
Generalized functions - Exercise 1

Solve the following exercises. Questions marked with (*) are optional. For a
good resource try to use Terence Tao’s notes, available at
https://terrytao.wordpress.com/2009/04/19/245c-notes-3-distributions/.

1. Let f ∈ L1
loc(R), show that ξf defined by 〈ξf , g〉 =

∞∫
−∞

fgdx for g ∈ C∞c (R)

is a distribution.

2. Let U1, U2 ⊆ R be open sets and g ∈ C∞c (U1∪U2), find a partition of unity
of g, i.e. functions f1 ∈ C∞c (U1) and f2 ∈ C∞c (U2) such that f1 + f2 ≡ 1
in (U1 ∪ U2) ∩ supp(g). Try to use Exercise 1 (iii) of Terence Tao’s notes.

3. Show that there exists a canonical isomorphism C∞c (R)
w
' (C∞c (R))∗,

where the convergence is w.r.t. the weak convergence defined in class.

4. Let ξ1 and ξ2 be distributions. Show that,
a) supp(aξ1 + bξ2) ⊆ supp(ξ1) ∪ supp(ξ1).
b)* supp(ξ1)− supp(ξ1)◦ ⊆ supp(ξ′1) ⊆ supp(ξ1).

5. Let ξ be a compactly supported distribution and f ∈ C∞(R), show that
ξ ∗ f is smooth.

6. * Show that convolution of distributions is associative, that is for ξ1, ξ2, ξ3 ∈
C∞c (R)∗ we have that ξ1 ∗ (ξ2 ∗ ξ3) = (ξ1 ∗ ξ2) ∗ ξ3.

7. (Exercise 4 (i) of Terence Tao’s notes.) Recall that for f ∈ Ck
c (R), we

define the Ck norm by ‖f‖Ck = sup
x∈R

k∑
j=0

|f (i)(x)|. Show that for a compact

K ⊆ R the functional ξ : C∞c (K) → R is continuous if and only if there
exists k ≥ 0 and C > 0 such that for all f ∈ C∞c (K)

|〈ξ, f〉| ≤ C‖f‖Ck .

8. a) Let A be a differential operator with constant coefficients. Describe
the Green function (GA such that A(GA) = δ0) without using generalized
functions.
b) Set,

AGA
(g)(y) =

∞∫
−∞

GA(x, y)g(x)dx.

Show that A(AGA
(g)) = g for every g ∈ C∞c (R).



Generalized functions - Exercise 2

Solve the following exercises. Questions marked with (*) are optional.

1. Show that for a locally convex, complete topological vector space V the
following three conditions are equivalent, thus each implying that V is a
Fréchet space.

(a) V is metrizable.

(b) V is first countable.

(c) There is a countable collection of semi-norms {ni}i∈N that defines
the basis for the topology over V .

(Hint: show (1)⇒ (2)⇒ (3)⇒ (1).)

2. Let V be a topological vector space, show that for every neighborhood
U of 0 there exists an open balanced set W such that 0 ∈ W ⊆ U , thus
finishing the exercise from class.

3. Let 0 ∈ C be an open convex set in a topological vector space V . Show
that if C is balanced then NC(x) is a semi-norm (note that in class we
said C need only be open convex to be a semi-norm, this is false, since
every open neighborhood of 0 contains a balanced set, we are OK).

4. Find a locally convex topological vector space V such that V has no con-
tinuous norm on it. (Hint: we know semi-norms correspond to convex
balanced sets. When can a semi-norm be injective?)

5. Let W ⊆ V be locally convex topological vector spaces, and set V ′ and
W ′ to be the continuous duals of V and W respectively, and let ()∗ denote
the usual dual.

(a) Show that the restriction map V ∗ →W ∗ is onto.

(b) Show that the restriction map V ′ →W ′ is onto.

6. Show that C∞(R) is a complete space. (Hint: show it is locally convex and
first countable and use the fact that for these kind of topological vector
spaces completeness is equivalent to sequential completeness, thus it is
enough to show each Cauchy sequence converges.)

7. Show that fn ∈ C∞c (R) converges to f with respect to the topology defined
in class if and only if it converges as was defined in the first lecture, i.e,

(a) There is a compact set K ⊂ R s.t. supp(f)
⋃

n∈N
supp(fn) ⊆ K.

