Generalized functions - Tirgul
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1 Tirgul 1
Definition 1.1.

1. Denote by C=(R) the space of smooth functions f : R—>R (i.e. having
derivatives of any order).

2. Denote by C*(R) € C*(R) the space of compactly supported function in
C>®(R) (recall that supp(f) = {x € R: f(z) # 0}).

Definition 1.2. We say that {f,} converges to f if

1. There is a compact set K C R s.t. supp(f) U supp(fn) C K.
neN

2. For every k € N the derivatives f,gk)(x) converge uniformly to f%(z)
(recall that uniform convergence means that the § chosen can be taken to
be independent of x).

We call the space of continuous functionals ¢ : C(X) — R, w.r.t. the
convergence defined above distributions, denote them by (C°(R))* and write
(o, f) for p(f). Note it is enough to specify which sequences converge since we
consider linear functionals.

Remark 1.3. For now we have no distinction between generalized functions
which we denote by C~°(R) and distributions, as there is no difference for
R. We will discuss the difference in a later part of the course, when it will be
relevant.

Exercise 1.4. Prove that C°(R) # {0}.

Proof. We construct a smooth function with compact support. Assume a < b
and consider ) )
TGma? Lo @2

77a,b<x) =e€ I(a,b)7

where [, 3 is the indicator function of (a,b). Obviously supp(na,) = (a,b) =
[a,b] is compact. It is left to show that n is smooth at a and b (it is smooth
at the other points as composition of smooth functions). This is true since

N e L : 0 . (k) o
lim &——=— =0 = lim ——. The result follows for arbitrary 7. ; since
rz—at r—a z—a— TT¢ a,b
e’ decays faster than any polynomial. O

Definition 1.5. We say that a sequence of functions { f, } weakly converges to f
oo o0

if for every g(x) € C°(R) we have that Jim [ 9@)fo(z)de = [ g(x)f(x)dx.

Exercise 1.6. Find a sequence of functions {f,} in C°(R) that converges
weakly as distributions to the Dirac delta function at zero, dg.



oo

Proof. First note that by definition (dy,g(x)) = [ g(x)do(z)dx = g(0). Now,

1@ n
consider the sequence of functions f,, = % where I,, = [ n_1 1(x)dz,
oo
set G, = max{g(z)|z € [-1,1]} and g, = min{g(z)|z € [-+, L]} and note
that for an arbitrary g(z) € C°(R):
o0 o0 i
1 1
9@)fulz)dr = - [ g(z)n_1 1(x)de =+ [ g(z)n_1 1(z)dw
oo “ ST
Now, note that
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This implies,
1
L7
gn < T /g(x)n_i,i(x)dz < Gna
"
yielding the required statement as lim G,, = lim g, = ¢(0). O
n—oo n—oo

Remark 1.7. Note that if the sequence f,, converges weakly to f, it need not
converge pointwise to f.

Exercise 1.8. Find a sequence of functions such that the remark above holds.

Definition 1.9. We say a function f : R—R is locally L', if fix € LY(R) for
every compact K CR. We denote all such functions by LIIOC(R).

Definition 1.10. Define the derivative of a distribution n by (n', f) = —(n, f').
Exercise 1.11. Find a function f € LL (R) for which f' = d.

loc

Proof. Consider the Heaviside step function,

H(z) 0, forzx <0,
) =
1, forz > 0.

Every compact K C R is closed and bounded, so H(x) is locally-L*. Also, it
is smooth and its derivative is 0 in R\{0}, but it is not continuous at 0, and
thus its derivative is not a function on R. We would like to interpret it as a
distribution, indeed using integration by parts:

(H2),9(@) = [ 9@ @)de = g@ )|~ [ @) H@d



Recalling that is compactly supported (g(z) € C2°(R)), and using the funda-
mental theorem of calculus we see that,

s@H@|"_~ [ ¢@ @ =0~ [ (w)de = 0-(~9(0)) = 9(0) = (. g(a).
—00 0

O

Definition 1.12. For § € (C°(R))* we say that { = 0 if (&, f) = 0 for all
f e CxU). Additionally we define supp(§) = ()| Dg, where Dg are taken
§|D§EO

to be closed.
Remark 1.13. Note that supp(§) is always a closed set.

Exercise 1.14. Show the identity axiom for (CS°(R))*, i.e. that if there exists
£ € (CX(R))* and {U;}ier such that §y, =0 for alli € I, then & v, -
el
Proof. Assume we have such cover and such &, and take ¢ € C°(R) € | U;.
i€l
Use partition of unity to obtain compactly supported functions f, : R—[0,1]
such that for every a we have that supp(fs) C U; for some i € I, and every
€ R has an open neighborhood U,, such that in U, for almost all o we have that
n
Jao=0and >  fo=1. Since g is compactly supported, supp(g) C |J Uy,.
falua 20 =0
Thus, there are ﬁnltely many functions { fk} (finitely many are non-zero in each

U,,) such that Z fr =1 for every x € U U, Now,

J
Jj=

= (¢, ngk Z & 9fk) =0,
k=0

where the last equality is true since {y, = 0 for every i € I, and since

supp(gfx) is compact as there exists j such that supp(gfx) C supp(fx) C Uj,

and supp(gfx) is closed by definition. O
Remark 1.15.

1. Note that the argument for the previous exercise holds for any paracompact
space, in particular for any real manifold.

2. Warning! It might not be the case that fiiy € CZ(U) even if f € C(V)
and U C V.

Exercise 1.16. Prove that,
{€ € (CZR))*| supp(§) = {0}} =< {6M}p2g >r -
We prove two lemmas which will yield the desired result when combined.

Lemma 1.17. Let & be a distribution supported on {0}, then there exists k € N
such that £z = 0.



Proof. Take a bump function ¢ such that ) = 1 in some neighborhood of 0 and
supp(¥)) C (—1,1), and set 9(x) = ¥(e~tx). For every f € C°(R) and € > 0,
since 0 ¢ supp(f —fve), we have that (¢, f—vef) = 0, implying (¢, ) = ({, Ve f).

Since £ : C*(R) — R is a continuous linear map, for every compact D C R
there exists kp > 0 and Cp > 0 such that for all f € C°(D),

kp
& N < Cpl|fllern = Cpsup Y _ [fD(=)].
xeD i—0

Thus for every d € N with k = kj_; 1; and C' = C|_y y,
k .
(€2, )] = [(&, 2 f)| = (€, 2" fe)] < © up )Z (2 f1pe) ()]
xrE(—€,€ i=0

Now, note that since (f.) is compactly supported and smooth, we can set

M= max  [{f®(2)yY) (e~ x)}|. Inspect each summand for € [—¢, €],
we[—1,1),i,j <k

o= 3 [, 4) @

intintig=i V11213
1 . w »
< > (-' '>d“*d—2r+nmewmh i
. : . 11,122,113
t1+i2+i3=1
1 . .
< ( , .>d~-(d—zl+1)Med i
. : . 11,122,113
t1+i2+i3=1

We can now evaluate the entire expression,
: : : i o
C sup Z|(fo¢€)(z)(x)|§Cz Z ( v )d...(d_il_I_l)Med—’Ll—’LS’
z€(—ee€) 50 =0 i1 bigtig—i N1 12,13
= =0 21 +i2+i3=1

but since this holds for every ¢ > 0, we can take d > k + 1 and obtain that
|(€x?, f)| = 0 for every f € C°(R). O

Lemma 1.18. If é&z% = 0, that is (¢x%, f) = (€, 2% f) = 0 for every f € CX(R)

k=1
then & = > ci5(()z) for some ¢; € R.
i=0

Proof. Our strategy will be to prove the claim for ¥ = 1, and then to use
induction. Assume £x = 0. First note that for every f € C°(R) we can write,

f(@) = £(0) + / £ (at)dt. (1)

Now, take a test function ¢ € C2°(R) such that 1(0) = 1, and use Formula 1
as above twice to obtain:

fla) = f(0)¢(0)+x/1f’(xt)dt = f(O)w(x)—zv<f(0)jw'(xt)dt—/lf’(fﬂt)dt)
0 0 0



Note that each summand is a smooth compactly supported function as the two
f(0) constant terms cancel in the second summand. Now, we see that,

(€ f)= <€,f(0)w(fv)>+<€,x(f(O)/lw’( dt+/1f' at) dt>
0 0

— (0)(¢, b)), i

Since (£, 1 (x)) is independent of ¢ a long as 1(0) = 1 (note we can use Formula
1 to write ¢ as a combination of any other test function ¢ as long as ¢(0) = 1),
we can set ¢o = (£,1)) and we are done. Now, if £z¥! = 0, then (¢2)2% = 0

k=1 .
and thus éx = ) cié((f) by induction. We take ¢ € C2°(R) such that ¢(0) =1
i=0

and 1 (0) = 0 for 1 < < k — 1, using the same expansion as before,

(1) = <£,f(0)w(w)>+<£,w(—f(0)/1¢’( dt+/1f’ xt) dt)
0 0

= FO)E () + (€2, — f( /Wﬂw+/fﬂﬁ
0

k

-1 1 1
= FO)E D@+ 3 e (65, — /¢f ﬁ+/fzmﬁ
0 0 0

1=

Observe that (5", —f fw (xt)dt + ff (xt)dt) = M, since we can

1!
use the Taylor expansion of M at the origin, and since we chose v
such that ¢ (0) = 0 for 1 < i < k — 1. Since (£,v) is independent of
(considering functions 1 with desired conditions), we are done. O

Definition 1.19. Recall that for two functions the convolution is defined via
fxg= [ ft)glx — t)dt. We define the convolution of f € CX(R) with a
distribution € by (€ x f)(z) = (&, f(z —t)).

Exercise 1.20. Show that for every distribution & and f € C*(R) the convo-
lution & * f is a smooth function.

Proof. Notice that since ¢ is linear and continuous,

(€5 F)(2) = lim L@ R =&+ f(@)

h—0 h
(6 fe )~ (6 f 1)
h—0 h
(e tim TETIENZIEZD) e g 1)) = (6 @),



Thus we see that (¢ % f)*) = ¢ % £ and since f(¥) € C®(R) for all k € N we
are done. O

Definition 1.21. For two compactly supported distributions define ({1 x&a, f) =
(&1, (&2 % f(—=t))(—x)). For the next exercise we also denote f(x) = f(—z) and
Li(f)(x) = f(t + ). Note: this is very bad notation which should not be used
elsewhere, if you have a better idea, you are free to tell me.

Fact 1.22. Convolution of functions is commutative and associative.

Exercise 1.23. Show the following identities for any compactly supported dis-
tributions £1,&2 and E3.

0o x& =&,
2. 5y x& =&
8. &1 x& =& x&.
4. &1 x (L2 % &3) = (§1 % &2) * &3
(G &) =& =&
Proof.
L (3o x& f) = (b0, (€% ) = (£ x F)(0) = (& f()) = (& f)-

2. (G * & f) = (0, (€% F)) = —(£x )(0) = = (& ) = (€. /).
3. Take an approximation of identity 7, € C°(R), and see that,

~

v

(C1% &, ) = (&1 % 80), &2 % [) = (80, (&1 % 8o) * &2 * F) = (8o, (&1 * 80, Le (€2 % [)))
= (do, lim (&1 # 7, Le(&a « ) = (00, lim (&1 % 7n) * (&2 * f))
= (do, lim (& * F) * (€% mn)) = (90, lim_ & (§1 % 7n «f))

= (00, (§2 % &1 % 00) x ) = (&2 % &1, f)-

4. Omitted.

5. Combine the above and see that, (&1 &)’ = 6 * (§1 % &2) = (6 *&1) * & =
&} *&. For showing the last equality recall that (¢, f) = —(&, f’), and see
that

<(§1 * 52)I7f> = _<(§17 (52 *?» = _<(§17 (gé * (_?)» = <€1 * £é>f>

O

Remark 1.24. We can now easily construct cutoff functions, that is given a
compact K, and a neighborhood K C U we can build a function ¢ € CP(R)
such that o|x =1, and ¢ = 0 outside U. To do this take 2¢ = O(K,U°) to
be the distance of K from U°, and define K. to be the € neighborhood of K.
Then convolve the indicator function of K. with an approzimation of identity
supported in (—5,5). This yields a function 1g, * ns which equals 1 on K,
vanishes outside of U, and decreases smoothly from K. to K%



2 Tirgul 2

Definition 2.1. A topological vector space V is a vector space over a field F
such that addition + : V XV —= V and multiplication by a scalar - : (F,V) =V
are continuous functions. Throughout these notes (and in the course) we will
also assume V' is Hausdorff.

