Generalized Functions Exercise 5

Shai Keidar

1. G is a locally compact abelian group. For an abelian group H and a function $f: H \rightarrow \mathbb{C}$ we define

$$
s h_{h}(f)(x):=f(x-h)
$$

For a measure η on G and $g \in G$ we define

$$
\left(s h_{g} \eta\right)(A):=\eta(g+A)
$$

(a)

Lemma. $\int_{G} f d\left(s h_{g} \eta\right)=\int_{G} s h_{g} f d \eta$ for any measurable f and $\eta \in$ $\mu_{c}(G)$.

Proof. Let $A \subseteq G$ be a Borel set, and look at the indicator function 1_{A}.
$\int_{G} 1_{A} d\left(s h_{g} \eta\right)=s h_{g} \eta(A)=\eta(g+A)=\int_{G} 1_{g+A} d \eta=\int_{G} s h_{g}\left(1_{A}\right) d \eta$
So the claim is true for indicator functions. By linearity it is true for simple functions. Since simple functions are dense in the measurable functions, and $\int_{G} d\left(s h_{g} \eta\right)$ and $\int_{G} d \eta$ are continuous, the claim follows.

Let $\eta \in \mu_{c}(G), g \in G$ and $\chi \in G^{\vee}$.

$$
\begin{aligned}
\mathcal{F}\left(s h_{g} \eta\right)(\chi) & =\int_{G} \bar{\chi} d\left(s h_{g} \eta\right)=\int_{G} s h_{g} \bar{\chi} d \eta \\
& =\int_{G} \bar{\chi}(-g) \bar{\chi} d \eta=\chi(g) \mathcal{F}(\eta)(\chi)
\end{aligned}
$$

(b) Let $\eta \in \mu_{c}(G)$ and $\chi, \tau \in G^{\vee}$.

$$
\begin{aligned}
\mathcal{F}(\chi \eta)(\tau) & =\int_{G} \bar{\tau} d(\chi \eta)=\int_{G} \bar{\tau} \chi d \eta \\
& =\mathcal{F}(\eta)(\tau \bar{\chi})=\operatorname{sh}_{\chi}(\mathcal{F}(\eta))(\tau)
\end{aligned}
$$

2. Let F be a non-archemedian field. Let $f \otimes h \in S(V) \otimes \operatorname{Haar}(V)=$ $S(V, \operatorname{Haar}(V))$. We wish to show that

$$
\begin{aligned}
\mathcal{F}(f \otimes h): V^{\vee} & \rightarrow \mathbb{C} \\
\chi & \mapsto \int_{V} f \bar{\chi} d h
\end{aligned}
$$

is smooth and compactly supported.
$f \in S(V)$, so it is smooth, i.e. locally constant. For each $x \in \operatorname{supp}(f)$ let H_{y} be a compact open subgroup of V s.t. $\left.f\right|_{y+H_{y}}$ is constant (it exists because compact-open subgroups are a basis for the topology at the origin). Since $\operatorname{supp}(f)$ is compact and $\operatorname{supp}(f) \subseteq \bigcup\left(y+H_{y}\right), f=$ $\sum \alpha_{i} 1_{y_{i}+B_{y_{i}}}$ for some finitely many y_{i}. Therefore we may assume that $f=1_{y+H}$ for some compact open subgroup of V and some $y \in V$. Now the Fourier transform is of the form

$$
\begin{aligned}
\mathcal{F}(f \otimes h): \quad V^{\vee} & \rightarrow \mathbb{C} \\
\chi & \mapsto \int_{y+H} \bar{\chi} d h(x)
\end{aligned}
$$

Let $\chi \in V^{\vee}$.

$$
\int_{y+H} \bar{\chi}(x) d h(x)=\int_{H} \bar{\chi}(x+y) d h(x+y)=\chi(-y) \int_{H} \bar{\chi} d h(x)
$$

