi(M)$ is a submanifold of N, diffeomorphic to M. Let $y_{n} \in \phi(M)$ s.t. $y_{n} \rightarrow y$ for some $y \in N$. Let U be a compact neighborhood of x, then $\phi^{-1}(U)$ is open and, since ϕ is proper, its closure in M is compact. U contains almost all y_{n}, so for almost all $n, \exists x_{n} \in \phi^{-1}(U)$ s.t. $\phi\left(x_{n}\right)=y_{n}$. Since $\overline{\phi^{-1}(U)}$ is compact, there exists a subseries $x_{n_{k}}$ s.t. $x_{n_{k}} \rightarrow x \in M$. Since ϕ is continuous, $y_{n_{k}}=\phi\left(x_{n_{k}}\right) \rightarrow \phi(x)$ so $\phi(x)=y$ and in particular $y \in \phi(M)$. Therefore $\phi(M)$ is closed.
6. Look at $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
f(t)=(\cos t, \sin t)
$$

Then at a point $t, f^{\prime}(t)=(-\sin t, \cos t) \neq 0$ so it is an immersion. Yet f in not injective because $f(t+2 \pi)=f(t)$ for any t.