Definition 2.2. Let V' be a topological vector space over F'.

1. We say that a set A CV is convez if for every a,b € A the linear combi-
nation ta + (1 —t)b € A where t € [0, 1].

2. We say that V is locally convez if it has a basis of its topology which
consists of conver sets.

3. For every open convex set 0 € C in'V we set (x € V):

Ne(z) = inf{a € R>p : 2 e C}.

4. We say that a set W C V is balanced if \W C W for all |\| < 1 where
AeF.

Exercise 2.3. Find a topological vector space which is not locally convex.

o0
Proof. For 0 < p < 1 define ||z||, = >_ |z;|P and consider the space
i=0

P(C) ={(zn)nen : m: € C, ||z < oo},

with the topology induced by the metric d(z,y) = ||z — y||,. We claim it is
not locally convex. Indeed, if it was locally convex then in any open ball B,.(0)
around 0 with radius r» we would have an open convex set Cg, which will in turn
contain a smaller open d-ball, denote it by Bs(0). The convex hull of Bs(0) is
then contained in C'g, but taking the following convex combination we see this
cannot be true:

p SP

1 1 1 (6

—(6 o)+ —=(00,0,0,...)+...+—=(0,..., 6 )< —

F000. )+ L0600 bk 10 80| 3 (7) = <
Tn p 1=

as this inequality should hold for every n, and nl;rr;o npl,l =ccfor0<p<l1 0O
Exercise 2.4. Let 0 € C be an open convez set in a topological vector space V.
1. Show that Neo(x) < oo for allx € V.
2. Show that if furthermore C is balanced then Nc(x) is a semi-norm.

Proof.

1. Assume the contrary, there exists v € V such that 2 ¢ C for all « € R.
Thus, v, = 7 is a sequence in the closed set C¢, but it converges to 0 ¢ C°,
this is a contradiction.

2. Easy to check.



O

Exercise 2.5. Let 0 € C be an open convex set in a topological vector space V.
Find a locally convex topological vector space V' such that V' has no continuous
norm on it.

Exercise 2.6. Let V' be a locally conver linear topological space. Prove that V
is Hausdorff iff {0} is a closed set.

Proof. (=:) Assume V is Hausdorff, then for every a € V, there exist open sets
a € Uy and 0 € Us such that U; NUs = &. In particular a € Uy C {0}°.

(«<:) If {0} is a closed set, then so is any {a} where a € V, as addition is
continuous and invertible. It is enough to show that for every such a there exist
a € Uy and 0 € Uy such that U; N Uy = @. Consider {0}, it is open and since
addition is continuous the set +~1({0}¢) C V x V is open. Since V is locally
convex, so is V' x V with the product topology, and thus there exist convex
open U; and Uy such that (0,a) € Uy x Uy and Uy + Us C {0}¢. Now, consider
0€ —U; and a € Uy. If (—=U;) NUs # &, there exists t € (—U;) N Us, but this
contradicts 0 ¢ Uy + Us. O

Exercise 2.7. Let V be a topological vector space, show that for every neigh-
borhood U of O there exists an open balanced set W such that 0 € W C U.

Exercise 2.8. Show that every finite dimensional vector space V which is Haus-
dorff is isomorphic to F™.

Proof. Take the standard basis {e;}; of F™ and choose a basis {x;}?; of V.
Set ¢ : F™ — V by ¢(e;) = v;, it is an isomorphism of vector spaces, we would
like to show it is also a homeomorphism. First, note that since addition and
multiplication by scalar are continuous, so is ¢, since we can view it as a com-
position of two functions F™ — (F x V)™ — V| where the first is the injection
M,y A) = (M,21), ..+, (A, y)), and the second map is multiplication
and the addition. To show that ¢ is open, we do the following. First consider
the unit sphere
Sp={x € F":|z|p =1} =C F™.

It is compact, and since ¢ is continuous ¢(S%) is compact, and thus closed asis V'
Hausdorff. Now, the complement p(S%)¢ is open, contains 0, and by an exercise
it must contain a balanced neighborhood W of 0. Since ¢! is linear, =1 (W)
is a balanced neighborhood of 0 in F™, and by the construction if xz € ¢~ 1(W),
we have that ||z||pn < 1 (why?). Now, for each 1 <i <mnlet ¢; : F" — F be
the projection map to the i-th coordinate. Since £; 0! :V — F is a bounded
linear functional on a neighborhood of 0 as |¢; o o~ (z)|r < 1 for all z € W,
it is continuous (this is not hard, see [6, Theorem 6.21] for details), and thus

n
o=t = 3" t;0pte; is continuous. H
i=1

Remark 2.9. If V is furthermore locally convex, we can finish off the arqgument
by showing that in the image of each open e-ball around 0 under ¢ there exists
around each point an open convex set, since the open balls are a basis for the
topology of F™ we are done.



Exercise 2.10. Let W C V be locally convex topological vector spaces, and
set V' and W' to be the continuous duals of V' and W respectively, and let ()*
denote the usual dual.

1. Show that the restriction map V* — W™ is onto.
2. Show that the restriction map V' — W' is onto.

Theorem 2.11. (Hahn-Banach) Let V' be a normed vector space, W C V a
closed subset and let f : W — R be a linear functional such that 30 < C' € R
such that | f(z)| < C||z|| for every x € W. Then, there exists a linear functional
f:V =R extending f such that f|W = f and |f(z)| < C|z|| for every z € V.

Exercise 2.12. Let V be a locally convex topological vector space, and let f :
W — R be a continuous linear functional, where W C V is a closed linear
subspace of V. Show that f can be extended to V.

Proof. Recall that the topology of V' is generated by open convex sets, each of
which corresponds to a semi-norm. f is continuous, and thus it is bounded with
respect to some semi-norm N¢(x) where 0 € C' is convex and open, we thus
have:

(2)] < MNe(2).

Note that this follows since 0 € f~!(—¢,€) contains an open convex set, and
we can take an open convex inside of it. Now, consider the topological vector
space V = V/ker No(z), and denote the projection by p : V. — V. Since we
have a bound on f, if No(w) = 0 we get that |f(w)| < M Ne(w) = 0 and thus
ker Ne C ker(f), implying that f is defined on V, by setting f(w) = fop~t(w).
On V the semi-norm N¢(z) is a norm, and thus we can use the Hahn-Banach
theorem to extend fop~! to f, with the same bound. To finish off the argument,
define the extension of f to V to be f op.

O

Definition 2.13. Let V' be a topological vector space.

1. We say that a sequence {v,}2, is a Cauchy sequence if for every neigh-
borhood U of 0 there is ng € N such that v,, — v,, € U for all m,n > ng.

2. We say that {v,}32, converges to £ if for every neighborhood U of £ there
is ng € N such that v, € U for all n > ng.

3. V is called sequentially complete if every Cauchy sequence {v,}32, con-
verges to some £ € V.

4. V is called complete if for every map ¢ : V. — W which maps V homeo-
morphically into ¢(V'), the image ¢p(V') is closed in W.

Exercise 2.14. Find a topological space which is sequentially complete but is
not complete.

Proof. Taken from [4, Chapter 2 Example 3], this argument holds for any field
K with its natural topology. Set Xq = R? for d > Xy, where R is equipped
with its natural topology, and take H C X, to be the subspace of vectors with
only countably many non-zero entries. Note that a basis for the topology of



R? is comprised of sets [] U; such that each U; is open in R and only finitely
ied
many U; # R. Now, H is sequentially complete, since if {v,}22; is a Cauchy
sequence, then so is v, (a) (where a € d), and it converges in R. We can thus
define v by v(i) = lim wv,(4), for each ¢ € d. Since each v,, had only countable
n—o0

many non-zero entries, v can only countably many entries which are non-zero

and thus v € H. Take a basic open set W = [[ W; around v, since only finitely
icd

many W; # R, there is ng € N such that if n > ng all v, € W, and thus H

is sequentially complete. H is dense in X, since every basic open set of Xy

intersects H as it only has finitely many elements of the product which are

different than R, and thus it is not a complete space. O

Definition 2.15. Let V be a complete space, and i : V — V be an embedding.
We say that V' is a completion of V if one of the following equivalent definitions
holds:

1. i(V)=V andi(V) =~ V.

2. For every complete W and a map f :'V — W there exists a unique map
ow V. = W such that f = pw o .

If V ~V we say that V is complete.
Exercise 2.16. Show that these two definitions are indeed equivalent.

Proof. (2) = (1): Wehavei:V — V, set V' =V C V, it is closed in a complete
space and thus complete (proof uses Cauchy filters, see Proposition 5.4 of [5]),
we then have iy, : V' — V'’ by restricting the range of i to V’. We thus have a
unique map ¢y : V — V' such that the following diagram is commutative,

Since we also have the injection j : V! — V, we get two maps, jopy, : V — V
and oy o0j : V' — V’, since by the universal property of (2) the only map from
a complete space to itself is the identity map, and both V/ and V are complete
we get that j o oy and oy o j are the identity maps, and thus V ~ V' =i(V).
Now, note that we can also assume that we have a completion w.r.t (1) (this
always exists by the next exercise), and thus we have a map i’ : V — V such
that i/(V) = V and V is homeomorphic to its image. By the universal property
of (2) we then have a continuous f : V — V such that # = f o4, but then
if U C V is open, so is i'(U), implying that f=(i'(U)) = f~'o foi(U) is
open. Since i(V) is dense in V, f is determined by the image of i(V) in V', thus
f~lofoi(U)=1i(U) and is open in V. This finishes the proof.

(1) = (2): Assume i(V) = V and i maps V homeomorphically into its image in
V. Assume we have a map f : V — W, then since V is dense in V it determines
uniquely a map @w : V — W such that f = @y 0. O

Exercise 2.17. Let V be a topological vector space, show it has a completion.

10



Proof. Construction uses either Cauchy filters or Cauchy nets, see [5, Theorem
5.2] for details. O

Definition 2.18. A topological space (X,T) is said to be metrizable if there
exists a metric which induces the topology T on X.

Definition 2.19. We say that a topological space is Sy or first countable if
every point has a countable basis of open sets.

Exercise 2.20. Show that in the category of first-countable vector spaces V is
complete if and only if it is sequentially complete.

Proof. This is essentially a statement about filters, see [5, Prop. 8.2]. O

Definition 2.21. A Fréchet space is a locally convex, complete and metrizable
topological vector space.

Example 2.22. Let K be a compact set, and k,n € Ng. C*°(R™) and C(R™)
are Fréchet. CX(R™) is a Banach space.

Exercise 2.23. Show that for a locally convez, complete topological vector space
V' the following three conditions are equivalent, thus each implying that V is a
Fréchet space.

1. 'V is metrizable.
2. V is first countable.

3. There is a countable collection of semi-norms {n;};en that defines the basis
for the topology over V.

Proof. Best to show that metrizable = first countable = semi-norms = metriz-
able, given as an exercise. O

Exercise 2.24. Prove that C*®(S') ~ S(Z).

