
1 Lesson 1, 22/10/13

1.1 Motivation

One of the basic examples for a generalized function is ”Dirac Delta function”.

While it’s not a function, δt can be viewed as δt(x) :=

{
∞ x = t

0 x 6= t
, and some-

how also having the quality
∞∫

−∞
δt(x)dx = 1.

Here are several possible motivations to define generalized functions:

• Let’s say we want to define a standard basis for the space of continuous real

functions. A possible basis can be {ft(x)}t∈R where ft(x) :=

{
1 x = t

0 x 6= t
.

However, the functions in L1 are actually equivalence classes of functions,

up to differences in a null set, and for every t ∈ R we have
∞∫

−∞
ft(x)dx = 0.

Thus, all the functions in that basis are actually the zero function, in L1

perspective.
A possible solution is switching to a basis of generalized functions, and
use the delta functions {δt(x)}t∈R as a basis.

• Sometimes the solution for a differential equation (or even just the deriva-
tive of a function) is not a function, but only a generalized function,. Using
generalized functions, we can formulate solutions in such cases.

• From physics: Dirac Delta function can describe the density of a point
mass, which is an infinitely small body.

1.2 Basic definitions

Let f ∈ C∞
c (R) (i.e., f is a smooth real function, with compact support). Since

by its definition δ0(x) = 0 for all x 6= 0, we can expect to have:

∞∫

−∞

δ0(x) ∙ f(x)dx =

∞∫

−∞

δ0(x) ∙ f(0)dx = f(0)

∞∫

−∞

δ0(x) = f(0)

This rationale motivates the following definition.
Definition: A generalized function is a continuous linear functional ξ : C∞

c (R) →
R.

Given a real function f ∈ L1
LOC (i.e. f is locally L1) we’ll define ξf : C∞

c (R) → R

to be the generalized function ξf (φ) :=
∞∫

−∞
f(x) ∙ φ(x)dx. We’ll sometimes use
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the notation 〈ξ, φ〉 instead of ξ(φ).

The space of generalized real functions is noted C−∞
c (R) (and C(R) ⊂ L1

LOC ⊂
C−∞

c (R)).

Exercise 1.1 Prove that there exists a function f ∈ C∞
c (R) which isn’t the zero

function.

We want the generalized functions to act nicely under convergence. Let {fn}n∈N

be a sequence of functions converging uniformly to f , when f ∈ C∞
c (R) and

fn ∈ C∞
c (R) for all n. We say this sequence converges in C∞

c (R) if:

1. There is a compact U ⊂ R for which supp(f) ∪
⋃

n∈N
supp(fn) ⊆ U .

2. For every order k ∈ N, the derivatives {f (k)
n } converge uniformly to the

derivative f (k).

We say the sequence {fn}n∈N converges weakly to f if for every F ∈ C∞
c (R) we

have: lim
n→∞

∞∫

−∞
F (x) ∙ fn(x)dx =

∞∫

−∞
F (x) ∙ f(x)dx .

The space of generalized functions is the completion of C∞
c (R) with respect to

this weak convergence.

Exercise 1.2 Find a sequence of functions {fn}n∈Z (when fn ∈ C∞
c (R) for all

n) that weakly converges to Dirac Delta function.

1.3 Derivatives of generalized functions

Let f ∈ C∞
c (R). We defined ξf (φ) :=

∞∫

−∞
f(x) ∙ φ(x)dx, and thus ξf ′(φ) =

∞∫

−∞
f ′(x) ∙φ(x)dx. Using integration by parts we’ll get ξf (φ) = f(x) ∙φ(x)|∞−∞−

∞∫

−∞
f(x) ∙ φ′(x)dx. However, since φ and f has compact support, we know that

f(x) ∙ φ(x)|∞−∞ = 0. Thus, we’ll define ξ′(φ) := −ξ(φ′).

For example, the derivative of δ0(x) can be badly described as δ′0(x) :=






∞ x → 0−

−∞ x → 0+

0 otherwise

.

When δ′0(x) is applied to some φ ∈ C∞
c (R), we’ll get δ′0(φ) = −φ′(0).

Exercise 1.3 Find a function F ∈ L1
LOC for which F ′ = δ.

2



1.4 The support of generalized functions

We cannot evaluate a generalized function at a point. Therefore, we cannot
just define its support by supp(ξ) := {x ∈ R | f(x) 6= 0}. However, if for some
compact U ⊂ R we have ∀f ∈ C∞

c (U), ξ(f) = 0 , then evidently ξ|U ≡ 0 (The
notation f ∈ C∞

c (U) means supp(f) ⊂ S ⊂ U for a compact S).
As another example for a generalized function’s support: it’s reasonable to ex-
pect supp(δt) = {t}.

So, we’d like to define supp(ξ) to be the union over all compact U ⊂ R such
that ∀f ∈ C∞

c (U), ξ(f) = 0. Help us do so, by solving this exercise:

Exercise* 1.4

1. Let U1, U2 be open subsets of R. Show that if ξ|U1 ≡ ξ|U2 ≡ 0 then
ξ|U1∪U2 ≡ 0.

2. Show this also holds for any union of such compact {Ui}i∈I .

Note: The support of δ′0 is just {0} (we didn’t prove that). And yet, given
some f ∈ C∞

c (R) for which f(0) = 0, f ′(0) 6= 0, we’ll have ξδ′(f) 6= 0. In other
words, having f(0)=0 isn’t enough to get 〈δ0, f〉 = 0, and we’ll actually need f
to be zero in some neighbourhood of 0.