So we may assume $y=0$.
Let $J \subseteq S^{1}$ be an open interval containing 1 and not containing any half circle. Look at the open subset $U=U(H, J)=\left\{\chi \in V^{\vee} \mid \chi(H) \subseteq J\right\}$. Let $\chi \in U$. Then $\left.\chi\right|_{H}: H \rightarrow S^{1}$ is a homomorphism, and thus its image is a subgroup of S^{1}. Since its image lies in a small interval it must be the trivial subgroup and hence $U=\left\{\chi \in V^{\vee} \mid \chi(H)=1\right\}$ and thus it is also compact.
Let $\eta \in V^{\vee}$, then ηU is an open neighborhood of η. Let $\chi \in U$, then

$$
\mathcal{F}(f \otimes h)(\eta \chi)=\int_{H} \bar{\eta} \bar{\chi} d h=\int_{H} \bar{\eta} d h=\mathcal{F}(f \otimes h)(\eta)
$$

i.e. $\left.\mathcal{F}(f \otimes h)\right|_{\eta U}=\mathcal{F}(f \otimes h)(\eta)$ is constant, so $\mathcal{F}(f \otimes h)$ is locally constant, i.e. smooth.

In order to prove that it is compactly supported we will use the following lemma:

Lemma. Let G be a comapct group, μ a non-trivial Haar measure on G and χ a non-trivial character of G. Then

$$
\int_{G} \chi d \mu=0
$$

Proof. Since χ is non-trivial, there exists a $g \in G$ s.t. $\chi(g) \neq 1$.
$\int_{G} \chi d \mu=\int_{G} \chi d\left(s h_{g} \mu\right)=\int_{G} s h_{g} \chi d \mu=\int_{G} \chi(-g) \chi d \mu=\chi(-g) \int_{G} \chi d \mu$ and thus $\int_{G} \chi d \mu=0$ as required.

Now, let $\chi \in V^{\vee}$ s.t. $\mathcal{F}(f \otimes h)(\chi) \neq 0 . \quad H$ is a compact group, $\left.h\right|_{H}$ is a Haar measure on H and $\left.\chi\right|_{H}$ is a character of H, and by the lemma, since $\mathcal{F}(f \otimes h) \chi=\int_{H} \bar{\chi} d h \neq 0,\left.\bar{\chi}\right|_{H}$ is the trivial character (and hence $\left.\chi\right|_{H}=1$), i.e. $\chi \in U$.
Therefore $\left\{\chi \in V^{\vee} \mid \mathcal{F}(f \otimes h)(\chi) \neq 0\right\} \subseteq U$. Since U is closed supp $(f)=$ $\overline{\left\{\chi \in V^{\vee} \mid \mathcal{F}(f \otimes h)(\chi) \neq 0\right\}} \subseteq U$. Since U is compact and $\operatorname{supp}(f)$ is closed, $\operatorname{supp}(f)$ is compact.
3. We identify V^{\vee} with the linear space of distributions, i.e. continuous homomorphisms $\xi: V \rightarrow \mathbb{R} / \mathbb{Z}$ by $\xi \mapsto e^{2 \pi i \xi}$.
Claim. Let $\alpha \in \operatorname{Haar}\left(V^{\vee}\right), \beta \in \operatorname{Haar}(V)$ and $g \in C_{c}^{\infty}\left(V^{\vee}\right)$ s.t. $g(0)=0$, then

$$
\langle\mathcal{F}(g \cdot \alpha), \beta\rangle=0
$$

Proof. Choose a basis e_{1}, \ldots, e_{n} for V^{\vee}. Thus we may write for $\xi=$ $\sum_{j=1}^{n} \xi_{j} e_{j}: g(\xi)=\sum_{j=1}^{n} \xi_{j} g_{j}(\xi)$ where $g_{j}(\xi)=\int_{0}^{1} \frac{\partial g}{\partial \xi_{j}}(t \xi)$. Using this basis $\alpha=c d \xi_{1} \cdots d \xi_{n}$.
We notice that for a function $f \in C_{c}^{\infty}\left(V^{\vee}\right)$,