Proof. Both of the spaces are Fréchet, they have the same topology with the
homeomorphism given by the Fourier transform. Recall that F : C>(S1) —

S(z) is given by F(f) = {5 [ f(z)e”"®dz},cz, and in the other direction by

0 .
F i {entnez — Y cne™. Given an e-ball with regards to the semi-norm

<e}.

Consider the norm m; of S(Z) given by m;({cy}nez) = sup|nic,|. Note that
neL

n;(f) = sup |fU)(z)|, its image is given by,
rES

oo
§ Cnnl eznw

n=—oo

]:(an,e) = {{Cn}nGZ :

11



for F(f) = {cn}nez, we have for any m € Z,

|mjcm| — Z /C nd ei(n—m)z g,

n=—oo

§ Cn;znmz

n=—oo

- (@) 7zmm
< 277 do = /|f |dx:

<L / sup |f9(@)ldz = sup |79 (@)] = n;(f).

zeSt zeS?t

This implies that sup [m?cy,| = |F(f)|lm,; < |flln,, meaning that F is bounded
mezZ

and hence continuous. Alternatively one can view it as F (B, ) C By, .. For
the other side, take f in the image of F~!,

o0
1
ni(f) = sup |f( M ) = sup Z P Z —2|cnnk+2
zeST n=—oo n=-—o00 n
o0
1 272
< Z —5 sup [m* 2, | = ——miro({cntnez)-

nzfoon mezZ 6

This implies that 7! is bounded and thus continuous, which means that F is
open and hence a homeomorphism. O

Exercise 2.25. Show that the following two bases generate topologies on C°(R)
which are equivalent,

1. Up,e, = 2 A € CF(R) ssupp(f) C [=n,n], [fE] < e}

neN

wen = cOnVnen{f € C%(R) : supp(f) C [=n,n], [fE)] < en}.

Proof. First note that every two opens balls 4; and Az in C°(R), are convex,
and that we have that,

2. Vi

AL+ Ay

B - COHV(Al, Ag) - A1 + A2 - COHV(2A1, 2A2)
Now, for countably many open balls we use the same idea,

o0 o0

Z Z C convien{ 2‘;4 T },

showing that we can find an open set from (1) in every set of (2) and vice-versa.
Note that in both cases we only take finite sums and finite convex combinations.
O

Exercise 2.26. Show that f, € CX(R) converges to f with respect to the
topology defined in the previous question if and only if it converges as was defined
in Definition 1.2, i.e,

12



1. There is a compact set K C R s.t. supp(f) |J supp(fn) C K
neN

2. For every k € N the derivatives fT(Lk)(x) converge uniformly to f*)(x).
Proof. See homework. O

3 Tirgul 3

Definition 3.1. Let V be a topological vector space, and set Ug, = {£ € V* :
VeS|, [ <e}, where V* is the continuous dual of V.

1. We say a set B CV is bounded if for every open U C 'V there exists A € R
such that B C \U.

2. We define the weak topology on V* by setting the basis of the topology to
be By :={Ue,s:€>0,5 finite}.

3. We define the strong topology on V* by setting the basis of the topology to
be Bs :={Uc,s : € > 0,8 bounded}.

Remark 3.2. When the topology on V is given by collection of semi-norms, a
set is bounded in V' if and only if it is bounded with respect to every semi-norm.

Theorem 3.3. (Banach-Steinhaus) Let X be a Fréchet space, Y be a normed
vector space, and suppose there is a family I of bounded linear operators Ty,
X =Y. If for all x € X we have that sup |T(z)|ly < oo then,

TeF

sup || T(2)[ly < oo.
TEF,||z||r=1

Proof. This is a version of [6, Theorem 10.18]. O

Exercise 3.4. The space of distributions C°(R)* is sequentially complete with
respect to the weak topology.

Proof. Take a Cauchy sequence {¢,} in C(R)*. For every f € C®(R), the
limit operator & = lim &, is defined by (¢, f) = lim (£,, f) since (&,, f) is a
n—00 n—00
Cauchy sequence of real numbers and thus converges, and is also linear. It is left
to show that £ is continuous, for that, it is enough to show that if f, — f then
(& fn) = (& ). Let {fn}22, € C°(R) be a sequence of functions converging to
fin C*(R), and set K compact such that |J supp(f,)Usupp(f) C K. Since
n=1
each &, is continuous, it is bounded, and thus there exist Cx ,, > 0 and Ik, > 0
such that,

lK,n
[{(€n, f)] < Ck p sup Z |f(2)(x)
zeK 5
Now, since (£, f) is a Cauchy sequence of numbers we get that bup(ﬁn, )

is finite. Recalling that C7?(R) is a Fréchet space, by the Banach- Stelnhaus
theorem for such spaces, there exist uniform Cx and lx which bound [{(§,, f)]
for all n, implying that £ is bounded and continuous. O

13



Exercise 3.5. Let S C C(R) be a bounded set, then 3K compact such that
S C CR(R).

Exercise 3.6. Consider the embedding C°(R) — C°(R)* defined by f — &;.
Show that the image of this map is dense in C°(R)* w.r.t both weak and strong
topologies.

Proof. It is enough to show that for every basic open U € B there exists {; € U.
Start with showing this for compactly supported distributions. Assume that
supp(&) = K, we need to show that for each basic open set U of 0 we can find
&, such that £ — &, € U. Take an approximation of identity 7,, and define
&n = & %1y, &, are compactly supported functions (by previous exercises), and
for each f € C°(R) we have that (¢ — &,, f) — 0, implying that for every
U € B,, we can take n large enough such that £ — ¢, € U. Showing this for the
strong topology is trickier. By continuity of £ we obtain for some k € N,

(&~ DI =1 f =m0 HI < CIf =% Flli

Given Ug, € B;, since S is bounded it is contained in )‘B(O)H\Iwul for A € R.
We now show using Lagrange’s mean value theorem that f xn, — f uniformly
for ||| (we show this at 0, should be similar at other points).

1

F®(0) = 5 F B = / (F9(0) = £ (@)

1
n

< max [fP(@) — fOO) < max |7 (ea)e] <

wow [—wow

[ 1]-+1
s

For every f € S we have that || f||x+1 < A, implying that for all n € N we get,

[ _ A
1f =1 5 Flls = sup | f P (2) =y 5 fO) (2)] < =
z€R n

Since A is independent of the function f, we can take ng € N large enough such
that £ — &, € Ug, for n > ng, as required. To finish off the proof, note that
compactly supported distributions are dense in distributions by taking elements
of the form & = &I_p k. We know that C°(R) = E}I]r% C®(R), and since
for every compact K there exists k € N large enough such that K C [—k, k],
combining with the fact that S C C%(R) for some K as it is bounded, we get
that for n big enough &, =& on S C C¥(R), and we are done. O

Definition 3.7. Let W C V be a closed linear subspace, we define:
o' f
(0x) W

Vin(CZR™), W) = {f € CZ(R") : =0, i <m},

and
Fp((CZR™)", W) = {§ € (CZ(R™))" : &y, = 0}

Exercise 3.8. Let U = R" — R*. Show that
—— Py B o 8zf
CoU)= [ Vm={feCS >

m=0 |

=0, i] € N}.
A

14



Proof. Given f € C*(U), then (5;, f) = 0if ¥ € R* since its support is by

definition in U€, thus f € [\ Vi,. Since these are continuous operators, they
m=0

o0
are also zero on the closure, implying that C*(U) C (] V.
m=0
o0
For the other direction, given f € [\ Vi, use cutoff functions of Iy (which
m=0

are roughly Iy convolved with approximations of identity, 7,,) to construct a
sequence of functions which are identically zero in an e-neighborhood of R¥, and
thus in C°(U), converging to f. O

4 Tirgul 4

4.1 Absolute values

We want to generalize the notion of completion of a field with respect to an
absolute value.

Definition 4.1. A function |-|: Q — Rx¢ is called an absolute value if for all
r,y € Q:

1. |z +y| < |z|+ |y| (triangle inequality).
2. |zy| = [z[lyl-
3. Jx|=0 <= z=0.

If furthermore |z + y| < max{|z|, |y|}, | - | is called a non-Archimedean absolute
value (and Archimedean otherwise).

Definition 4.2. We say that two absolute values |- |1 and |- |2 are equivalent if
Jo € Rxg such that |- | =] - |2.

Theorem 4.3. (Ostrowki’s theorem) The only absolute values on Q up to equiv-
alence are the following:

—x, forxz <O,

1. The real (Archimedean) absolute value, |T|s =
z, for x > 0.

2. A p-adic (non-Archimedean) absolute value, if x = p™¢ and a,b € Z are

p~", forx #0,

coprime to p, n € Z, |x|, = {O I 0
, or x = 0.

0, forx =020,

3. The discrete absolute value, |x|gisc =
1, forxz #0.

Example 4.4. We have |1|; = [10]7 = [100]; = 1, and |49|; = |490|; = 572.

Proof. (Ostrowski’s theorem) Let | - | be an absolute value, we show it must
be one of the above by cases. Assume | - | is non-Archimedean, ie. |z + y| <
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max |z|, ly|, and set a = {x € Z : || < 1}. This set is non empty as |0] = 0, and

since we assume | - | is non-Archimedean it is an ideal of Z since,
[z 4. 4] <z, )
and thus if z € a, meaning that |z| < 1, then vy = x +... + 2 € a. Consider
—_————
y times
a prime p. If |p| = 1 for every prime, we get that |z| = 1 for every 0 # z € Q,
as |%| = |p|=! (check it!), and thus | - | is the discrete absolute value. Thus we

can assume p € a (note that for every integer |m| < 1 by (*)), implying that
p ( y integ y (*)), implying

_ log|p|
logp ?

that [p| = p~°. Taking x = p™ ¢ where a,b,n € Z and a and b are coprime to p
we get:

pZ CaCZ and consequentially pZ = a. Now, if we put s = we see

2l = " 51 = 1p"] 151 = lpl" = p7" = e,
~—
=1
showing | - | is equivalent to | - [,.
Now, assume | - | is an Archimedean absolute value. We must have that

|n| > 1 for n € N, we do it by induction starting with n = 2. If |n| < 1, take
n < z € N and write it in base n:

r=ap+an+amn®+...+an", for0<a; <n-—1, n" < z.

We get that |a;| < a; <n, thus

17 r+1
|z|<Z|an’|<Zn\n|Z* |T|l| )Sl n‘ B
—|n

Since this is constant (mdependent of r), we must have that |z| < 1, in contra-
diction to the fact that | - | is Archimedean, as otherwise we could take powers
of z and get zF > for k big enough. We can thus assume |n| > 1 for

n
1—In]
1 <n €N . Note that r < }ggi, we now have:

| < Zmznnv >n\n|i2§i.

Using these bounds for zF < n(r+1k.

ol < KL+ D (DI,
logn

T

; log x (k1)

o= < 3 Jaalinl’ < KL+ il e
=0

By taking k — oo, we get \z|@ < |n|@ But,

implying

log |n

‘n|logn —|$logwlogn‘ < |x‘loﬂz
_ _ e log|z| _ log|n| :
thus |:c|1°gx |n|1°gn eTew is constant, implying that s = 250 = 20 is
constant. Now, note that |x| = z® for every = and get,
5 _ s
|z = 2° = [z[%,
finishing the proof. O
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4.2 p-adic numbers

Definition 4.5. We define the p-adic numbers Q, to be the completion of Q
with respect to the absolute value | - .

Remark 4.6. We get a space which is an uncountable field of characteristic
0, not algebraically closed, locally compact (every point has a compact neighbor-
hood) and totally disconnected, i.e. every connected component is a point.

Definition 4.7. We define the p-adic integers Z, to be the unit disc in Q,,
explicitly Z, = {x € Qp : |z|, <1}.