Exercise* 1.5 Find all the generalized functions ξ ∈ C−∞
c (R) for which supp(ξ) =

{0}.

1.5 Products and convolutions of generalized functions

Let f ∈ C∞
c (R), ξ ∈ C−∞

c (R). We’d like to have (f ∙ ξ)(φ) =
∞∫

−∞
ξ(x) ∙ f(x) ∙

φ(x)dx. Thus, we’ll define (f ∙ ξ)(φ) := ξ(f ∙ φ).
Actually, even though we can multiply every such f and φ, the product of two
generalized functions will not always be defined. Notice that indeed in some
topologies the product of two Cauchy sequences isn’t always a Cauchy sequence.

Recall that given two functions f, g, their convolution is the function f ∗g(x) :=
∞∫

−∞
f(t) ∙ g(x − t)dt. The convolution of two smooth functions will always be

smooth. In addition, if f, g have compact support, than so will f ∗ g (actually,
supp f ∗ g is the Minkowski sum of supp f and supp g).

Given f, φ ∈ C∞
c (R) we can write f ∗ φ(x) = ξf (φ̃x), where φ̃x(t) := φ(x − t).

This gives the motivation to define the convolution ξ ∗ φ to be the function
ξ ∗ φ(x) = ξ(φ̃x) (notice: the convolution between a function and a generalized
function is a function – not a generalized function).

Exercise 1.6 Show that for φ ∈ C∞
c (R) we get that ξ ∗φ is a smooth function.
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Next is the definition for convolution of two generalized functions. We won’t
define it for every couple of generalized functions - only for those with compact
support.
For ξf , ξg ∈ C−∞

c (R) we’d like to have:

(ξf ∗ ξg)(φ) =

∞∫

x=−∞

(ξf ∗ ξg)(x) ∙φ(x)dx =

∞∫

x=−∞

∞∫

t=−∞

ξf (t) ∙ ξg(x− t) ∙φ(x)dtdx

We want to express the product as an action of a general function on a (function
to generalized function) convolution. Rearranging the expression we have:

(ξf ∗ ξg)(φ) =

∞∫

t=−∞

ξf (t)

∞∫

x=−∞

ξg(x − t) ∙ φ(x)dxdt

In a ”usual” convolution the arguments of the multiplied functions in the integral

sum up to the convolution’s argument (e.g., f ∗ g(x) :=
∞∫

−∞
f(t) ∙ g(x− t)dt, and

x = t + (x − t)). In our case, we’ll denote φ̄(x) := φ(−x), and write:

∞∫

t=−∞

ξf (t)

∞∫

x=−∞

ξg(x− t) ∙ φ̄(−x)dxdt =

∞∫

t=−∞

ξf (t) ∙ (ξg ∗ φ̄)(−t)dt = ξf (ξg ∗ φ̄)

So it’s settled: we’ll define (ξf ∗ ξg)(φ) := ξf ((ξg ∗ φ̄))

However, some formal justification is required – via exercises.
Given a compact U ⊂ R, we’ll say ρ is a cut off function of U if ρ|U ≡ 0, ρ|V ≡ 1,
when V is the complement in R of some neighbourhood of U (in an earlier
exercise we showed such functions exist). Thus, given some ξ ∈ C−∞

c (R) with
supp(ξ) ⊂ U we will have ξ(φ) = ξ(δU ∙ φ). This can be used as a definition for
ξ’s action when we don’t have a compact support.

Exercise* 1.7 Show that (ξ ∗ η)′ = ξ′ ∗ η = ξ ∗ η′.
To do that, show that δ ∗ η = η, and that δ′ ∗ η = η′. Then show we have
associativity: δ′ ∗ (ξ ∗ η) = (δ′ ∗ ξ) ∗ η.

Exercise 1.8 In an exercise above we showed: if φ ∈ C∞
c (R) then the convo-

lution ξ ∗ φ is smooth. Show that if φ is smooth, and supp(ξ) is compact, then
ξ ∗ φ will still be smooth.

1.6 Generalized functions and differential operators

A differential equation can be described by the equality ”Af = g”, where A is
a differential operator.
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Let’s try to solve such an equation, when we assume A is a linear differential
operator, and is invariant under translations (i.e., we’ll have Af̄ = Af , where
φ̄ is any fixed translation of φ). An example for such operator is a differential
operators with fixed coefficients (e.g., Af := f ′′ + 5f ′ + 6f).

A simple case is finding G for which the equation AG = δ0 holds. Given
such G, and using A’s invariance under translations, we get that AGx = δx, for
Gx(t) := G(t − x).
From that we get somehow that A(f ∗h) = (Af)∗h holds for any two functions
f, h. Specifically: A(G ∗ g) = AG ∗ g = δ0 ∗ g = g.
And so, we can find a general solution f for Af = g by solving only one simpler
case AG = δ0. The solution G is called Green’s function of the operator.