(b) For every k ∈ N the derivatives f
(k)
n (x) converge uniformly to f (k)(x).

8. * Let V be a topological vector space, construct its completion. (Hint:
you can use the construction in Theorem 5.2 of Treves. You don’t have to
hand it in but try to get the hang of the proof and the ideas used there,
which essentially generalize the construction when one passes from Q to
R using Cauchy sequences.)

9. * Let V be a locally convex linear topological space. Prove that V is
Hausdorff iff {0} is a closed set.



Generalized functions - Exercise 3

Solve the following exercises. Questions marked with (*) are optional.

1. Determine if the following statement is true, if so prove it, otherwise find
a counterexample. If the functions {fn}n∈N converge weakly to f , then
they converge pointwise to f .

2. Finish the proof of the glueability axiom, thus showing that C∞c (R)∗ is a
sheaf. Explicitly, show that if U =

⋃
i∈I

Ui and ξi ∈ C∞c (Ui)
∗ such that ξi

and ξj agree on overlaps Ui ∩Uj , then there exists ξ ∈ C∞c (U)∗ such that
ξ|Ui

= ξi.

3. (a) Show that the space of distributions (C∞c (R))∗ is not complete w.r.t
the weak topology.

(b) *Show that its completion is the space of all linear functionals (not
necessarily continuous) equipped with the weak topology.

4. Recall that we defined,

Vm(C∞c (Rn),Rk) = {f ∈ C∞c (Rn) :
∂if

(∂x)i |Rk

= 0, |i| ≤ m},

and
Fm((C∞c (Rn))∗,Rk) = {ξ ∈ (C∞c (Rn))∗ : ξ|Vm

= 0}.

(a) Show that
∞⋂

m=0
Vm = C∞c (U).

(b) Show that
∞⋃
i=0

Fi 6= C∞Rk(Rn)∗.

(c) Show that Fm is invariant w.r.t. diffeomorphisms of Rn preserving
Rk.

(d) * Let U ⊆ Rn be open and U compact. Show that for every ξ ∈
C∞Rk(Rn)∗ there exists ξ′ ∈ Fm such that ξ|U = ξ′|U , thus

∞⋃
m=0

Fm

covers C∞Rk(Rn)∗ locally.

5. Let V be a topological finite dimensional vector space over a field F . Show
that,

C∞c (Rn, V ∗)
∗ ' (C∞c (Rn))∗ ⊗F V.



Generalized functions - Exercise 4

Solve the following exercises. Questions marked with (*) are optional.

1. Show that for any x ∈ Q,

|x|∞ ·
∏

p prime

|x|p = 1.

2. Let Bε(a) = {x ∈ Qp : |x − a|p < ε} be the open p-adic ball of radius
epsilon around a ∈ Qp.

(a) Bε(a) is open by definition, Show that it is also closed.

(b) Show that every point in Bε(a) is its center.

(c) Show that there are countable many open balls which contain 0 in
Qp.

3. Let C be the Cantor set.

(a) Show Zp ∼= C.

(b) Show Qp ∼= C\{∗}.
(c) What are the cardinalities of Zp and Qp? What are the connected

components?

4. Find a compact `-space X and U ⊆ X which is not σ-compact (not the
union of countably many compact sets).

5. Let F be a non-archimedean (that is, it has a non-archimedean absolute
value) local field (locally compact, non-discrete), show it is an `-space.

6. Let X be an `-space.

(a) * Show that there exists a basis of open compact sets for X.

(b) Let K ⊆ X a compact set, and K ⊆
⋃
Uα an open cover. Show

there exists disjoint open compact {Vi}ni=0 such that for every i there

exists α such that Vi ⊆ Uα and K ⊆
n⋃
i=0

Vi.

7. * Every σ-compact, S1 `-space is homeomorphic to one of the following:

(a) Countable discrete space.

(b) Cantor set.

(c) Cantor set minus a point.

8. * Let X be an `-space, show that C∞c (X)∗ is a sheaf.



Generalized functions - Exercise 5

Solve the following exercises. Questions marked with (*) are optional.
Fix W ⊆ V and E to be finite dimensional topological vector spaces.