&)
Exercise 4.8. Show that ) a, converges <= |a,|, = 0.

n=0

Proof. One direction is the same as in usual real analysis; If the sum converges
then the partial sums are a Cauchy sequence thus for every e > 0 there exists
ng large enough such that for ng < n; <ng € N,

no ni
E a; — E Q;
=0

=0

n2

5w

1=ni1+1

< €.

p p

in particular take ng < n —1,n € N and see that = |an| < e.

n n—1
24— ) a;
i=0 i=0
For the other direction, assume |ay,|, 2729 0, thus for every € > 0 there exists
ng large enough such that |a,|, < p~™ < € for ng < n, but this exactly means

that the sum converges as for ng < ni,n, € N:

no ny
E a; — E a;
=0 =0

n2

>

1=n1+1

< ; <p ™ .
- n1+111122?(§n2{|@1‘p} =P <€

p P

Exercise 4.9. Show that Z, ~limZ/p"Z.
—n

Proof. Recall that limZ/p"Z = {(z¢,z1,72,...) : ¥ = z; mod p/,j < i},
—n
with the topology being the weakest topology such that all the projections
Pn 2 UmZ/p"Z — Z/p"Z are continuous, and recall that Z/p"Z all have the
—n

k .
discrete topology. We define a map ¢ : Z, — lim Z/p"Z by ¢(a) = (> a;p*)32,
—n i=0 .

(we saw that every element in Q, can be written as an infinite sum, and since
|z] <1 for z € Z,, their expansion starts on the 0-th term). This is indeed a
map of rings, first note that p(0) = 0 since 0 is divisible infinitely many times
by p and thus 0 = 0 mod p™ for every n, and furthermore ¢(1) is the constant
sequence (1)72,, and it is evidently the unit element of the inverse limit (multi-
plication is done in each coordinate). To see that the addition and multiplication
are sent to the correct elements note that each projection g, : Z, — Z/p"Z by
gn(x) = x mod p" is a map of rings, since reducing mod p" commutes with
addition and multiplication. Now, assume ¢(a) = 0, thus a = 0 mod p" for
every n € Ny, since it means it is zero in each coordinate, but this must imply
that a = 0 since this is the only element with |a|, = 0. To see ¢ is onto, take
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some a in the right hand side, and construct an element x € Z, such that it the
limit of the sequence (a;). Because a was a compatible sequence in the inverse
limit, for every € > 0 we can find ng such that for ng < n < m we have

ad .
Z aip'

i=n—+1

|am_an‘p: Sp_no <€,

P

implying that (a;) is a Cauchy sequence with respect to | - |, in Z, and thus

a proper element in Z,. Now, ¢ is continuous, given a basic open set U =

P, (an) = {(a;) € imZ/p"Z : a; = a,, mod p"}, we see that ¢~ 1(U) = {z €
—n

Zy:x—ay € p" Ly} = ay,+p"Zy, which is open. Evidently so are inverse images

of unions and intersections of such U’s. To see ¢ is open, note that for a € Z,:

pla+p"Z,) = {(:cl) € UimZ/p"Z : z; = a mod p”} =p. Y (a).
“~n
Thus, ¢ is a homeomorphism of topological rings. O

Exercise 4.10. Show that Z, is compact.

Proof. Using the previous exercise, we know that Z, ~ limZ/p"Z, where the
~n

o0
latter is a subspace of [[ Z/p™Z. Since each Z/p"Z is compact (it is finite),
n=1
so is their product by Tychonoff’s theorem, and since the inverse limit is a
closed space of the product, it must be compact. To see it is closed note that
Zy =2, Cy where C, =G, x [] Z/p™Z and
m#n,n+1

Gm = {(xn-l-l +pn+IZ7 Tn + an) P &n = Tp+tl mod pn}’

is the graph of the projection from Z/p"*t1Z — Z/p"7Z. O

4.3 Properties of /-spaces and analysis on /(-spaces

Definition 4.11. An (-space X is a locally compact, totally disconnected space
which is Hausdorff. We furthermore say that X is countable at infinity or o-
compact if it is the countable union of compact sets.

Definition 4.12. Let X be an {-space. We say that a function is smooth if
it is locally constant, we denote all smooth (i.e. locally constant), compactly
supported functions f : X — C by C°(X) or S(X).

Exercise 4.13. Let X be an (-space, show it has a basis of clopen sets (i.e. it
is zero-dimensional).

Proof. Taken from [1, 3.1.7]. Assume we have a point x € W C X, with W
open and K = W compact and set P, = {U C K : U is clopen and z € U} and
P= N V.
VeEP,
Now, we claim that for every closed subset F' of K such that FNP = &

there exists some W € P, such that W N F = @. Otherwise, set n ={U N F :
U € P, }. By assumption, it is a family of non-empty closed subsets of F, and

since F' is compact if [| V = &, then there is a finite collection of V; such
Ven
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that ﬁ Vi = ﬁ U, N F = @ (note that this is an equivalent characterization
of coggactneszs: (i/ia closed sets). Since P, is closed under finite intersections,
ﬁ U; € P, but this is a contradiction since we assumed that every set in P,
;;‘Sersects F non-trivially. Thus

o# (V= () UNF=PNF,

Ven UeP,

contradicting the assumption that PN F = &, so we have a set V € P, such
that VN F =@.

We now wish to show that P = {z}. Assume the contrary, i.e. P # {x}. P
is disconnected since X is totally disconnected, so there exists non-empty closed
x € A and B such that AU B = P and AN B = & which are open in K. Since
K is regular, (Hausdorff + locally compact implies regular), there exist open
disjoint sets A CU and B CV in X, where we have F' = K\(U UV) closed in
K and PN F = @. We showed that for such I’ we can find W € P, such that
FNW = @. Now, observe that the open set G = U NW is also closed in K as,

G=UNWC (K\V)n(K\F)=K\(VUF) CU.

Therefore G C UNW = G. Since z € G, we have G € P,, but as GN B = @,
we get that P = AU B is not contained in G, which is a contradiction, implying
P ={z}.

Since for every open neighborhood z € O the set K\O is compact and
x ¢ K\O, it follows from the above claim that O contains some V € P,,. O

Theorem 4.14. Let G be an {-group. There exists up to a factor only one
left-invariant distribution pug € S*(G)C, that is, a distribution such that:

(90 "1 f) =/f(gog)duc(g) =/f(g)duc;(9) = (ua, f)
G G

for all f € S(G) and go € G. Furthermore, we can take {ug, f) > 0 if
f € S(G) is a non-zero non-negative function. This distribution is a measure
which is called o (left-invariant) Haar measure on G.

Proof. We shall start by showing uniqueness. Set the right and left actions of G
on itself by p(h)(g) = gh~! and A(h)(g) = hg, and let {N,} be a fundamental
system of compact open subgroups of eq where o € I. This kind of system
exists for Q, by taking {pZ,}, and by van-Dantzig’s theorem for a general ¢-
space. We can suppose that there exists ag such that N, C N,, for all a € I,
as if not, pick one Ng and consider the system of neighborhoods {NgN Ny }aer-
Now, define

Sa ={f€5(G):plg)f = [, Vg € Na},
and note that if N, € Ng we have that Sg C S,. Also, observe that S(G) =
U Sa, since for every f € S(G) we can write f Y ¢; 14k, with Ik, being

a€cl =0
indicator functions of g;K;, and thus f must be invariant w.r.t the right action
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of K = N K; # {eg} as K;k = K; for all k € K;, and K must contains some
i=0

Ng.

Each space S, is invariant to the left action of G since if p(h)I,, k, = Iy, K,
we also have that p(h)A(9)1y,k; = p(h)Igg,k; = Igg;k, for all g € G. Thus, if
we have a direct system of left-invariant functionals . € S}, where if S, C Sg

then pgg = fia, there exists a functional on S(GQ) =lim Sy = U Sa.
« — acl
Now, note that each f € S, can be written as a finite sum of Iy, for

some g; € G, as by definition f(gN,) = f(g), for all g € G and f is compactly

supported which means that g;N, are a cover for supp(f). This implies that

Sy is generated by left translates of Iy, and thus pe is unique up to a scalar,

since by determining its value on Iy, we determine its value on every Iy, by
[NagiNa]

IN,, = > Ign, and thus on every S,. Now, to construct such pg we can

i=0
define for every f € S,

<,u'oc»f> =

> )

[ o gqeG/N

where this sum is finite since supp(f) is compact. Now, if f € Sg C S,,

oo f) = iy 2 S0 = I.N} S rme

gzéG/N hj EG/NB 9i€Ng/Na
1
2 ([(Na:Nalf(hy) = — > F(hy) = (us, f).
[N(Io N] [ o -
h;€G/Ng h i€EG/Ng

Which implies that the functionals p, are compatible. {u,} are also left-
invariant (we still sum over all the cosets after applying A(g)), and positive,
and thus establish the existence of a Haar measure. O

5 Tirgul 5

Definition 5.1. For a topological vector space V' we define Haar(V)) C u>(V) C
Dist(V) to be the one dimensional vector space of Haar measures on it, which
exist by Haar’s theorem.

Remark 5.2. We use above the definition of a Haar measure as a Radon mea-
sure, that is a positive (i.e, positive on positive functions) functional on the space
of compactly supported continuous functions on V. As we will see in the next
ezercise, one can define this space either using this definition or using the defi-
nition utilized to construct the Haar measure for an {-group in the last exercise
session.

Exercise 5.3. Let V be a finite dimensional linear space (either an {-space or
a real vector space). Show that every distribution on V which is translation
invariant is a Haar measure, that is (C°(V)*)V = Haar(V).

Proof. (We show this again for an f-space although we proved we have a Haar
measure for an f-group.) If V is an f-space, every f € C°(V) can be written
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n
as f = 3 ¢;1,,+k, where K; are compact open subgroups of V. Furthermore,
i=0

n
the function f is invariant with respect to K = [ K;, and thus can be written
i=0

as a finite sum of translations of K; f = Y ¢iI,,4+x. Now, if [ fdu = 0, we
i=0 %
must have that Y ¢, = 0 since u(Ix) # 0. Since every & € (C(V)*)V is

i=0
translation-invariant we get that,

(€ 1) = (6D cilurr) = (&) cilx) = ) cilé Ix) = 0.
1=0 =0 1=0

We now claim that for £ € (C°(V)*)V, if (¢, f) = 0 where [ fdu # 0, then
v
(€,9) =0 for all g € C°(V). Indeed, if (£, f) = 0, as we saw before this means
that Y ¢/(§, Ix) = 0. Since the integral is non-zero, the sum of the coefficients
i=0

i
is non-zero and thus (¢, Ix) = 0. We get that for every indicator function Ik
where K/ C V is a compact open subgroup the index [K : K N K'] is finite,
implying that,

[K":KNK’'
K :KnK’
el = (6 3 o) = K s KOK6, i) = e en (15) =

Since this holds for every indicator of a compact open subgroup, this means
that £ = 0. To finish off this part of the proof pick some open compact open
subgroup K, and note that the map (C°(V)*)V — R by & — (£, k) is an
isomorphism since this is a map of vector spaces which is onto (there are non-
zero distributions since the space of Haar measures is inside), and we just showed
injectivity.

A different way to see this is that the space of integral functions whose
integral vanishes, call it W, is of codimension one in C2°(V'), and thus we have
that the space we are interested in is actually functionals on the one dimensional
space C°(V)/W.