Exercise 1.9 Let A be a differential operator with fixed coefficients. Choose
any solution for the equation AG = δ0, and describe the conditions G have to
meet without using generalized functions.

Exercise 1.10 Without using generalized functions, please explain the equation
A(G ∗ g) = g we got for the solution G.

Exercise 1.11 Solve the equation Δf = δ0 (where Δ is the Laplacian operator).

1.7 Regularization of generalized functions

Let {ξλ}λ∈C be a family of generalized functions. We say the family is analytic
if 〈ξλ, f〉 is analytic for every f ∈ C∞

c (R).

Example: We denote xλ
+ :=

{
xλ x > 0

0 x ≤ 0
, and define the family by ξλ := xλ

+.

The behaviour of the function changes as λ changes: When Re(λ) > 0 we’ll
have a nice continuous function; If Re(λ) = 0 We’ll get a step function; And
for Re(λ) ∈ (−1, 0), xλ

+ will not be bounded. We’d like to extend the definition
analytically for Re(λ) < −1.
A derivation of xλ

+ (both as a complex function or as defined for a generalized
function) gives ξ′λ = λ ∙ ξλ−1. This is a functional equation, that enables us to

define ξλ−1 := ξ′
λ

λ , and thus extend ξλ to every λ ∈ C. This extension isn’t
analytic, but is meromorphic: it has a pole in λ = 0, and by the extension
formula, in λ = −1,−2, ....

This is an example for a meromorphic family of generalized functions. Let’s
give a formal definition. Our {ξλ}λ∈C has a set of poles {λn} (poles are al-
ways discrete), whose respective orders are denoted {dn}. The family will be
called meromorphic if every pole λi has a neighbourhood Ui, such that 〈ξλ, f〉
is analytic for every f ∈ C∞

c (R) and λ ∈ Ui.

Exercise 1.12 For the above example ξλ := xλ
+, find the order and the leading

coefficient for every pole.
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Here’s the general technique we’ll use:

We write 〈ξλ, f〉 =
1∫

0

xλ ∙f(x)dx+
∞∫

1

xλ ∙f(x)dx. The second integral converges.

In order to evaluate to first, we’ll express the Taylor series of f up to the N-th
order:

f =
N∑

i=0

f (i)(x)
i!

∙ xi + g(x)

Where g(x) is the remainder.
When Re(λ) is big enough, we can integrate f term-by-term, and get:

1∫

0

xλ∙f(x)dx =

1∫

0

xλ∙g(x)dx+
N∑

i=0

ai

1∫

0

xλ+idx =

1∫

0

xλ∙g(x)dx+
N∑

i=0

ai∙
xλ+i+1

λ + i + 1

∣
∣
∣
∣

1

0

Thus, we’ll define to be
1∫

0

xλ+idx = 1
λ+i+1 everywhere. This will give us an

expression for 〈ξλ, f〉 for every value of λ, which will coincide with with the
analytic continuation of ξλ.

Another example: For a given p ∈ C[x1, ...xn], we denote similarly p+(x1, ...xn)λ :={
p(x1, ...xn)λ x > 0

0 x ≤ 0
. The problem of finding the meromorphic continuation

for a general polynomial was open for a while. It was solved by (Bernstein by)
defining a differential operator Dpλ

+ := b(λ) ∙pλ−1
+ , where b(λ) was a polynomial

pointing on the location of the poles.

Exercise 1.13 Solve the problem of finding an analytic continuation for p+(x1, ...xn)λ

in the case p(x, y, z) := x2 + y2 + z2 − a.

Exercise* 1.14 Solve the problem of finding an analytic continuation for p+(x1, ...xn)λ

in the case p(x, y, z) := x2 + y2 − z2.
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2 Lesson 2, 27/10/13

We want to analyze the space of distributions. This space turns out to be
not metrizable. However, we can add distributions and multiply them by a
scalar, and we can also define topology without problems. This suggest using
topological linear spaces.

2.1 Topological linear spaces

A topological linear space is a linear space with a topology, s.t. multiplication by
scalar and vectors addition is continuous. This demand limits the topology we
can have. For example, giving the space discrete topology will force a discrete
topology on the field.
Since addition of points is continuous, translation is also continuous. This makes
all the points in the space ”similar” – the open sets of every point x are the
same as those around 0.

We’d like our spaces to be ”nice”. Specifically: Hausdorff and of finite di-
mension. We’d also like local convexity: there is a basis for the topology of
convex sets.

Exercise 2.1 Find a topological linear space which is not locally convex (not
necessarily of finite dimension.

Exercise 2.2 Let V be a locally convex linear topological space. Prove that V
is Hausdorff iff {0} is a closed set. In this case we say the space is ”separated”.

Exercise 2.3 Show that any finite dimensional Hausdorff locally convex space
is isomorphic to Fn. This is also true for linear topological spaces that are not
locally convex, but the proof is harder.

We’ll return to local convexity later in this class.

