1 Lesson 2, 27/10/13

We want to analyze the space of distributions - C>°. This space turns out to
be not metrizable. However, we can add distributions and multiply them by a
scalar, and we can also define topology without problems. This suggest using
topological linear spaces.

1.1 Topological linear spaces

A topological linear space is a linear space with a topology, s.t. multiplication by
scalar and vectors addition is continuous. This demand limits the topology we
can have. For example, giving the space discrete topology will force a discrete
topology on the field.

Since addition of points is continuous, translation is also continuous. This makes
all the points in the space ”similar” — the open sets of every point x are the
same as those around 0.

We'd like our spaces to be “nice”. Specifically: Hausdorff and of finite di-
mension. We’d also like local convexity: there is a basis for the topology of
convex sets.

Exercise 1.1 Find a topological linear space which is not locally convex (not
necessarily of finite dimension.

Exercise 1.2 Let V be a locally convex linear topological space. Prove that V
is Hausdor(f iff {0} is a closed set. In this case we say the space is ”separated”.

Exercise 1.3 Show that any finite dimensional Hausdorff locally conver space
is isomorphic to F™. This is also true for linear topological spaces that are not
locally convex, but the proof is harder.

We'll return to local convexity later in this class.

1.2 Defining completeness

A problem arises when defining completeness. A usual definition of completeness
is by convergence of Cauchy series. Even though we don’t have a metric on V,
we can define Cauchy series:

A series {z,} C V is called a Cauchy series, if for every neighbourhood U of
0 € V there is an index ng € N such that m,n > ng implies z,, — x,, € U.
However, when our space doesn’t have a metric, its sequential closure won’t al-
ways coincide with the ”expected” closure. Thus, when we won’t have a metric
on our space, we’ll define completeness of a space without using sequences,! but
using the property: A complete space can’t be embedded as a dense set
in another complete space (remember that a space is always a dense subset
of its completion).

LOther options are definitions using filters or nets = uncountable sequences.



So:

A topological linear space is called sequentially complete if every Cauchy se-
quence in it converges. However, the space is called complete if for every em-
bedding ¢ : V' — W which is an isomorphism V 2 ¢(V), the image ¢(V) is
closed.

Exercise 1.4 Find a sequentially complete space which is not complete (We’ll
later give a complicated example).

A complete space V will be called a completion of V if there is and embedding
i : V. — V, where i(V) is dense in V and is isomorphic to V. A different
definition can be made using a universal quality:

An embedding i : V — V is a completion of V if:

(a) V is complete.

(b) For every map ¢ : V — W where W is complete, there is a unique map
éw : V. — W, such that ¢ = ¢y o i.

Exercise 1.5 *Show these two definitions of completeness are equivalent.

Our definition of completion — using the desired property — saves us dealing with
nets or filters. However, to show that such completion exists will require using
them. Proving it existence was left as an exercise.

Exercise 1.6 *Show that every linear topological Hausdorff space has a com-
pletion.

1.3 Locally convex spaces

In a locally convex space we have a basis to the topology of convex sets. We can
assume all the sets are symmetric, using symmetrization (A — conv(—AJ A))
+ scaling + bounding between two symmetric sets.

However, there is a bijection between semi-norms of the space and symmetric
convex sets. Given a semi-norm, we take its unit ball (it’s symmetric by absolute
homogeneity and convex by the triangle inequality). Given a convex symmetric
set €' C V, we’ll define a semi-norm: ng(v) :=inf{a >0 £ € C}.

Note: A set C C V' is absorbent Vo € V I\ : ¥ € C. i.e., multiplying C' by
a big enough scalar can reach every point in the space. For absorbent C' C V'
we’ll have ne(v) < oo for all v € V' directly from definition. Every open set is
absorbent, and thus we can define our norm for all the sets in the basis.

Note2: The semi-norm we defined isn’t a norm. Specifically, if C contains the
subspace span{v}, we'll get nc(v) = 0 (even though v # 0). However, given the
basis T for our topology, we can not get nc(v) = 0 for all the sets C' € T Since

in this case we’d have span{v} C [\ C, contradicting the Hausdorff assump-
CeT
tion (in this case every 2 points in span{v} are in the same open set created by



nao.
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So, in a locally convex space there is a basis to the topology using a collection
of sets that defines a system of semi-norms. Some authors use this statement
as the definitions of locally convex space.
Every normed space is (Hausdorff and) locally convex, since the open balls in
the space are convex, and they give a basis for the topology. We also know
that every normed space is metric. However, metrizability doesn’t force local
convexity and vice versa. We deal with metrizable locally convex space in the
next section.

1.4 Fréchet spaces

Reminder: A Banach space is a normed space, which is complete with respect
to its norm. A Hilbert space is a inner product space, which is complete with
respect to its inner product.

Hahn-Banach theorem: Let V be a linear space over a field F, and let
f W — F be a continuous function on a closed domain W C V. Then we can
extend f to all of V' while having sup{|f(z)| | x € W} = sup{|f(z)| | x € V}.

Exercise 1.7 Let V be a locally convex space, and let f : W — F be a contin-
wous function from a closed W C V. Show that f can be lifted.