Now, assume that V = R" and £ some invariant distribution. First note
that using continuity of &, for every directional derivative,

Ui @)= f@=hd), (6D~ (Dnsl©), )

(€55 ov h ) h—0 h ’

I
) = (& lim
where Lp5(€) denotes translation of £ by k¥, and thus

ov h%O h =0

<£,

Now, assume that (£, f) =0 where [ fdu # 0. Given any g € C2°(R"), assume
v

that [(f — g)dp = 0 (otherwise normalize g). We claim that f — g = Z gi:

%
for some f; € C(R™) which means that (£, f — g) = 0 and thus <§ g) =
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x

&g+ (f—9) = (& f)=0. Indeed, if n = 1, take F(z) = [ (f — g)dz, and
this is the fundamental theorem of calculus (note that F is compactly supported
since the integral of f — g is zero).
For bigger n, set h = f — g and continue by induction; Set «a(z,) =
| hdxy...dw,—1 and H = h—a(z,)¥ (21, ..., 2,—1), where ¥ is a bump func-
Rn—1
tion, that is, it is compactly supported and [ Wdz; ...dz,—1=1 and a(z,,) is
]Rn—l
compactly supported since h is compactly supported. Now, note that for every

z, € R we have that, f Hdxq...dx,—1 = 0. Thus by the induction hypothe-

— 00

n—1
sis, where z,, is fixed, H = Z %ii for some H; € C(R"™). Note that H; are

i=

indeed smooth in all variables, including z,,, since they vary smoothly when x,,
o0

varies. Now, h = H + a¥, but we see that [ a(z,) =0, and thus o = % for

— 00

some smooth, compactly supported 8 Since V¥ is independent of z,,, this implies

n—1
_ OH; IpY
that h = e, IR

and we’re done by the same reasoning as in the first
i=0

part. O

5.1 The exterior algebra

Let V be a finite dimensional vector space, we define the exterior algebra as
dimV k

AV) = @ AY(V), where A¥(V) = ® V/J and J is the ideal generated in
i=0 §j=0

k
@ V by the set {v; ® ... ® v, : v; = v; for some i # j}. Note that this

7=0

implies that the elements of the exterior algebra are anti-symmetric, and that
AF(V) =0if k > dim V, since after choosing a basis to V and decomposing an
element in A*(V) to basic tensors, there must be a basis element which appears
twice.

Definition 5.4. Let V be a finite dimensional vector space of dimension n over
F.

1. We set Qk(V) = Ak(V*).

2. For a 1-dimensional space V we define V* D |V ={f:V* > R:Va €
F, f(av) = |alf(v)}.

3. We define the densities of V as Dens(V) = {f : V" — R : f(Av) =
| det(A)[f(v)}.

We can show that Q"(V) = {f : V — R : f(Av) = det(A)f(v)}, and that
this space is one dimensional. We can thus also define Dens(V) = |Q%*P (V)] .

Exercise 5.5. Show that Dens(V) ~*" Haar (V).

Proof. A Haar measure can be viewed both as a functional on compactly sup-
ported, coninuous functions and as a function on Borel sets. The absolute value
of the determinant |det|: V™ — R is an element of the one dimensional space
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|Q™(V)| (recall that for finite dimensional spaces V ~¢*" V**). We have a
canonical isomorphism by choosing a basis {e;}?"_; for V, and bijecting between
the element ¢ € |Q2"(V)| such that ¢(ey,...,e,) = 1 with the Haar measure
normalized such that it has the value 1 on the parallelogram spanned by the
vectors {e;}? ;. This is independent of choice of basis since given a different
basis both elements would be multiplied by the same factor of | det(M)|, where
M is the change of basis matrix between these two bases. O

Definition 5.6. For a topological vector space V' which is an {-space we define
the space of smooth measures as S(V,Haar(V')) ~ S(V) ® Haar(V).

Remark 5.7. Note that for such V as in the definition above we have that the
smooth measures S(V,Haar(V)) are the compactly supported locally constant
functions with values in Haar(V).

6 Tirgul 6

Definition 6.1. We say that a topological space X is paracompact if for every
open cover {Ua} e of X and point x € X there is a neighborhood x € V and a
refinement {Ug}pecs such that V intersects only finitely many sets of {Us}ge.

Definition 6.2. A topological manifold M is a topological space which is locally
homeomorphic to R™, and is furthermore paracompact and Hausdorff.

Exercise 6.3. Find a space X which is locally homeomorphic to R™ at every
point and is paracompact but is not Hausdorff.

Proof. Consider the space obtained by gluing two copies of R along an open set,
say (0,00). At each point we can find a neighborhood small enough which is
homeomorphic to R, note that this also works for the points 0; and 05 arising
from the points zero in each copy of R, since an open set around each can
be taken only in one copy of R (recall that the quotient topology is defined
to be the weakest such that the quotient map is continuous). This space is
also paracompact; take a small neighborhood with a compact closure, we can
refine any open cover such that its interior meets only finitely many sets. This
space is not Hausdorff since the two points 0; and 03, cannot be segregated
by disjoint open sets, every two such sets must intersect in some interval as
(—€,01) = (—¢,02) for every € € Ryy. O

Definition 6.4. An analytic F-manifold is a space M which is locally isomor-
phic to OF together with a sheaf of functions

An(U) ={f:U = F:Vx e U,3r >0 s.t. fip () (y) = Z aE(x—y)EL
Eenn
where By.(x) is the ball of radius r around x, and k is a multi index, thus

@) = [T - w)*.

Definition 6.5. Let M be a smooth manifold or a p-adic analytic manifold. A
real vector bundle over M is a tuple (E,p) where E is a topological space and
p: E — M is a continuous surjection such that:
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1. For every x € M we have that p~'(x) = V,, is a finite dimensional real
vector space.

2. For every x € M there exists an open x € U and a trivialization oy :
Ve x U — p~H(U) where oy is a homeomorphism and po ¢y (v,x) = x for
all v eV,.

3. The maps v — py(v,x) are linear isomorphisms.
If E~V x M we say (E,p) is a trivial bundle over M.

Exercise 6.6. Given a manifold M a vector bundle (E,p) with fiber of constant
dimension m over it, and a functor F : Vect™ — Vect”, construct a vector
bundle (F(E),q) over M as discussed in class.

Proof. First, take a cover {U,} which is a local trivialization of E (that is,
p 1 (U,) =~V x U,). Define the total space F(E) over each U, by F(V) x U,,
where the surjection ¢ will be projecting to M, and glue every two pieces ¢~ (U,,)
and ¢~1(Up) by setting (v,z) ~ (ga.5(v), ) for every x € U, NUsz and v € V,
where go g = F (<pE;<pUa). Finally, note that for any two elements of the cover
g;g = g3,a, and in order for our construction to be well defined we need to
show the cocycle condition , namely that gg 94,8 = ga,y When restricted to
triple overlaps. This holds since

982908 = Fleg. v, ) F (g, 0u.) = F(0y) ¢u.) = Gan-

Note that if we want F'(E) to have a smooth structure we need to demand that
F' preserves smooth maps. O

We can utilize Exercise 6.6 to define a density bundle over a real manifold:

Definition 6.7. Let M be a smooth manifold, we can define its density bundle
by Dyr = |QIP(T'M)|, that is the density bundle of the tangent bundle.

Definition 6.8. Let X be an F' analytic manifold, we define its density bundle
by Dx = [Q*P(X)].

Exercise 6.9. Let M be a smooth n-dimensional Riemannian manifold, that is
a smooth real manifold with an inner product on tangent spaces

< >pi TpM xT,M — R

which varies smoothly. Construct explicitly a density over M, that is a smooth
section of the density bundle over M. The density should respect coordinate
changes, and be the standard density when M is a linear space with the standard
mner product.

Proof. Consider the Gram matrix Garp(er,...,en)i; =< €;,e; >p= (ETE)Z-J
for e; € T, M. This matrix is positive semidefinite, so we can define volys ), :

(T,M)" — R by
vOlM,p(ela"'aen) == det(GM,p(éj)

For every p € M we have that voly,, € [Q°P(T,M)| since given A € GL(T,M):

volp p(A€) = \/det(GM,p(Aé')) = \/det((AE)TAE) = | det(A)|vols,p(€).
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This implies that vol,; is a section of Dy, and since we defined it using global
constructions (i.e. the tangent bundle), it is independent of coordinates.

Now, to show that voly, € C°(M, D)), for p € M take an openp € U ~ R
such that U trivializes Djs. Since the inner product changes smoothly over M
and det(Gyr,p) # 0 for every p € M, we have that volys, : R" — R*! is a
smooth function as composition of smooth functions and we are done. O

7 Tirgul 748

7.1 Constant sheaves and locally constant sheaves

Definition 7.1. Let V' be a finite dimensional vector space and X a topological
space.

1. We define the constant sheaf V x to be the sheafification of the constant
presheaf, which assigns to every open set in X the vector space V.

2. We say that a sheaf F over X 1is locally constant if for every x € X there
exists an open xr € U, and a finite dimensional vector space V, such that
Fiu, = Vg -

Exercise 7.2. Let V be a finite dimensional vector space and X a topological
space.

1. Show that V. (U) = C>*(U,V).

2. Show that if X is a o-compact £-space then every locally constant sheaf F
where F, ~ F, for all x,y € X is isomorphic to the constant sheaf.

Proof.

1. First note that Cy (U) = C*(U,V) is a sheaf as we can glue locally con-
stant functions, and they are determined by their values on a cover of X.
Now, note that there is a map of presheaves from the constant presheaf to
Cy by for each U sending v € V' to the constant function with value v on
U, which is the identity map on the stalks. Finally, the universal property
of the sheafification of V x holds for Cy since given a sheaf G and map
of presheaves p : V. yx — G it factors through Cy by sending the constant
function with value v € Cy(U) to p(v), thus Cy ~ V .

2. Take a cover {U,} of X such that Fy, ~ V; . Since X is o-compact,

o0
we can write X as an ascending union of compacts, that is X = |J K,

n=1
with K,, C Kp4+1. Now, for each K,, we can refine the sets {U,} such
that K, N U, # @ to a cover {Vg} of K, whose elements are mutually
disjoint. Continuing with this process we get {Vj};?’;o, a countable and
mutually disjoint cover of X, where Fjy, ~ V., but gluing the sheaves
back together, we must have that F ~ V .

O
Remark 7.3. Note that in the second part of the previous exercise we used the
disjointness of the elements of the cover since otherwise we would need to ensure

that the cocycle conditions hold on triple overlaps V; N'V; N Vy,. For a precise
reference see [7, Exercise 2.7D].

25



Remark 7.4. To make the discussion less cumbersome, for the next two exer-
cises we discuss sheaves of sets.

Exercise 7.5. Show that the definition of a Leray sheaf is equivalent to the
Grothendieck definition of a sheaf.

Proof. We will sketch an equivalence of categories between the Leray definition
of a sheaf and the Grothendieck one. We start by defining functors in two
directions.

Assume we are given a Leray sheaf, that is an espace etale with a projection
(E,p) such that for every e € E there exists a neighborhood e € U, C E such
that p|y, is a homeomorphism to its image. We define a presheaf by,

FU)={f:U—=p Y U): fects,po f=1Idy}

with the obvious restriction maps. This is actually a sheaf; because the sections
are functions we can glue compatible sections, and the identity axiom holds.
For the other direction, given a Grothendieck sheaf, we form its espace etale

by taking E = ][] {«} x F., with the projection being p(z,v) = z. We further-
reX
more endow E with the topology generated by the basis Uy v = {(z,(s)s) : ¢ €

V} where V C X is open and s € F(V). For each (x,v) = e € E take a basic
open set Uy, , where € V,; and s € F (V) such that (s), = v, then p is a home-
omorphism from Uy, onto V, € X. Note that p is also continuous since for
an open V C X, we have that p~}(V) = [[{z} xF. = U U Usw,
zeV WCV,open se F(W)

which is open.