2.2 Defining completeness

A problem arises when defining completeness. A usual definition of completeness
is by convergence of Cauchy series. Even though we don’t have a metric on V ,
we can define Cauchy series:
A series {xn} ⊂ V is called a Cauchy series, if for every neighbourhood U of
0 ∈ V there is an index n0 ∈ N such that m,n > n0 implies xn − xm ∈ U .
However, when our space doesn’t have a metric, its sequential closure won’t al-
ways coincide with the ”expected” closure. Thus, when we won’t have a metric
on our space, we’ll define completeness of a space without using sequences,1 but
using the property: A complete space can’t be embedded as a dense set
in another complete space (remember that a space is always a dense subset
of its completion).

1Other options are definitions using filters or nets = uncountable sequences.
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So:
A topological linear space is called sequentially complete if every Cauchy se-
quence in it converges. However, the space is called complete if for every em-
bedding φ : V → W which is an isomorphism V ∼= φ(V ), the image φ(V ) is
closed.

Exercise 2.4 Find a sequentially complete space which is not complete (We’ll
later give a complicated example).

A space V̄ will be called a completion of V if there is and embedding i : V → V̄ ,
where i(V ) is dense in V̄ and is isomorphic to V . A different definition can be
made using a universal quality:
An embedding i : V → V̄ is a completion of V if:
(a) V̄ is complete.
(b) For every map ψ : V → W where W is complete, there is a unique map
φW : V̄ → W , such that ψ ≡ φW ◦ i.

Exercise* 2.5 Show these two definitions of completeness are equivalent.

Our definition of completion – using the desired property – saves us dealing with
nets or filters. However, to show that such completion exists will require using
them. Proving it existence was left as an exercise.

Exercise* 2.6 Show that every linear topological Hausdorff space has a com-
pletion.

2.3 Locally convex spaces

In a locally convex space we have a basis to the topology of convex sets. We can
assume all the sets are symmetric, using symmetrization (A 7→ conv(−A

⋃
A))

+ scaling + bounding between two symmetric sets.
However, there is a bijection between semi-norms of the space and symmetric
convex sets. Given a semi-norm, we take its unit ball (it’s symmetric by absolute
homogeneity and convex by the triangle inequality). Given a convex symmetric
set C ⊆ V , we’ll define a semi-norm: nC(v) := inf{α > 0 | v

α ∈ C}.

Note: A set C ⊆ V is absorbent ∀x ∈ V ∃λ : x
λ ∈ C. i.e., multiplying C by

a big enough scalar can reach every point in the space. For absorbent C ⊆ V
we’ll have nC(v) < ∞ for all v ∈ V directly from definition. Every open set is
absorbent, and thus we can define our norm for all the sets in the basis.

Note2: The semi-norm we defined isn’t a norm. Specifically, if C contains the
subspace span{v}, we’ll get nC(v) = 0 (even though v 6= 0). However, given
the basis T for our topology, we can not get nC(v) = 0 for all the sets C ∈ T .
Since in this case we’d have span{v} ⊆

⋂

C∈T

C, contradicting the Hausdorff as-

sumption.
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So, in a locally convex space there is a basis to the topology using a collection
of sets that defines a system of semi-norms. Some authors use this statement
as the definitions of locally convex space.
Every normed space is (Hausdorff and) locally convex, since the open balls in
the space are convex, and they give a basis for the topology. We also know
that every normed space is metric. However, metrizability doesn’t force local
convexity and vice versa. We deal with metrizable locally convex space in the
next section.

2.4 Fréchet spaces

Reminder: A Banach space is a normed space, which is complete with respect
to its norm. A Hilbert space is a inner product space, which is complete with
respect to its inner product.

Hahn-Banach theorem: Let V be a linear space over a field F , and let
f : W → F be a continuous function on a closed domain W ⊆ V . Then we can
extend f to all of V while having sup{|f(x)| | x ∈ W} = sup{|f(x)| | x ∈ V }.

Exercise 2.7 Let V be a locally convex space, and let f : W → F be a contin-
uous function from a closed W ⊆ V . Show that f can be lifted.

The following statement is equivalent to Hahn-Banach:
For every embedding φ : V → W which is an isomorphism V ∼= φ(V ), the dual
map φ∗ : V ∗ → W ∗ is onto.

Definition: A Fréchet space is a locally convex complete metrizable space.

Exercise 2.8 Show that for a locally convex complete space V the following
conditions are equivalent:

• V is metrizable.

• V is first-countable.

• There is a collection of semi-norms {ni}n∈N that defines the basis {B(ni, ε) | ε ∈
R+, i ∈ N} for the norm over V.

Exercise 2.9 Let V be a locally convex metrizable space. Prove V is complete
(and it’s a Fréchet space) iff it’s sequentially complete.

Let V be a locally convex space. A completion of V using some semi-norm n will
eliminate all the vectors in ker n. When V is a Fréchet space, we can assume the
sequence of norms is ascending (=the unit balls get smaller), and the topology
gets finer. 2

2In category theory terms: the completion will be the inverse limit of the Banach spaces
defined by any finite number of norms.
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Fréchet spaces have several more nice qualities:
Every surjective map φ : V1 → V2 between Fréchet spaces is an open map (it’s
actually enough that V2 is a Fréchet space and V1 is complete).
Defining K := kerφ, it can be shown that the quotient V/K is a Fréchet space,
and factor φ to the composition V → V/K → V2. The map V/K → V2 will be
an isomorphism.
In addition, every closed map φ : V1 → V2 between Fréchet spaces can be
similarly decomposed. First by showing Im(φ) is a Fréchet space, and then
decomposing V1 → Im(φ) → V2.