1. Show that C−∞(V )⊗ E ' (C∞c (V,E∗ ⊗Haar(V )))∗.

2. Define an embedding C∞c (V,E) ↪→ C−∞(V,E).

3. Show that Ωtop(V ) = {f : V n → R : f(Av) = det(A)f(v)}.

4. Show the following,

(a) Haar(V ) is in canonical isomorphism with Haar(W )⊗ Haar(V/W ).

(b) *Ωtop(V ) ' Ωtop(W )⊗ Ωtop(V/W ).

(c) *Ori(V ) ' Ori(W )⊗Ori(V/W ).

(d) If both spaces are over a non-archimedean field then DistW (V ) '
Dist(W ).

(e) Haar(V )∗ =Haar(V ∗).

5. Find a distribution ξ ∈ Dist(V \W ) s.t @η ∈ Dist(V ) with η|V \W = ξ.

6. *Show that the map Φ : Gi−1/Gi → C∞c (W, Symi(W )⊥) defined in class
is onto.



Generalized functions - Exercise 6

Solve the following exercises. Questions marked with (*) are optional.

1. Find a space which is Hausdorff, locally isomorphic to Rn but is not para-
compact.

2. For vector bundles E1,E2 define the following notions:

(a) E∗1 .

(b) E1 ⊕ E2.

(c) E1 ⊗ E2.

(d) For an embedding ϕ : E1 → E2, define E2/E1.

(e) Λk(E1), Symk(E1).

(f) In the real/complex case, define Dens(E1).

3. Let M be a smooth manifold.

(a) Show that the three constructions of the tangent space are equivalent.

(b) Show that one of these (and thus all three) abide the axioms presented
in class.

4. Show that C∞(Rn,Rk) = {f : Rn → Rk : f∗(µ) ∈ C∞(Rn)∀µ ∈ C∞(Rk)}.

5. * Let φ : M → N be a surjective smooth map between connected mani-
folds.

(a) Show that φ is a proper injective immersion ⇐⇒ it is a closed
embedding.

(b) Show that if φ is a proper submersion, then it is a fibration (fiber
bundle).

6. Find an example for an immersion which is not injective.



Generalized functions - Exercise 7

Solve the following exercises. Questions marked with (*) are optional.

1. Let ϕ : M → N be a map of smooth manifolds. For every point x ∈ M
(and its image) there exists m,n ∈ N, and homeomorphisms ρ : Rm →M
and ψ : Rn → N . Show that:

(a) If ϕ is an immersion then ρ ◦ ϕ ◦ ψ−1 is injective.

(b) If ϕ is an submersion then ρ ◦ ϕ ◦ ψ−1 is surjective.

(c) If ϕ is an étale map then ρ ◦ ϕ ◦ ψ−1 is a homeomorphism.

(d) * Prove (a)-(c) if ϕ is a map of F -analytic manifolds and the maps
are changed accordingly.
(Hint: use Guillemin and Pollack as reference.)

2. Let X and Y be `-spaces.

(a) Show that C∞c (X)⊗ C∞c (Y ) ' C∞c (X × Y ).

(b) Find an example such that C∞c (X)∗ ⊗ C∞c (Y )∗ 6' C∞c (X × Y )∗.
(Hint: consider X = Y = Z.)

3. Show that the topology on C∞c (Rn,Rk×Rn) that was constructed in class
is well defined, i.e:

(a) Given a diffeomorphism ϕ : Rn → Rn then it induces a homeomor-
phism ϕ∗ : C∞c (Rn,Rk)→ C∞c (Rn,Rk).

(b) Given a smooth map ψ ∈ C∞(Rn,GLk(R)) we have that ψ∗ : C∞c (Rn,Rk)→
C∞c (Rn,Rk) is a homeomorphism.

4. Let f ∈ C(Rn)∞, show that f ∈ C∞c (Rn) if and only if |f |D = sup
x∈Rn

|D(f)(x)|

is finite for every differential operator D =
~m∑

~i=0

g~i
∂
~i

∂x~i
where g~i ∈ C

∞(Rn).

5. * Given a manifold M and a vector bundle E over it show that the two
definitions of the topology on C∞c (M,E) are equivalent (one defined via
taking a cover of M and trivialization of E and the other through differ-
ential operators).

6. * Show that the two definitions for the density bundle of an F -analytic
manifold are equivalent.



Generalized functions - Exercise 8

Solve the following exercises. Questions marked with (*) are optional.