We sketch the equivalence of categories. Starting with a Grothendieck sheaf
F, we construct a Leray sheaf (Er,p) and obtain a Grothendieck sheaf Gg...
For an open U C X the sections are,

Gp,(U)={f:U— [[{a} x Fo: f cts, po f =1dy}.

zeU

Since the basis for the topology of Ex was sets Usy, where V' C X is open
and s € F(V), for each s we have a continuous function f, € Gg,(U) where
fs(@) = (x,(8)z), so F(U) C Gg,(U). Conversely, if we have a continuous

section f: U — [] {z} x Fu, for each (z, (s),) in the image, we can consider
zeU
its germ given by a representative (s, W), where x € W, C U is open. By

continuity of f, we must have an open x € Vi C f~1(Us w,) with f(Vs) = Us v..
Since we started with a sheaf F, using the gluing axiom for s, € F(V;_) there
exists a section s € F(U) corresponding to f (note that they agree on overlaps,
since these are values of the function f). This shows that Gg, ~ F.

For the other direction, assume we start with a Leray sheaf (E,p), and

consider Ex, = ][] {z} x (Fg)z, where here (Fg), = {f : {z} — p~1(2)}.
zeX
We construct a homeomorphism ¢ : Ex, — E by ¥(z,(f):) = f(x). This

map is surjective since for every e € E we have that ¢(p(e), fo) = e where
fe € (FE)pe) and fe(p(e)) = e. Injectivity is clear since if fi(z) = fa(y), then
xz=p(fi(z)) = p(f2(y)) =y and f1, fo are functions from a singleton.

The map ¢ is continuous since given an open W C E| consider (z,(f).) €
YW = {(z,(f)z) : f(x) € W}. Since (f), € (Fg)z, by considering its
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germ there exists an open subset V' C p(W) (note that p(W) is open) such that
feFu(V), thatis f: V — p~1(V) C W and is continuous. By the definition
of the topology on Ex,, we have that (z,(f).) € Usy C ¢~ HW).

To show 7 is an open map, take a basic open Usw C Er,, where W C X
is open and f : W — p~!(W) is a continuous section. If e € Y(Usw) = f(W),
then we have an open ¢ € U, C E such that py, is a homeomorphism. In
particular, p(Uc.) N W is open and since fi,w )nw : p(Ue) "W — p1(p(U.)) N
p~1(W) is a continuous section, it must also be a homeomorphism, thus e €
f(p(Ue) N W) C f(W) is open. This finishes the proof.

Remark 7.6. Note that if we apply the procedure depicted above on a presheaf
we end up with a sheaf. This is exactly the sheafification functor from presheaves
to sheaves.

O

Exercise 7.7. Show that covering spaces correspond to locally constant sheaves,
and that a covering space is trivial exactly when it corresponds to a constant
sheaf. Give an example for a locally constant sheaf arising from a covering
space which is not constant.

Proof. Assume we are given a covering space (F,p), view it as an espace etale
and reconstruct the corresponding Grothendieck sheaf Fg. If X is our base
space, we have a cover {U,} of X such that p~1(U,) ~ U, x D and D is
discrete. Thus Fgy, (V) ={f:V =V x D: fcts, po f = Idy}, which are
exactly the locally constant functions since D is discrete, implying that Fgy,
are locally constant sheaves.

Conversely, given a locally constant sheaf with stalk D, assemble its espace
etale (Ex,p). The espace etale of the constant sheaf D, corresponds to U x D
with the product topology, since the stalk at every point is D, and the open
sets are Us,y = V x {s}. This implies that given a cover {U,} of X such that
Flu,, is isomorphic to the constant sheaf, we will have that p Y (U,) ~U x D,
as this is the espace etale of the constant sheaf Dy; , showing that (Ex,p) is a
covering space.

It can be useful to note that while for a locally constant sheaf the stalks at
all points can be isomorphic, if the sheaf is not isomorphic to a constant sheaf
the topology of the espace etale will be different than the product topology, as
we will see in the example.

Finally, note that we get that a non-trivial covering space cannot gives rise
to a constant sheaf by using the equivalence of categories from Exercise 7.5, as
otherwise, apply the functors forth and back, and get that the covering space
you started with was isomorphic to a product space, i.e. trivial.

As an example to a locally constant sheaf arising from a covering space
which is not constant, consider the double cover of the circle by itself (draw the
picture, see where it fails!). Locally, the sheaf obtained is the constant sheaf,
but there are no global sections; Given a section f : S' — S1, note that f(S!)
is not open in S!, and thus f cannot be continuous. To make this precise, take
f~Y(U) where U is an open neighborhood of the boundary point of f(S'), and
see it is not open. Thus it cannot be the constant sheaf. O

Remark 7.8. Note that Exercise 7.7 shows that the picture for a o-compact
L-space is very different from the case of a locally connected space. For the first
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every locally constant sheaf was constant, and for the latter every non-trivial
covering space gives rise to a locally constant sheaf which is not constant.

8 Tirgul 9

Exerci%)e 8.1. Let X be a smooth or an F-analytic manifold. Show that
Cx(X) =C>=(X).

Proof. Recall that C~°°(X) = puS°(X)*. Given a topological vector space V', for
W C V* the space W is dense w.r.t the weak topology if and only if W+ = {v €
V : (w,v) = 0Vw € W} = {0}. To see the relevant direction, if W+ = {0},
we will show that for every £ € V*, finite set S C V and ¢ < 0 we can find
w € W such that §|; = w),. Given such £ € V*, S = {v1,...,v,} and € > 0,
assume S is a linearly independent set, and consider p : V* — R™ by p(n) =
({n,v1),...,(n,vn)). The map pj,, is onto, since otherwise there exists some

n
¢; € Rsuch that 3 ¢;(w,v;) = 0 for all w € W (it must lie in some hyperplane,
i=1

and all hyperplanes are of this form), but this means that (w, > ¢;v;) = 0

n
implying > ¢;v; € W+ = {0}. The surjectivity of Pl allows us to find the

i=1
desired w € W. Thus it is enough to show that given n € p(X), if (f,n) =0
for all f € C°(X) then n=0.

Assume M is a smooth manifold. Given a non-zero measure 7, there exists
some R"™ ~ U C X such that ny # 0, to see this either use the fact that
distributions form a sheaf, or view it as a positive function on Borel sets. Now,
since U ~ R™ we must have that 1, = g - figaar where g € C*°(R"). Taking
some cutoff function 1 € C°(R™) such that Vip, 0 = 1 and ¢ > 0 implies
the desired result as <91/1,77> = <g¢7g : UHaar> = <92'¢)7HHaa7"> > 0 as this is an
integral of a positive function.

For an F-analytic manifold we do the same procedure only this time 1 is
the indicator function of the open unit ball in F™. O

Definition 8.2. Let M a smooth manifold and E a smooth real bundle over
it. We define the topology on C°(M, E) by taking a cover {U,} which locally
trivializes both M and E, and announcing that a set is open if its preimage in
D Cx(Ua, By, ) is open.

Exercise 8.3. Assuming the topology on C°(R™, R¥) was already determined,
show that the topology on C°(M, E) is well defined.

Proof. We need to show that given a different cover {Vz} of M which locally
trivializes M and E, we get the same topology.

Consider the cover {W, g} for W, g = U, N Vg which refines both covers.
We need to show that for the addition map,

PP CEWap, By, ) = P CE(Uas By,

acl BeJ ael

a set in the range is open if and only if its preimage is open, where W, g C U, =~
R™ and E),, g = E, =~ RF. In order to show the above, it is enough to handle
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each case @ C°(W, 5, RF) £y 0°(U,, R¥) ~ C>(R", R¥) separately, since in
peJ
the direct sum topology a set is open if all the injections D; — @D D; are contin-

uous (for us - a convex set). Given a basic open set Uy, . g ) C C°(Uq, R¥)
where Lm are mixed differentiations, €,, € R<g and B,, are compact sets such

that U By, = R", it is of the form Uz, ¢, B.) = 2= VLm.em,Bms Where
meN

Vit = { € C¥R R 5000 (1) € B, 519 [En(7)] < e |
z€ER™

Now, take a finite sum Y fg € + 1 (Ugp,, c..B,03) for > fa=f = Z fm; and

Jmi € Vi em, B, S€t DY fg = pra(f) the projection of f into COO( 0.0, RF),
and define N = #{B pra(f) # 0} and €, = “mi— buPH]\?'” Umdll and set
€, = G if m # m,; for all 0 <4 < [. For B’ 5 © Wa,p, compact sets which

exhaust Wa, s and such that Bm’ C By, the sets U, (Ll Bl ;) A€ basic open

sets in each C2° (W, 3, R¥), and their direct sum is open in the direct sum. Now,
we claim that,

fe @ o+ UL, B;”B)g-f— (U(Lm,em, )

B:fs#0
Given g = > gg where gg € U(Lm,ein’Bing)’ then gg = Z 9s,i5 where
B:ft}?éo ’ 2[3 1
98.in € VL"H&’E;”%’B;W’B. )
Thus if n;, = m; for some i, we have zlllgp || L, (98.m)|| < €, = M
T ™y
implying that,
wp || 30 Lolhmest99m)|[ < w0 || 3 i)+ 2 sup 1L g
v€Bmi T pifo#0 v€Bm: g a0 Bifa 0 "€ Pms
€m; — SUp || Lm, .
< np om0 5, (omintl
vEBm B:f#0
= €m,-
Otherwise, if n;, # m; for all i, set n’ = n;,, and using the requirement
sup ||Ly (g8,n/)|| < S we note that:
z€EB,,
€
sup Z Ln’(gﬂ,n’) Z sup HLn’(gB,n’) N = €n’.
TEB T i fart0 B:a 0 "€ B

l lg
This allows us to conclude that f+g= > > fum, s+ > > 9s, liein
ﬂ:fﬁ?éoizl ﬁ:fB;éO ’Lﬁ:l
UL em:Bm) = 2 Vi,em, B for all such functions g, implying that the addi-
meN

tion is continuous. For a less cumbersome approach, note that the embeddings
D C* (W, 5,RF) — @ C(R",R¥) are continuous (a cookie for the person
peJ BeJ
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who finds a quick proof for this), so it is enough to show that the addition

k
map @ C=(R",R¥) & CX(R",R*) ~ @ C°(R") is continuous. Since the
peJ i=k
domain has the direct sum topology, it is enough to check this for a finite direct

sum, which follows by the continuity of addition in a topological vector space.

To show the map is open, it is enough to consider € Cf(’ic(Wa_ﬂ,Rk) =+
BeJ

k

CE (R, RF) ~ @ C$2(R™), for every compact K, and since the domain has the
=1

direct sum topology and the basic open sets are finite sums of open sets in each

m
coordinate, it is enough to show it for a finite direct sum Cj'gc(Wi,Rk) &
i=1

k
P CP(R™) where K C |JW;. Now, use partition of unity f;, with C; =
j=1

m
supp(fi) C Wi where Y fi|,, =1 to get an onto map via the composition,
i=1

P Cine, (Wi, RF) — P O (Wi, RF) 5 CRe(R™).

i=1 i=1

Since this is a continuous surjective map of Fréchet spaces, it must be open,
implying that the addition is open since the embedding is continuous. O
8.1 Operations on distributions

Definition 8.4. Let ¢ : X — Y be map of manifolds (either smooth or F-
analytic) and set,

Dist(X)prop,p = {§ € Dist(X) : ¢, 18 proper}.
1. If ¢ is proper, define the pushforward v.(§) € Dist(X) for f € CX(Y) by
(p«(8), f) = (& " (/)

2. For & € Dist(X)prop,e 07 & € Dist.(X) and f € C*(Y) we define the
pushforward by

(«(&), f) = (& pp - " (f))

where py € C2°(X) is a cut off function such that py|, =1 and o Y(supp(f))N
supp(&) C U is an open set containing supp(f o ¢).

Exercise 8.5. Show that the definition above for pushing forward distributions
in Dist(X)prop,, 15 well defined.

Proof. First, note that pso*(f) is indeed compactly supported in X since

supp(pse”(f)) = supp(ps) N~ ' (supp(f)) = supp(¢) N~ " (supp(f))

is compact by the demand that ¢ . is proper.