2.5 Sequences spaces

Reminder: lp is the space of all sequences {xn}n∈N over a field F, such that
∞∑

n=1
|xn|p < ∞. It is a Banach space. For p = 2, it is also a Hilbert space.

Let V be the space of all the sequences which decays to zero faster than any
polynomial, i.e., ∀n ∈ N, lim

i→∞
xi ∙ in = 0.

One norm over such sequences can be ||{xi}||n = sup
i∈N

{xi ∙ in} = ||xi ∙ in||l∞ .

In that norm we can easily see that every Cauchy sequence converges. Thus,
this is an example for a Fréchet space which is not a Banach space.
The dual space V ∗ will be

{
{xi}i∈N | ∃n, c : xi < c ∙ in

}
. This is a union of

Banach spaces, as opposed to the intersection we had when defining the com-
pletion of a Fréchet space. 3 In both these cases, our space is the completion of
a sense subspace - the set of all sequences with compact support.
Actually, every separable space can be composed as a sequence space. The
elements of the space will correspond to infinite sequences. The sequences with
compact support will correspond to the elements in the countable dense subset
of the space.

2.6 Direct limits

Say we have a sequence {Vn} of ”nice” space, with embeddings Vn → Vn+1.
Their direct limit is just V∞ :=

⋃

n∈N
Vn as a linear space. The topology is

defined to get a locally convex space: A convex subset U ⊆ V∞ is open iff for
all n, U

⋂
Vn is open as a subset of Vn.

There are many connections between sequences spaces and function spaces.
Continuous functions on the unit circle correspond to sequences of their Fourier
coefficients. In particular, smooth functions on the unit circle, C∞(S1), corre-
spond to sequences {xi}i∈N decaying faster than all polynomials. Define the
norms ||f ||i = ||f (i)||L∞ over the functions, and the semi-norms ||xj ||i :=

3There we had an inverse limit of Banach spaces, and here - a direct limit.
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||xj ∙ ji||l∞ over the functions. The spaces with their i-th semi-norms aren’t
equivalent, but there is an equivalence in the norm we get taking the limit.

Exercise 2.10 Prove that equivalence, thus showing these are Fréchet spaces.

In C∞(R), it’s hard to define a norm (like the expected supremum norm) since
the functions don’t necessarily have compact support. By selecting a compact
subset U ⊂ R we can define a system of semi-norms: nU,k(f) := sup

x∈U
{f (k)(x)}

(these are not norms. We can have f |U ≡ 0 for non-zero f). Specifically, for
a sequence Un := [−n, n] ⊂ R we’ll get an ascending sequence of semi-norms.
Thus, C∞(R) is a Fréchet space – locally convex and first countable.
A similar argument can show C∞(Rn) is a Fréchet space, and actually also
C∞(M) for a manifold M. In these cases we’ll take the supremum over all the
possible derivatives.

The space C∞
K (R) has the induced topology from C∞(R). Taking the union of

the ascending chain C∞
[−1,1](R) ⊂ C∞

[−2,2](R) ⊂ ... will give C∞
K (R) = lim

→
C∞

[−n,n](R)

as a direct limit. However, this is not a Fréchet space (it’s a direct limit and
not an inverse limit).
So we only get a topology for C∞

K (R) (and not a metric). An basic open set will
be U(εn,kn) :=

∑

n∈N
{f ∈ C∞(R) | supp f ⊆ [−n, n], f (kn) < εn}

The continuity of the generalized functions will be defined with regards to this
topology.

3 Lesson 6, 27/11/13

3.1 leftover from last lesson: p-adic expansions

Given q ∈ Q – let’s write its p-adic expansion. If q ∈ Z, that’s just writing its
p-base expansion.
Let x := m

n be some rational number, with (n,m) = 1. We’ll describe the
expansion when p - m (that’s when x ∈ Zp ∩ Q). In this case the will be no
digits to the right of the (p-adic) point. On the general case we can divide x by
pk for some k, and move the point accordingly.
We can’t take remainder of x modulo p, as with integers. Instead, we can
calculate the fraction xm

n in Fpn for n ∈ N. Thus, the expansions of in Qp is
calculated inductively:

• Write the digit x0 := [m
n ] ∈ Fp.

• The nominator of the difference m
n − x0 = m−n∙x0

n is divisible by p. Rede-
fine our fraction to be x := 1

p ∙ (m
n − x0), and continue inductively.

Example: The expansion of x := 1
3 in Q5. The first digit will be x0 := [ 13 ] =

2 ∈ Fp. Next, we calculate 1
5 ∙ ( 1

3 − 2) = −1
3 . In F5 the fraction is −1

3 = 3, and
that’s the digit is x1 = 3. The next stages are:
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1
5 ∙ ( 1

3 − 3) = −2
3 =⇒ x2 = 1,

1
5 ∙ (−2

3 − 1) = −1
3 =⇒ x3 = 3.