1. Let f ∈ C∞(Rn,C) with f (
~i)(~0) = 0 for every |~i| < k, and ϕ : Rn → Rn a

diffeomorphism such that ϕ(0) = 0. Furthermore let g ∈ C∞(Rn,C×) be
a smooth function, and set f̃(x) = f ◦ ϕ(x)g(x). Show that:

(a)
(

∂k

∂v1·...·∂vk f̃
)

(~0) =
(

∂k

∂(Dϕv1 )·...·(∂Dϕvk )
f
)

(~0)g(~0).

(b) Part (a) might not be true if f (
~i)(~0) 6= 0 for some |~i| < k.

2. Let ϕ : X → Y be a map between manifolds (either smooth or F -analytic).
Show that if ϕ is proper then ϕ∗f ∈ C∞c (X) for f ∈ C∞c (Y ).

3. Let ϕ : X → Y . Show that,

(a) If ϕ is a submersion, then ϕ∗(µ
∞
c (X)) ⊆ µ∞c (Y ).

(b) ϕ∗(Distc(X)) ⊆ Distc(Y ).

4. Let ϕ : X → Y be a submersion. Recall we defined ϕ∗ : C∞(Y )→ C∞(X)
both by ϕ∗(f) = f ◦ ϕ and by first defining ϕ∗ : C−∞(Y ) → C−∞(X)
via the definition for compactly supported smooth measures, and then by
restricting ϕ|C∞(Y )

. Show that the two definitions coincide.

5. Show that R∨ ' R.

6. * Let ϕ : X → Y be map of manifolds (either smooth or F -analytic), and
set,

Dist(X)prop,ϕ = {ξ ∈ Dist(X) : ϕ|supp(ξ) is proper}.

Show that the definition for pushing forward Dist(X)prop,ϕ as given in
class is well defined (such ρ as was demanded in class exists and the
definition is independent of its choice).



Generalized functions - Exercise 9

Solve the following exercises. Questions marked with (*) are optional.

1. Let G be a locally compact abelian group. For an abelian group H and a
character τ : H → R define shh(τ)(x) = τ(x+h). Show that for η ∈ µc(G)
and g ∈ G:

(a) F(shg(η))(χ) = χ(g)F(η)(χ) for all χ ∈ G∨.

(b) F(χη) = shχ(F(η)) for all χ ∈ G∨.

2. Let F be a non-Archimedean local field, show that F(S(V,Haar(V ))) ⊂
S(V ∨).

3. Let V be a finite dimensional topological vector space. Show thatHaar(V ∨) 'can
Haar(V )∗.
(Hint: use the map that was defined in class.)

4. Using the notations defined in class, show that F1 ◦ F0(ξ) = ξfl for all
ξ ∈ S∗(V ), where 〈ξfl, f〉 = 〈ξ, f ◦ ()−1)〉.

5. Let V/R be a 1-dimensional vector space with a positive structure. Show
that,

(a) V 'can |V |.
(b) V α+β 'can V α ⊗ V β where α, β ∈ Q×.

6. * Let F be a local field, show that F∨ ' F .

7. * Show that every continuous character χ : F → U1(C) where F is a local
field is smooth (i.e. in C∞(F )).

8. ∗∗ Show that the wavefront set as defined in class is unique.



Generalized functions - Exercise 10

The following exercise are mainly a collection of exercises given in the last few
lectures, feel free to solve whichever seems interesting.

1. Let V be a vector space of a local field F , and recall that P(V ) is the
projective space over V . Show that

P(V ∗ ⊕ F ∗) = {L ⊆ V : dim(V/L) = 1}.

2. Show that f ∈ C∞(V ) vanishes along v for all 0 6= v ∈ V ⇐⇒ f ∈ S(V ).

3. Let M be a smooth or F -analytic manifold, E a real vector bundle over
it and ξ ∈ C−∞(M,E). Show that for Hormander’s definition of the
wavefront set we have the following properties:

(a) Property 1: WF (ξ) is closed.

(b) Property 2: the wave front set is conical, if (x, l) ∈ WF (ξ) then
(x, αl) ∈WF (ξ) for all α ∈ F .

(c) Property 3: pM (WF (ξ)) = WF (ξ) ∩ M = supp(ξ) where pM :
T ∗M →M is the projection.