The definition is independent of pf, since given a different cutoff function
Yy, then (py — 1r), = 0, where supp(p*(f)) C V is an open set, imply-
ing (py —4y) € C(X\supp(§p™(f))) and thus (o*(f),pr — ¢y) = 0 =
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&, (pp)e*(f))y = (& (Wy)e*(f)). Finally, note that we can indeed find such
ps by taking a compact, smooth partition of unity w.r.t a finite a cover U; of
K. The proof for the F-analytic case is analogous. O

Exercise 8.6. Let ¢ : X — Y be map of manifolds (either smooth or F-
analytic), such that @|, : C — Y is proper for some C C X. Show that there
exists an open C C U and smooth p : X — R such that p, =1

Proof. ==Warning. Requires fixing, construction is probably true, proof is
false.==

For every y € Y by local compactness we can find y € V;, C K, C Y where V},
is open and K, compact. Construct a non-negative cutoff function p, : X — R
such that for the compact set ¢ ~1(K,) N C we have that Pyl s e o = 1 and

e L (Kqy)NC
py € CX(X). Now, | V, =Y, and take a partition of unity suppf, C V,
yey

with respect to the cover V,, (we can take both covers to be of countable size
and thus obtain countably many functions in the partition of unity). Also, note
that f, € C°(Y) since supp(fy) C K, is closed and hence compact. Finally,

set p = > py, fi o p and note that indeed p|, = 1. To finish, we have that,
i€N

p 1 (K)NC C o ' (K) nsupp(p) = | supp(py,) N~ (K Nsupp(f;))
i€N

- U SUpp(pyi) n 90_1(K N Vyl)
i€N

But since we also have that, ¢ =1(V,) N C C supp(py):

U supp(py, )N~ H(KNV,,) = U Cny H(V,,NK) = CHU o (V,,NK) = ¢ 1 (K)NC,
ieN ieN ieN
and we are done. O

9 Targil 10

9.1 Pontryagin duality and Fourier transform

Let G be an abelian locally compact group. Define its Pontryagin dual by,

V={x:G = U(C)=5"CC:x(g192) = x(g1)x(g2), x is cts}.

The topology on GV is the compact open topology, i.e. a sub-basis for the
topology is comprised of sets M(K,V) ={x € GV : x(K) C V} where K C G
is compact and V C S is open.

Theorem 9.1. For a locally compact abelian group G, we have that GVV ~ G.

Exercise 9.2. Let G be a locally compact, Hausdorff abelian group, then GV is
a locally compact Hausdorff abelian group.

Proof. (See Mathstackexchange Q. 1502405) We see that characters form an
abelian group. Since S' is a topological group, the compact open topology
on GV is equivalent to the topology of uniform convergence on compact sets.
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Thus, in order to show that the multiplication and inverse are continuous it is
enough to show that if f,, — f and g, — ¢ uniformly on compact sets then
fn- gt — f- g1 uniformly on compact sets. Now, if K C G is compact, note
that this follows from the following bound (Vz € K):

fugn = 97 < U falgn =g DI+ 1(Fn = g = lgn — gl + 1 fn — fI.

Now to show it is locally compact, consider the space (S1)¢ of all functions
f: G — S!' ~ R/Z with the product topology (i.e. a basis is given by open
sets in only finitely many components). It is a compact space by Tychonoff’s
theorem, and it has the space

G= [ {x:G—S5":x(9192) = x(g1)(g2)},
g1,92€G

as a closed subspace, implying that G is compact. Furthermore, for every S C G
and € > 0 the set A(S,e) = {x € (SH) : x(S9) C [~¢,¢]} is also closed and
compact in (S1)¢ as the complement is a union of sets of the form {x : G —
S x(s) € [—¢,¢€]°} for some s € S, which are open.

In particular, taking an open neighborhood e € U C G the sets V(U, ¢) =
A(U,€) NG are closed and compact in (S1)%. Take 0 < € < 1, we show that
we have that V(U,e) C GV. Start with an open e € Uy = U C G, and choose a
sequence of neighborhoods (U,,) such that Up41 - Upt1 C Uy, for all n € N and
set €, = 5. Taking x € V(Uy, €,), we see that since for 2 € Uy, 1 we have that
X(z) € [—€n, 6] and 2? € U, we get x(2?) = x(z)? € [—€2,€2] C [—%, %],
implying that V(U,,, €,) C V(Unt1, €nt1)-

Now, take x € V (U, €) and a basic open set (—§,d) C S* for § > 0. We have
that [—€,, €n] C (—6,0) for n big enough, implying that e € U,, C x~1((=46,9))
which means that y is continuous at e. Since y is a homomorphism, we can
show it is continuous everywhere; if x(g) € W C S! and W is open, we have
that (—9,6) C x(g~1)W for some 6 > 0 and that,

X TxgIW)={yeG:x(w) ex " (@W}={yeG:xl(gy) e W}
=g gy e G:x(gy) e W} =g X' (W).

Now, for some m € Ny big enough, the following implies that g € gU,, C
XTHW): 1 1 1,1
Un Cx (X(g7 )W) =g~ x" (W).

We know that V' (U, €) is compact in the product topology, and want to show
it is compact with respect to the compact open topology. For this, it is enough
to show that any net in V(U €) has a converging subnet in the compact open
topology. Assume we are given some net (x,) € V(U,¢), then it has a subnet
(fs) — f converging in the product topology with fgz, f € V(U,¢€). Now, note
that V (U, ¢€) is uniformly equicontinuous, that is if g1, g2 € G and glggl e U,
then for any x € V(U,¢€),

Ix(g1) — x(g2)| = [x(g1)x "(g2) — 1] = [x(g195 ") — 1| < €n.

Given a basic open neighborhood of the identity character 1¢ € M (K, B.(0)),
where K is compact, for every g € K we have that g € U, g (for n big enough).
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Now, taking any ¢’ € U, g, we get that g¢’~! € U,, implying that for some big
enough S we have that |f(g) — f3(g)| < €, and that,

1£(9") = fs(d) < 1f(9") — F(@) + |fs(g") — falg)| + | f(g) — fs(g)| < 3en.

Taking n > ng such that ¢, < %, we see that fg — f uniformly on U,g, but
since K is compact we can cover it with finitely many sets of the form U, g,

and take n = ma .} and appropriate S.
n n OIgié(k{ngl} nd appropriate 3

To finish off the argument, note that by locally compactness every g € G
has a neighborhood g € U with compact closure U C K, and we have that

M (K, By(e)) € V(U,e) for an appropriate § > € > 0. O

Exercise 9.3. Let G be a locally compact, Hausdorff abelian group. Show that
if G is compact then GV is discrete, and that if G is discrete then G is compact.

Proof. 1If G is compact, take P = {# : —1 < § < 1} Cc R/Z, and consider the
open set 1¢ € M(G, P). Since the only subgroup in P C S! is {1}, we have
that M (G, P) = {1¢} is open, implying that every xy € GV is open and hence
GV discrete.

If G is discrete, every character is continuous and since G¥ C G, where G is
the space of all homomorphisms we have that G¥ = G. Since G¥ = G is a closed
space of the compact space (S 1)G it is compact in the product topology. Finally,
the map Id : Gl\)/md — GV is continuous since given a compact K C G, it must
be a finite number of points implying that M (K, V) = (", M({s;}, V), which
is open in the product topology, implying that its image is a compact set. [

Exercise 9.4. Let G be a locally compact, Hausdorff abelian group, and H < G
a closed subgroup.

1. Show that Pontryagin duality is a contravariant endofunctor in the cate-
gory of locally compact abelian groups.

2. Show that HY ~ GV /H* where H- = {x € G¥ : x(h) = 0 Vh € H}, and
that if H and H are vector spaces then this is a homeomorphism.

Proof. For the first item, we know by Exercise 9.2 that GV is a locally compact
abelian group. Given a continuous homomorphism ¢ : G — G’, it gives rise to
a homomorphism ¥ : G’V — GV via precomposition, i.e. ¢V (x)(g) = x o p(g).
Since idg" = idgv, and (1 0 2)Y = @Y o ¢y for appropriate homomorphisms
1 and o, it is left to show that it is continuous. This follows since for compact
K C G and open U C S* we have that,

oV T (Me(K,U) = {x € G" : xo p(K) C U} = Mai(p(K),U),

and since ¢ is continuous (K) is compact and Mg/ (¢p(K),U) is a basic open
set in G"V.

For the second item note that we have the inclusion i : H — G which
gives rise to the surjective projection p : GV — HY (Pontryagin duality is an
equivalence of categories). Since ker(p) = {x € GV : x(h) =0Vh € H} = H*,
by Noether’s isomorphism theorem we have that HY ~ GY/H' as groups.
To see this is indeed a homeomorphism, it is enough to show that p is an
open map (the quotient map ¢ : GV — GY/H* is continuous and open as
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¢ Y (q(Mg(K,U))) = Mg(K,U)H>), but this holds since for a basic open set
Mq(K,U) we have that p(Mg(K,U)) = (Mg (KNH,U)), and HNK is compact
since H is closed. Note that for the last equality we use a version of the Hahn-
Banach theorem. O

Remark 9.5. Note that we can identify R™ with (RV)" by z(§) = e~ for
£ €R™ and & - x is the dot product.

Definition 9.6. Let V' be a topological vector space over a local field. We define
G(V) = S*(V,Haar(V)).

Definition 9.7. We define the Fourier transform in several steps.

1. Firstly, for a vector space V' (either Archimedean or non-Archimedean)
define F : pc(V) — C(VV) by F(u)(x) = [xdp (Ezercise - F(u) is
continuous).

2. We note that for the subspace p® (V') C (V) we have that F(u°(V)) C
S(VY).

3. Since we also have that p°(V) C S(V,Haar(V)), and it is dense in
S(V, Haar(V)), we would like to define the Fourier transform on S(V, Haar(V))

via continuity.

4. Finally, we define the Fourier transform F : S*(VV) — G(V) = S*(V, Haar(V))
via duality.

For the second and third steps we solve the following exercise.

Exercise 9.8. Show that the Fourier transform F : S(V, Haar(V)) — S(VV)
is continuous for an Archimedean V and is indeed contained in S(VV).

Proof. Assume V is a real vector space of dimension n, and recall that the
9% f(x) |

topology on S(V) is determined by the semi-norms || f|la,s = sup [®o(z) 55
zeV

n
where o, € Njj and ®,(x) = [] 3:]0” It is enough to show that for every
j=1

f e C®(V,Haar(V)) and semi-norm || - ||o,z there exists a semi-norm || - || such
that ||F(f)lla,s < C|fl'. Now, recall that,

OF 0 (i
e

where one can differentiate directly using the definition to verify the above
procedure. The other side of the coin is given by integration by parts,

fgf(f) = /ﬁje*lgxf(m)dx — [_efiﬁ'a:f(l,)]iooo_ fj e,lgIaf(x)d
Rn

—i&; Ox;
]Rn

—i0(f)
8xj )

x = F(

Note that since the functions e** converge weakly to zero as distributions as
|¢€] — oo this shows that smooth, compactly supported measures are mapped
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into S(VV). We can now bound F(f) properly using the above relations:

(i) F ()|
A(zV)P

VW%HW‘

IF(H)llas = sup_|®@a(a)

zvVevVy

sup
zvVevy

du(z)

JECLELE
or®

du(x) < Csup ((1 + |zt
zeV

P}

where C = [ Wd,u(x). Since the last expression is a linear combination
v

of norms of the form || f||o 5 for [&/| < |a|+n+1and |3'| < |A|, this implies that

F is continuous. Note that we can also use this to show that F(f) is Schwartz,
s

since if all the norms ||- ||, are bounded then the value of |®, () 9 aj; (Ez) | decays

to 0 as |z| — oo for every o and . O

Definition 9.9. Let F' be a local field and x : F* — C* a character. We define
a functor for a 1-dimensional space V' over F by

X(V):={p: V"= C:plav) = x(a)p(v)Va € F* v e V*}
For the character x — x where a € Q* we get for V/R the space V<.