We get: ( 1
3 )5 = ...13132.0.

The result is equivalent to ( 1
3 )5 = 2 + 3 ∙ 5 + 1 ∙ 25 + 3 ∙ 125 + ....

Indeed, 2 ≡ 1
3 in Z/5Z

, 2 + 3 ∙ 5 = 17 ≡ 1
3 in Z/25Z

, 2 + 3 ∙ 5 + 1 ∙ 25 = 42 ≡ 1
3

in Z/125Z
, etc.

3.2 Distributions over the p-adics

Let X be a l-space. We want to define smooth functions on this space, f ∈
C∞(X). We don’t have a notion of derivatives (even though X is a complete
space). For example, for X = Qp the usual derivative is lim

t→0

f(x+t)−f(x)
t – that’s

a quotient of a complex number by an element in X = Qp, which we didn’t
define.
We’ll use a different approach. A function f from X to the field will be called
a smooth function if for every point x ∈ X there is an open neighbourhood U
such that the restriction f |U is constant.

Exercise 3.1 Let X be an l-space. Show that the smooth functions C∞(X)
separates the points in X.

Assuming this exercise, the Stone-Weierstrass theorem implies that C∞(X) is
dense in C(X). We’ll denote C∞

C (X) ⊂ C∞(X) the set of smooth functions of
compact support. These functions are called Schwartz functions, and we’ll also
denote them S(X).
Remark: Conversely, in Rn, the Schwartz functions are the functions whose
derivatives decrease faster than every polynomial, and C∞

C (Rn) ⊂ S(X) ⊂
C∞(Rn). We’ll define them in the next lectures.

We’ll define the dual space S∗(X) to be all the linear functions f : S(X) → F .
Usually we’d also demand the functions to be continuous, but here we don’t,
and adding that demand won’t change a lot.4 An intuition is that S(X) can
be defined as a direct limit – and its induced topology as such will be ”every
subset in S(X) is open”. Thus, every function in S∗(X) will be continuous, and
adding that demand won’t change anything.
As oppose to S(X), there is a reasonable topology over S∗(X). That is the
weak topology by which f = lim

n→∞
fn if f(φ) = lim

n→∞
fn(φ) for all φ ∈ S(X).

The space S∗(X) is complete with respect to this topology.

4on l-spaces the schwartz functions can be defined as the limit of finite unions over compact
sets. Over R, on the other hand, S(X) is defined as an inverse limit – the limit of finite
intersections
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3.3 Distributions supported on a subspace

Let X be a linear space, and let Z ⊂ X be some closed subspace. Over R we
tried to analyze the distributions on X that are supported on Z (and got some
filtration on X).

Exercise 3.2 Prove that S∗(X) over an l-space is a sheaf. In particular, you
need to prove the partition of unity over local fields. It is easier to prove since
you can refine all open covers.

We say f ∈ S∗(X) is supported on Z ⊂ X, and denote f ∈ S∗
Z(X), if the

restriction f |S(Z) isn’t zero. This restriction gave us an inclusion i : S∗(Z) →
S∗

Z(X) over R.

Exercise 3.3 Show that i is an inclusion when X is an l-space. Prove that
by showing the dual map S(X) → S(Z) is onto. The idea is similar to Tietze
extension theorem.

The map i wasn’t onto over R. For example, for Z := {0} ⊂ R, the derivatives
δ
(n)
0 were in S∗

Z(Rn) but not in the image of i.
Claim: Let X be an l-space, and Z ⊂ X a closed subspace. Then the inclusion
i : S∗(Z) → S∗

Z(X) is also onto.
Proof: Let ξ ∈ S∗(X) be a distribution with supp ξ ⊂ Z.
Over R we looked at the quotient S(Z)/S(X\Z)

. Here, need to show there is a

one-to-one map from the quotient to S(Z) . In other words, that the kernel of
the inclusion S(Z) → S(X) are the Schwartz functions over X\Z. This follows
from the Schwartz functions being locally constant, and so every f zeroing on
Z also zeroes on a neighbourhood of Z.
This gave us an exact sequence 0 → S∗(Z) → S∗(X) → S∗(X\Z) → 0.5 In R
we had the sequence 0 → S∗

Z(X) → S∗(X) → S∗(X\Z).

Exercise 3.4 (easy) Let V be a vector space (maybe infinite-dimensional) over
a field K, and L ⊂ V a linear subspace. Show that ∀f ∈ L∗ ∃g ∈ V ∗ : g|L ≡ f .
Use Zorn’s lemma.

So far we showed two advantages of distributions on l-spaces over distributions
on Rn:

1. Every distribution ξ supported on some Z ⊂ X is also supported on a
neighbourhood of Z.

2. The map i : S∗(Z) → S∗
Z(X) is onto.

Both these qualities can be achieved over Rn by switching from C∞
c (R) to real-

valued Schwartz functions. A third advantage is:

5we didn’t show that S(X\Z) ⊂ S(X), but that’s immediate without a topology on the
space.
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Exercise 3.5 Let X,Y be l-spaces. Given f1 ∈ S(X), f2 ∈ S(Y ), consider the
bilinear map φ : S(X) ⊗ S(Y ) → S(X × Y ) where (φ(f))(x, y) := f1(x) ∙ f2(y).
Show that φ is locally constant and an isomorphism of vector spaces (the injective
part might be hard).