(d) Property 4: ξ ∈ C∞(M,E) ⇐⇒ WF (ξ) ⊆M ⊂ T ∗M .

(e) Property 5: WF (fξ1 + gξ2) ⊆ WF (ξ1) ∪WF (ξ2) for every f, g ∈
C∞(M) and ξ1, ξ2 ∈ C−∞(M,E).

(f) Property 8: For a submersion ϕ : M → N and η ∈ C−∞(N,E′) we
have that WF (ϕ∗(η)) = ϕ∗(WF (η)).
(Hint: reduce to the case of ϕ : W × V → V )

(g) Property 9: For a map ϕ : M → N and ξ ∈ C−∞(M,E) and ξ ∈
C−∞prop,ϕ(M) we have that WF (ϕ∗(ξ)) ⊆ ϕ∗(WF (ξ)), in several steps:

i. Where ϕ is an injective map between vector space, ϕ : V ↪→W .

ii. Where ϕ is a closed embedding, ϕ : M ↪→ N .

iii. Where ϕ is a projection between vector space, ϕ : V ×W → V .

iv. The general case (hint: use the fact that a map between mani-
folds can be written as a composition of a closed embedding (to
its graph) and a projection).

(h) Property 0 for affine maps: if ϕ : V → V is affine (and M = V ) then
WF (ξ) = WF (ϕ∗(ξ)).

4. Let F be a non-Archimedean field. Show that F(1εOF ) = c1 1
εOF

, for some
c ∈ C where 1X is the indicator function of the set X ⊂ V and OF is the
unit ball in F .

5. Let F be a non-Archimedean local field, construct a non-trivial character
χ : F → C×.

6. Calculate the following:

(a) WF (|x|).
(b) WF (|x|− 1

2 ).



(c) WF (|x2 + y2 − 1|− 1
2 ).

7. Let V be a vector space and Γ ⊂ T ∗V a closed set, and define D =
{(v, l, ε) ∈ T ∗V × R>0 : Bε(v)×Bε(l) ∩ Γ = ∅}. Show that,

C−∞Γ (V ) = {ξ ∈ C−∞(V ) : ∀(v, l, ε) ∈ D, we have m∗F(ρε,vξ)|Bε(l)×F ∈ S(Bε(l)×F )},

where ρε,v is a cutoff function on Bε(v).

8. Let V be a vector space and Γ ⊂ T ∗V a closed set. Show that C∞c (V )
is dense in C−∞Γ (V ) with the topology on C−∞Γ (V ) that was defined in
class.

9. Let M and N be manifolds, Γ ⊂ Y and ϕ : M → N such that Γ∩Sϕ ⊂ Y ,
where Sϕ = {(ϕ(x), y) ∈ T ∗N : d∗xϕ(y) = 0}. Show that pr∗Y (Γ) ∩ Si ⊂
X × Y for i : X → X × Y via i(x) = (x, ϕ(x)).

10. Let M and N be manifolds, show that if ϕ : M ↪→ N is an embedding,
then Sϕ = CNN

M .

11. Let ϕ : Rn → Rn be a diffeomorphism and A =
∑
fi

∂i

∂xi
a differential

operator. Show that:

(a) Symb(ϕ∗A) = ϕ∗Symb(A).

(b) Symb(ϕ∗A) = ϕ∗Symb(A).

12. Let A be a differential operator, M a smooth manifold and ξ ∈ Dist(M).
Show that WF (Aξ) ⊂WF (ξ).

13. Let V be a vector space over a local field. Show that f ∈ C∞(V ) vanishes
asymptotically along v ∈ V ⇐⇒ ∃ρ ∈ C∞c (V ) with ρ(v) 6= 0 and
ρm∗(f) ∈ S(V × F ), where m : V × F → V is the multiplication map,
m(v, λ) = λv.

14. Prove the following theorem under the assumptions given bellow; let ϕ :
M → N be a map between manifolds, Γ ⊂ T ∗N a closed set such that
Γ ∩ Sϕ ⊂ N . Then ϕ∗ : C∞(N)→ C∞(M) can be extended continuously
to ϕ∗ : C−∞Γ (N)→ C−∞ϕ∗(Γ)(M).

(a) M and N are vector spaces, ϕ is a linear embedding.

(b) ϕ : M → N is a submersion.