The following statement is equivalent to Hahn-Banach:
For every embedding ¢ : V' — W which is an isomorphism V 2 ¢(V), the dual
map ¢* : V* — W* is onto.

Definition: A Fréchet space is a locally convex complete metrizable space.

Exercise 1.8 Show that for a locally convex complete space V the following
conditions are equivalent:

e Vis metrizable (the topology can be defined by a metric).
o Vs first-countable (the first axiom of countability applies to V).

o There is a collection of semi-norms {n; tnen that defines the basis {B(n;,€) | € €
R*,i € N} for the norm over V.

Exercise 1.9 Let V be a locally convex metrizable space. Prove V is complete
(and it’s a Fréchet space) iff it’s sequentially complete.

Let V be a locally convex space. A completion of V using some semi-norm n will
eliminate all the vectors in kern. When V is a Fréchet space, we can assume the
sequence of norms is ascending (=the unit balls get smaller), and the topology



gets finer. 2

Fréchet spaces have several more nice qualities:

Every surjective map ¢ : V; — V5 between Fréchet spaces is an open map (it’s
actually enough that V5 is a Fréchet space and V; is complete).

Defining K := ker¢, it can be shown that the quotient V/ j- is a Fréchet space,
and factor ¢ to the composition Vi — V/ - — Va. The map Vi /¢ — Vo will
be an isomorphism.

In addition, every closed map ¢ : Vi — Vo (Im¢ = Img) between Fréchet spaces
can be similarly decomposed. First by showing Im(¢) is a Fréchet space, and
then decomposing Vi — Im(¢) — Va. In this case, there is an isomorphism
between Vi /g and Im(¢).

1.5 Sequences spaces
Reminder: [? is the space of all sequences {x, }nen over a field F, such that

o0
> Jzn|P < co. It is a Banach space. For p = 2, it is also a Hilbert space.
n=1

Let V be the space of all the sequences which decays to zero faster than any
polynomial, i.e., Vn € N, lim z; -¢" = 0.

71— 00
One norm over such sequences can be ||{x;}||, = sup{x; - i"} = ||a; - i"||1e.
ieN

In that norm we can easily see that every Cauchy sequence converges. Thus,
this is an example for a Fréchet space which is not a Banach space.

The dual space V* will be {{z;};,cy | In,c: z; <c-i"}. This is a union of
Banach spaces, as opposed to the intersection we had when defining the com-
pletion of a Fréchet space.  In both these cases, our space is the completion of
a sense subspace - the set of all sequences with compact support.

Actually, every separable space can be composed as a sequence space. The
elements of the space will correspond to infinite sequences. The sequences with
compact support will correspond to the elements in the countable dense subset
of the space.

1.6 Direct limits

Say we have a sequence {V,} of "nice” space, with embeddings V;, — Vj,41.

Their direct limit is just Voo := |J V,, as a linear space. The topology is
neN
defined to get a locally convex space: A convex subset U C V., is open iff for

all n, UV, is open as a subset of V,.
This is not a Fréchet space (it is not metrizable), but it is locally convex, and
therefore can be defined by semi-norms

2In category theory terms: the completion will be the inverse limit of the Banach spaces
defined by any finite number of norms.
3There we had an inverse limit of Banach spaces, and here - a direct limit.



There are many connections between sequences spaces and function spaces.

Continuous functions on the unit circle correspond to sequences of their Fourier
coefficients. In particular, smooth functions on the unit circle, C*°(S*), corre-
spond to sequences {z;};cn decaying faster than all polynomials. Define the
norms ||f|l; = ||f@||z~ over the functions, and the semi-norms ||z;||; :=
|| - j%|[;= over the functions. The spaces with their i-th semi-norms aren’t
equivalent, but there is an equivalence in the norm we get taking the limit.

Exercise 1.10 Prove that equivalence, thus showing these are Fréchet spaces.

In C°°(R), it’s hard to define a norm (like the expected supremum norm) since

the functions don’t necessarily have compact support. By selecting a compact

subset U C R we can define a system of semi-norms: ng x(f) := sup{f*(z)}
zeU

(these are not norms. We can have f|y = 0 for non-zero f). Specifically, for
a sequence U, := [-n,n] C R we’ll get an ascending sequence of semi-norms.
Thus, C*°(R) is a Fréchet space — locally convex and first countable.

A similar argument can show C°°(R") is a Fréchet space, and actually also
C>(M) for a manifold M. In these cases we’'ll take the supremum over all the
possible derivatives.

The space C%(R), where K is a compact set, has the induced topology from
C°(R). Taking the union of the ascending chain of Fréchet spaces O (R) C
Oy g (R) C ... will give CF(R) = ligl CZ,, ) (R) as a direct limit for every such
K, and therefore C°(R) = li_1>n C2,, n)(R). However, this is not a Fréchet space

(it’s a direct limit and not an inverse limit).
So we only get a topology for C7°(R) (and not a metric). An basic open set will

be Ute, k) = 2 {f € C®(R) | supp f C [-n,n], f) < e}
neN

The continuity of the generalized functions will be defined with regards to this
topology.