Exercise 3.6 The previous exercise gives a map S∗(X)⊗S∗(Y ) → S∗(X×Y ).
Show it’s dense and one-to-one (again, might be hard to show injectivity).

Next, we’ll denote S(X,V ) for l-spaces as the set of Schwartz functions with
values in V (like we did over R).

Exercise 3.7 Show that we still have S(X,V ) ∼= S(X) ⊗ V and S∗(X,V ) ∼=
S∗(X) ⊗ V ∗ when V is finite-dimensional. There first isomorphism should be
easier than the proof over R, but the second should be similar.

From this exercise we’ll get the isomorphisms S(X,S(Y )) ∼= S(X × Y ) and
S∗(X,S(Y )) ∼= S∗(X × Y ). This will help us reduce questions on distributions
on products X × Y to (albeit more complicated) distributions on X.

3.4 Smooth measures

Let F be a local field with charF 6= 0, and let V be a finite-dimensional linear
space over F . We’ll denote h(v) the (one-dimensional) space of Haar measures
over V , and Ωn(V ) the multilinear n-forms over it.6 The density space is again
Dens(V ) := |Ωn(V )|, where | ∙ | is defined by |L| := {f : L∗ → R | f(kv) =
|k| ∙ f(v)}.
Over the p-adics, the absolute value is the ”normalized” one, which we defined
as |k| := μ(kA)

μ(A) . We don’t have the orientations space ori(V ) since we don’t
have sign function over the p-adics.

Exercise 3.8 Show that we still have h(V ) ∼= Dens(V ).

Remark for the exercise: Over Rn we had a standard measure. Over our field
the standard measure is Lebesgue-like, with μ([0, 1]) = 1. We extend it to V
using the product measure μ(X × Y ) := μ(X) × μ(Y ).
The exercise deals with the effect of an endomorphism φ : V → V on the
the measure. Over Rn the measure was multiplied by the determinant of the
Jacobian. Here we’ll have a similar claim, and it’s enough to prove it over the
diagonal matrices and over the upper-triangular matrices.

Next, we define smooth measures. As over R, these will be S(V, h(V )) ∼= S(V )⊗
(V ).

Exercise 3.9 Show that ξ is a smooth measure iff supp ξ is compact, and there
exists an open compact subgroup K ≤ V , such that K.ξ = ξ. Notice the differ-
ence: the Haar measures are invariant under all translations, and here we only
demand invariance under translations by vectors in K.

6This time h(v) ⊂ S∗(V ) is defined over ”smooth” functions.
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That’s another advantage of distributions over local fields: we have a easy con-
dition by which to characterize smooth measures. Later we’ll define generalized
functions over l-spaces.

3.5 Geometry of manifolds

Let X be a topological linear space. Given an open subset U ⊂ X, a collection
of functions O(U) ⊂ C(U,R) is called a sheaf of functions if the following
conditions hold:

1. O(U) is an algebra with unity.

2. For every open cover U =
⋃

i∈I

Ui:

(a) ∀f ∈ O(U): if ∀i ∈ I f |Ui
≡ 0 then f ≡ 0.

(b) If exists a set of functions {fi ∈ O(Ui) | i ∈ J} s.t. ∀i, j ∈ J :
fi|(Ui∩Uj) ≡ fj |(Ui∩Uj) then there exists f ∈ O(U) s.t. ∀i ∈ J, f |Ui

≡
fi.

A sheaf of continuous functions can be defined simpler by demanding: ∀f ∈
C(U,R), f |Ui ∈ O(Ui) =⇒ f ∈ O(U).

The sheaf is a structure over elements with a common local attribute.
Examples for function sheaves can be continuous functions on X, smooth func-
tions on X and smooth constant functions on it. The last one is a sheaf over R
but not over Qp. Over both, however, the locally constant functions compose a
sheaf. A counter-example is the collection of functions with local support. That
is a global attribute of a function and as such can’t define a sheaf.

To define manifolds we’ll use spaces with function sheaves. These are pairs
(X,F ), with F = O(X). A map f : (X,F ) → (Y,G) will be a continuous map
f : X → Y and its dual maps f∗ : C(U) → C(f−1(U) (where f∗(φ) := φ ◦ f ,
and U ⊂ Y is some open subset), such that f∗(O(U)) ⊆ O(f−1(U)).
Example: for any open U ⊆ R the pair (U,C∞(U)) is a space with functions.

Now we can define:
A topological manifold is a topological Hausdorff paracompact7 that ”locally
looks like Rn. i.e., every point x ∈ X has a open neighbourhood U and two
diffeomorphisms ψ : U → Rn, φ : Rn → U , s.t. φ ◦ ψ ≡ id|U and ψ ◦ φ ≡ id|Rn .