$$
\begin{aligned}
\mathcal{F}\left(\xi_{j} f \alpha\right)(x) & =\int_{V^{\vee}} e^{2 \pi i \xi(x)} d\left(\xi_{j} f \alpha\right)(\xi) \\
& =c \int_{V^{\vee}} e^{2 \pi i \xi(x)} \xi_{j} f(\xi) d \xi_{1} \cdots d \xi_{n} \\
& =c \int_{V^{\vee}} f(\xi) \frac{1}{2 \pi i} \frac{\partial}{\partial \xi_{j}} e^{2 \pi i \xi}(x) d x_{1} \cdots d x_{n} \\
& =-\frac{c}{2 \pi i} \int_{V^{\vee}} \frac{\partial f}{\partial \xi_{j}}(\xi) e^{2 \pi i \xi(x)} d x_{1} \cdots d x_{n} \\
& =\frac{i}{2 \pi} \int_{V^{\vee}} e^{2 \pi i \xi(x)} d\left(\frac{\partial f}{\partial \xi_{j}} \alpha\right)(\xi) \\
& =\frac{i}{2 \pi} \mathcal{F}\left(\frac{\partial f}{\partial \xi_{j}} \alpha\right)(\xi)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\langle\mathcal{F}(g \cdot \alpha), \beta\rangle & =\left\langle\mathcal{F}\left(\sum_{j=1}^{n} \xi_{j} g_{j} \cdot \alpha\right), \beta\right\rangle \\
& =\sum_{j=1}^{n}\left\langle\mathcal{F}\left(\xi_{j} g_{j} \cdot \alpha\right), \beta\right\rangle \\
& =\frac{i}{2 \pi} \sum_{j=1}^{n}\left\langle\frac{\partial}{\partial \xi_{j}} \mathcal{F}\left(g_{j} \cdot \alpha\right), \beta\right\rangle=0
\end{aligned}
$$

Now we define a morphism $\operatorname{Haar}\left(V^{\vee}\right) \rightarrow \operatorname{Haar}(V)^{*}$ be

$$
\langle\alpha, \beta\rangle:=\langle\mathcal{F}(f \cdot \alpha), \beta\rangle
$$

for all $\alpha \in \operatorname{Haar}\left(V^{\vee}\right), \beta \in \operatorname{Haar}(V)$ and some $f \in C_{c}^{\infty}\left(V^{\vee}\right)$ s.t. $f(0)=1$. By the lemma this action does not depend on the choice of f so it is well defined. Since both spaces are one-dimensional, the associated morphism is an isomorphism.
4. Let $\xi \in S^{*}(V) . \mathcal{F}_{0}: S^{*}(V) \rightarrow S^{*}\left(V^{\vee}, \operatorname{Haar}\left(V^{\vee}\right)\right)$ is the dual of the fourier transform of Schwartz functions $\mathcal{F}: S\left(V^{\vee}, \operatorname{Haar}\left(V^{\vee}\right)\right) \rightarrow S(V)$ given by

$$
\mathcal{F}(\alpha)(x)=\int_{V^{V}} \chi(x) d \alpha(\chi)
$$

for $\alpha \in S\left(V^{\vee}, \operatorname{Haar}\left(V^{\vee}\right)\right)$. Thus

$$
\left\langle\mathcal{F}_{0}(\xi), \alpha\right\rangle=\langle\xi, \mathcal{F}(\alpha)\rangle
$$