Remark 9.10. Pushing forward a Schwartz measure along a submersion ¢
yields a Schwartz measure. If ¢ is a linear projection, this follows from Fubini’s
theorem.

Exercise 9.11. (Functoriality of Fourier transform) Let W C V be wvector
spaces over a local field, and denote the inclusion of W in V by i, and set
p: VYV — WV for the induced linear map on the duals, then the following
diagrams commute:

S(V) S(W) S*(V) S (W)
F J—'[ F ]—"‘
S(VY, Haar(VY)) —2— S(WY, Haar(WY)) sy 2 g,

note that this is possible since p is a submersion (linear and surjective) so push-
ing Schwartz measures along it yields Schwartz measures.

Proof. We start by showing the right hand side diagram commutes. Since i,,
the Fourier transform and p* are continuous with respect to the weak topology,
it is enough to prove commutativity for a dense set in S*(W).

First take the delta function §p € S*(W), it is a compactly supported mea-
sure, and it holds that 4,(dp) = dp. Furthermore, since F : S*(V) — G(VV) is
defined via duality we have that F(dp) = 1:

(F (o), f11) = (G0, F(f1)) = F(f11) (Opv) = / fdu = (1, fu),

vV
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where the third equality is sensible since F(fu) € S(VVY) and Oyvv(x) =1 for
all x € VV. We can also show that p*(1) = 1. Consider G(W") as a subspace of
C~>°(WV), there the generalized Schwartz function 1 is a smooth function, and
note that the following diagram, where the horizontal arrows are the inclusions
is commutative:

GVY) —— C7=(VY) —— C=(VY)

|

GWY) —— C™ (W) «—— C®(WY).

*

p

Now, note that every measure fu € pS° (V") can be treated either as a functional
on smooth functions (since it has compact support as a distribution), or as the
parameter a generalized function takes values on. This is utilized in the third
equality bellow to yield the required result:

(p" (1), f) = (PG-o (1), fr) = (L, pu(f10)) = (P (f10), 1) = (f11, Ce (1)) = (1, f1a).

Note that since p, is a submersion pushing forward a supported smooth measure
along it yields a smooth measure.

Since §,, for any other w € W is just a translation of §y by w, its Fourier
transform is F(d,)(x) = x(w), and i, and p* are invariant to translations, the
diagram is commutative for delta distributions. The space of Delta distributions
spang{d, }wew is dense w.r.t the weak topology since for every function f with
f(zo) # 0 we can take suitable ¢ € R such that [(§ — ¢d,, f)] is small as desired.

To see this implies the commutativity of the left diagram, it is enough to
show that if A* =0 for A* : V¥ — V;* where A* is the dual map to the linear
map A : Vi3 — Vs, then A = 0, and use this for Fi, — p*F. If A* =0, we have
for every & € V5 and vy € V) that 0 = (A*&,v1) = (&9, Avy). If there exists
vy € Vp such that Av; # 0, then we can define a non-zero linear functional
¢ : spang{Av1} — R via (¢, Av;) = 1, and extend it to a non-zero continuous
functional & € V5 by the Hahn-Banach theorem. This yields a contradiction
as

1= (&2, Avr) = (A"&,v1) = (0,01) = 0.

10 Targil 11-12

10.1 Wave front set

Motivated by the definition of Fourier transform for Schwartz distributions and
hence of compactly supported distributions, we move to study smoothness of
distributions. Roughly speaking, our intuition will be the following (following
Hormander’s philosophy in [2, Chapter VIII, Page 251]). A compactly supported
distribution £ is said to be smooth if it is a smooth function. Morally speaking
the Fourier transform interchanges between smoothness and rapid decay, and
we can show that a compactly supported distribution is a smooth function if
its Fourier transform is a rapidly decaying function. If the Fourier transform
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of £ is not a rapidly decreasing function, we can use the directions in V'V ~
V* ® FV ~ V* (choose a character ¢ : ' — S') in which it does not rapidly
decay to get information on the lack of smoothness of £. The data about the
lack of smoothness of £ will be encoded in the wave front set of &.

Definition 10.1. Let X be an F-analytic manifold, W an F-vector space, F
a non-Archimedean local field and prx : X x W — X the standard projection.
We set,

SW(X xW)={fecC®XxW) Lprx,,,, - Supp(f) — X is proper}.

Definition 10.2. Let X be a smooth manifold, W an F-topological vector space
dim W
and F an Archimedean local field. We set w™ = wi™ and define SV (X x

=1
W) to be:
{f€C®(X xW):VK C X,Ym,n € N™W D e Diff (X), | Dfllmm.r < 00},

D 0" f(=z,w) w™|.

where ||Df(x,w)||lmnx = sup T

(z,w)e K xW

Definition 10.3. Let f € C®(V) and v € V for a topological vector space V
over a local field F'. We say that f vanishes asymptotically along v if 3U > v
open neighborhood such that a*f € ST (Ux F) wherea : Ux F — V via (u, \) —
Au. One can interpret this as f being Schwartz in (a conical neighborhood of a)
direction v.

Remark 10.4. Definition 10.3 is equivalent to the following: for x € V there
exists p € C°(V) such that p(x) # 0 and pa*(f) € S(V x F).

Example 10.5. The function f : R> — R by f(x,y) = e~ vanishes asymp-
totically for every v € R? not on the line {x = 0}.

Proof. Take any v = (x,y) € R? such that z # 0. We can find an open ball
denoted by B around v, small enough such that it doesn’t intersect {z = 0}, we
show that a* f € S®(B x R).

Given K C B, for every m,n € Nand D € Diff (B) we have that || Da* f||m.nx =

sup ‘Dagwﬂwm’ < oosince D(a* f(z,y,w)) = D(f(zw, yw)) = D(e=*"*")
(z,y,w)EK XR "
is a Schwartz function in the parameter w for every z,y € K.

If x = 0, then for any neighborhood v € B and K C B we can take D =1

with n = 0 and m = 1 and get that lim |wa*f(0,y,w)| = |we’| = oo, implying
w—r 00
that f doesn’t vanish asymptotically along (0,y). O

Exercise 10.6. Show that if f € C*° (V) vanishes asymptotically along 0 then
f=0.

Proof. If f vanishes asymptotically along 0 then there exists an open 0 € U
such that a*f € S¥(U x F). Choosing any neighborhood 0 € K C U, for
every z € V we have that £ € K for all @ > ap where we take ag big enough.
Now, a*f is constant on curves of the form (I, a), if V' is non-Archimedean
then supp(a* f) Npr—!(K) is compact but (Z,a) € supp(a*f) ﬁpr‘_,l(K) for big
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enough o which is not compact, implying a contradiction, and so we have that

f(z)=0.
If V is Archimedean, then since |a* fw| must be bounded on K x F, we get
that 0 = li_)m a*f(%,a) = f(x), finishing the proof. O

Definition 10.7. Let V be a vector space over a local field and & € C~>(V),
we say that & is smooth at (x,w) € V@ V* if 3p € CX(V) with p(x) # 0 such
that F(p€) € C°(VV) = C®°(V*) vanishes asymptotically along w.

Definition 10.8. Let V be a vector space over a local field and & € C~>°(V),
we define the wave front set of € by:

WF(E) =V eV \{(z,w) : £ is smooth at (x,w)}.

Remark 10.9. For a manifold M one defines WF(§) C T*M analogously,
where now a distribution is smooth at (z,w) if it is smooth there with respect to
some chart x € U C M.

Example 10.10. Compute the wave front set of the Dirac delta function § €
Dist(R™).

Proof. Since supp(d) = {0}, we have that WF(§) C {0} x V*. This holds since
for every = ¢ supp(d), we can take a bump function p € C°(R™) which is non-
zero at x and zero at 0, and since pé = 0, its Fourier transform is smooth in
every direction w € (R")Y ~ R"™. For every w € V* we get that (0, w) € WF(J)
since F(d§) = 1 which doesn’t vanish asymptotically in any direction. O

Definition 10.11. Pushforward and pullback of sets. TBA (use diagram,).

Corollary 10.12. Let ¢ : M — N be a map between manifolds, £y € C~°(M)
and En € C~°(N), then:

1. If v is a submersion, then WF(p*(&n)) = ¢*(WF(EN)).-

2. If & € Cpop o (M), then WF (0. (Em)) € 0 (WF(€a1))-

Exercise 10.13. Show that if £ € C;°(V) is smooth at (v,1) for a givenl € V*
and all v € supp(§) then 1.(§) € C7°°(R) is a smooth function with compact
support.

Proof. Note that since £ is compactly supported, it is I-proper, 1, (£) is compactly
supported and we can use (2) of the previous corollary. Explicitly, we have that
WE(.(&) ClL.(WF(E)), we show that L.(WF(£)) = l(supp(€)) x {0}.

L.(WF(E)) consists of all elements (z,y) € R @& R* such that there exists
(v,w) € WF() such that I(v) = x and (dl)#(y) = w (draw the picture). Since [
is a linear functional, (dl)%(y) = yol € V*, but since y € R*, the functional yol
is just given by Al for some A € R. But as WF() is conical, and £ is smooth
at (v,1), then (v,l) ¢ WF(§) and hence (v, Al) ¢ WF(§) for all A € R.

This implies that there does not exist (v, w) € WF(€) such that (d)}(w) =y
for all y € R* and in particular I, (W F(€)) = I(supp(€)) x {0}. Since smoothness
is a local property, we can show an analogous property for manifolds (think
about the generalization). O
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Exercise 10.14. Let L C V be vector spaces over a local field F and N C M
F-manifolds (either smooth if F is Archimedean or F-analytic if F is non-
Archimedean,).

1. Compute WF'(i.(p)) where p € Haar(L) is a Haar measure on L.

2. Compute WF(i.(n)) where n is a smooth measure on N and i : N — M
is the embedding of N into M.

Proof. 1. Note that the Haar measure p is smooth when restricted to L, and
denote by i : L — V the standard embedding. Since i is linear, we can use
Corollary 10.12(2), we thus know that W F(i.(p)) C i.(WF(u)). Since WF(u)
is smooth on L, we have that i, (W F(u)) = i.(L x {0}), which is exactly all
those (v, w) such that v € Im(7) = L and (di)}(w) = w o4 = 0, meaning that

i(WF(p) ={(v,w) eVeV*:velL, (wzx)=0Veec Ly =CNy.

We claim that WF(i,(u)) = CNM, this amounts to showing that i.(u)
is not smooth at (x,w) for all (v,w) € L x L*. Take (z,w) € L x L+ and
p € C°(V) such that p(x) # 0, using Exercise 9.11 (p is a submersion) we see
that

Flpiv(p)) = Flix(pip)) = 0" Flpy ) = p* (F(py )+ F (1) = p*(F(py,)%d0) = p"(F(p),))-

Since py, is smooth and compactly supported, its Fourier transform is a Schwartz
function, and p*(F(p|,)) = F(p|,) o p, which is constant on the Lt axis in
V ~ L x L*. In particular, a*F(p|, ) op ¢ S¥(U x F) for all neighborhoods U
of w.

2. Assume M and N are smooth manifolds. Let x € N and take a
neighborhood z € U, ~ R™ and a diffeomorphism ¢ : U, — R™ such that
(U N N) =~ R™ C R™. Here, we arrive at the same situation as in 1. as a
smooth measure is locally just a smooth function multiplied by a Haar measure,
and we know that W F(p.i.(n)) = U, Nsupp(i.(n)) x (R")+ C ONE. . Now,
by Hormander’s theorem the wave front set is invariant to diffeomorphisms, i.e
WF(ix(n)) = WF(p«i«(n)), and since smoothness is a local property, we get
that WF(i.(n)) = supp(i(n)) x Nt C T*M. O
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