For any $\left.\alpha \in S^{(} V^{\vee}, \operatorname{Haar}\left(V^{\vee}\right)\right)$.
Choose a non-trivial Haar measure $\mu \in \operatorname{Haar}(V)$ and its dual Haar measure $\nu \in \operatorname{Haar}\left(V^{\vee}\right)$, i.e. $\langle\mu, \nu\rangle=1$. We identify each $\alpha=f \cdot \nu \in$ $S\left(V^{\vee}, \operatorname{Haar}\left(V^{\vee}\right)\right)$ with $f \otimes \nu \in S\left(V^{\vee}\right) \otimes \operatorname{Haar}\left(V^{\vee}\right)$ (and by the same way $S(V, \operatorname{Haar}(V)) \cong S(V) \otimes \operatorname{Haar}\left(V^{\vee}\right)$. We also identify

$$
\begin{aligned}
& S^{*}\left(V^{\vee}, \operatorname{Haar}\left(V^{\vee}\right)\right) \cong S^{*}\left(V^{\vee}\right) \otimes \operatorname{Haar}\left(V^{\vee}\right)^{*} \cong S^{*}\left(V^{\vee}\right) \otimes \operatorname{Haar}(V) \\
& S^{*}(V, \operatorname{Haar}(V)) \cong S^{*}(V) \otimes \operatorname{Haar}(V)^{*} \cong S^{*}(V) \otimes \operatorname{Haar}\left(V^{\vee}\right)
\end{aligned}
$$

Now, look at
$\mathcal{F}_{0} \otimes \mathbb{1}: S^{*}\left(V^{\vee}\right) \otimes \operatorname{Haar}(V) \rightarrow S^{*}(V, \operatorname{Haar}(V)) \otimes \operatorname{Haar}(V) \cong S^{*}(V) \otimes \operatorname{Haar}\left(V^{\vee}\right) \otimes \operatorname{Haar}(V)$
Look at the trace morphism tr : $S^{*}(V) \otimes \operatorname{Haar}\left(V^{\vee}\right) \otimes \operatorname{Haar}(V) \rightarrow S^{*}(V)$ given by $\operatorname{tr}(\eta \otimes \alpha \otimes \beta)=\langle\alpha, \beta\rangle \cdot \eta$.
$\mathcal{F}_{1}: S^{*}\left(V^{\vee}, \operatorname{Haar}\left(V^{\vee}\right)\right) \rightarrow S^{*}(V)$ is given by $\operatorname{tr} \circ\left(\mathcal{F}_{0} \otimes \mathbb{1}\right)$. Write $\mathcal{F}_{0}(\xi)=$ $\mathcal{F}_{0}^{\prime}(\xi) \otimes \mu$ for $\xi \in S^{*}(V)$ and $\mathcal{F}_{0}(\xi)=\mathcal{F}_{0}^{\prime}(\xi) \otimes \nu$ for $\xi \in S^{*}\left(V^{\vee}\right)$. I.e. $\mathcal{F}_{0}^{\prime}: \S^{*}(V) \rightarrow S^{*}\left(V^{\vee}\right)$ is defined by $\left\langle\mathcal{F}_{0}^{\prime}(\xi), g\right\rangle=\left\langle\right.$ Fcal $\left._{0}(\xi), g \mu\right\rangle$. Now, for
$f \in S(V):$

$$
\begin{aligned}
\left\langle\mathcal{F}_{1} \mathcal{F}_{0}(\xi), f\right\rangle & =\left\langle\mathcal{F}_{1}\left(\mathcal{F}_{0}^{\prime}(\xi) \otimes \mu\right), f\right\rangle \\
& =\left\langle\operatorname{tr}\left(\mathcal{F}_{0}^{\prime} \otimes \mathbb{1}\left(\mathcal{F}_{0}(\xi) \otimes \mu\right)\right), f\right\rangle \\
& =\left\langle\operatorname{tr}\left(\mathcal{F}_{0}\left(\mathcal{F}_{0}^{\prime}(\xi) \otimes \mu\right)\right), f\right\rangle \\
& =\left\langle\operatorname { t r } \left(\mathcal{F}_{0}^{\prime}\left(\mathcal{F}_{0}^{\prime}(\xi) \otimes \mu \otimes \nu, f\right\rangle\right.\right. \\
& =\left\langle\mathcal{F}_{0}^{\prime}\left(\mathcal{F}_{0}^{\prime}(\xi)\right), f\right\rangle \\
& =\left\langle\mathcal{F}_{0}\left(\mathcal{F}_{0}^{\prime}(\xi)\right), f \mu\right\rangle \\
& =\left\langle\mathcal{F}_{0}^{\prime}(\xi), \mathcal{F}(f \mu)\right\rangle \\
& =\left\langle\mathcal{F}_{0}(\xi), \mathcal{F}(f \mu) \nu\right\rangle \\
& =\langle\xi, \mathcal{F}(\mathcal{F}(f \mu) \nu)\rangle \\
\mathcal{F}(\mathcal{F}(f \mu) \nu)(x)= & \int_{V^{\vee}} \bar{\chi}(x) \mathcal{F}(f \mu)(\chi) d \nu(\chi) \\
= & \int_{V^{\vee}} \chi(x) \int_{V} f(y) \bar{\chi}(y) d \mu(y) d \nu(\chi) \\
= & \int_{V^{\vee}} \int_{V} f(y) \bar{\chi}(x+y) d \mu(y) d \nu(\chi) \\
= & \int_{V^{\vee}} \int_{V} f(y-x) \bar{\chi}(y) d \mu(y) d \nu(\chi) \\
= & \int_{V^{\vee}} \int_{V} s h_{x} f(y) \bar{\chi}(y) d \mu(y) d \nu(\chi) \\
= & \int_{V^{\vee}} \mathcal{F}\left(s h_{x} f \mu\right)(\chi) d \nu(\chi) \\
= & \left\langle\mathcal{F}\left(s h_{x} f \mu\right), \nu\right\rangle \\
= & s h_{x} f(0)\langle\mu, \nu\rangle=s h_{x} f(0)=f(-x)=\left(f \circ()^{-1}\right)(x)
\end{aligned}
$$

Where the equalities in the last row are true by the definition of the isomorphism $\operatorname{Haar}\left(V^{\vee}\right) \cong \operatorname{Haar}(V)^{*}$ and by the choice of μ and ν. Thus

$$
\left\langle\mathcal{F}_{1} \mathcal{F}_{0}(\xi), f\right\rangle=\left\langle\xi, f \circ()^{-1}\right\rangle=\left\langle\xi^{f l}, f\right\rangle
$$

5. V is a one-dimensional vector space over \mathbb{R} with a positive structure P.
(a) Remember that

$$
|V|=\left\{\xi: V^{*} \rightarrow \mathbb{R}\left|\xi(\lambda \varphi)=|\lambda| \xi(\varphi) \forall \lambda \in \mathbb{R}, \varphi \in V^{*}\right.\right.
$$

We define a morphism $\xi: V \rightarrow|V|$ by

$$
\xi_{v}(\varphi)= \begin{cases}\varphi(v), & v \in P \\ -\varphi(v), & v \notin P\end{cases}
$$

which is a canonical isomorphism.
(b) Remember that for $\alpha \in \mathbb{Q}$

$$
V^{\alpha}=\left\{\xi: V^{*} \rightarrow\left|\xi(\lambda \varphi)=|\lambda|^{\alpha} \xi(\varphi) \forall \lambda \in \mathbb{R}, \varphi \in V^{*}\right\}\right.
$$

We define a morphism $V^{\alpha} \otimes V^{\beta} \rightarrow V^{\alpha+\beta}$ by $\xi_{1} \otimes \xi_{2} \mapsto \xi_{1} \cdot \xi_{2}$. It is well defined:
$\left(\xi_{1} \xi_{2}\right)(\lambda \varphi)=\xi_{1}(\lambda \varphi) \xi_{2}(\lambda \varphi)=|\lambda|^{\alpha} \xi_{1}(\varphi) \cdot|\lambda|^{\beta} \xi_{2}(\varphi)=|\lambda|^{\alpha+\beta}\left(\xi_{1} \xi_{2}\right)(\varphi)$ and thus it is a canonical isomorphism.