A smooth manifold is a space with functions (X,C∞(X)), where X is a topo-
logical manifold and for every point x ∈ X there is a open neighbourhood U
and two diffeomorphisms ψ : (U,C∞(U)) → (Rn, C∞(R)), φ : (Rn, C∞(R)) →
(U,C∞(U)), s.t. φ ◦ ψ ≡ id|U and ψ ◦ φ ≡ id|Rn .

7We need the paracompactness to assume the partition of unity holds over the manifold.
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Remark: The usual definition of manifolds adds an ”atlas” to the structure of
X: an open cover X =

⋃

i∈I

Ui with diffeomorphism φi : Ui → Rn. Instead of

diffeomorphisms ψ, φ between (U,C∞(U)) and (Rn, C∞(R)), it has the demand
that φi ◦ φ−1

j is differentiable.

Defining submanifolds is a bit delicate for a general space. A submanifold in
the Euclidean space is a subset M ⊆ Rn for which: For every p ∈ M there is
an open neighbourhood Up ∈ Rn s.t. Up ∩ Rn is the zero set of a differentiable
f : Up → Rk, and f has a differential of full rank (i.e., rank( ∂fi

∂xj
(p)) = k).

The full rank condition enables usage of the implicit function theorem. The
”usual definition” of a submanifold M ⊆ N asks the atlas of N to be the
restriction of the atlas of M .
Example: Sn is a smooth manifold, and it’s a submanifold of Rn.

A theorem by Whitney shows that every n-dimensional manifold can be embed-
ded in R2n+1.

Exercise 3.10 Give an example for a set that is ”almost” a smooth manifold,
expect that it’s not Hausdorff.

Exercise* 3.11 Give an example for a set that is ”almost” a smooth mani-
fold, expect that it’s not paracompact. The set should be connected and one-
dimensional.

3.6 Vector bundles

A Vector bundle is a smooth family of vector spaces. Given two (smooth)
manifolds M,E and a map p : E → M , we’d like to define E as a family of
vector spaces over M – a vector space for every fiber in {p−1(x) | x ∈ M}. For
that end, we demand that for every point x ∈ M exist an open neighbourhood
U and a diffeomorphism φ : p−1(U) → U × Rn that factors the diffeomorphism
p−1(U) → M . In addition, we’ll demand the restriction of φ to each fiber of p
is an isomorphism of vector spaces φ|p−1(x) : p−1(x) → Rn.
Example: E := M × Rn with the constant (smooth) bundle.
Example: The Mobius strip is homeomorphic to I × S1. By extending each
segment I to R, we can define a bundle over the manifold S1. This way, the
points in E are pairs (θ, x), where x runs over the points of the line of angle
0.5 ∙ θ.

Exercise 3.12 Define rigourously the vector bundle in the 2nd example, and
show it’s not diffeomorphic to the bundle S1 × R. You can assume the Mobius
strip isn’t diffeomorphic to the S1.
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4 Lesson 7, 2/12/13

4.1 Tangent space of a manifold

The tangent space of a manifold M in a point x should describe the directions
in which we can ”walk” on the manifold from x. This space will be a the
complement to the normal space at x – the linear subspace of normals to x.
The dimension of the tangent space will be equal to the dimension of M for
”most of” the points x ∈ M . In ”problematic” points, such as corners, the
dimension will decrease.
We define the tangent space now formally, first for a linear space.
Let V be a linear space, U ⊆ V an open set and x ∈ V (especially, dimU =
dimV ). We define The tangent space in x will be defined TxU := V . Given
a smooth function φ : U → U ′, the differential Dφ : TxU → Tφ(x)U

′ is the
induced map on the tangent spaces. The differential is defined as the 1st-order
approximation of φ. Namely, given any smooth ψ : V → W , we take a map
ψ1 : V → W for which lim

y→x

ψ(y)−ψ1(y)
‖y−x‖ = 0, and the differential Dψ will be

defined by ψ(y) = ψ(x) + Dψ(y − x), for every y ∈ U .

Now, let’s define a tangent space to a general smooth manifold M .
There are several equivalent definition:

1. V ∈ Tx(M) is a correspondence vφ ∈ T0(V ) for any map φ : (V, 0) →
(M,x) s.t. given ψ : (U, 0) → (U ′, 0), φ′ : (U ′, 0) → (M,x) we’ll have
Dψ(Vφ) ≡ Vφ′ .

2. Tx(M) := {φ : (R, 0) → (M,x) | φ ∈ C∞(R)} modulo the relation γ1 ∼ γ2

iff exists a neighbourhood U of x and a isomorphism φ : U → Rn s.t.
lim
x→0

(φ◦γ1)(x)−(φ◦γ2)(x)
x = 0. One should prove that if U, φ exists than for

every other U we’ll have a φ.

Exercise 4.1 Let φ : Rn → Rn. Show that φ is smooth iff ∀f ∈ C∞(f), φ∗(f) ∈
C∞(Rn). The pull back of every smooth function using φ is smooth.

3. Tx(M) = {d : C∞(M) → R | d is linear, d(f ∙ g) = df ∙ g(X) + f(x) ∙ dg}.
Every d a directional derivation ⇒ d is a tangent vector.

4. Define Mx := {f ∈ C∞(M) | f(x) = 0}, and take Tx(M) := (Mx/M2
x)∗.

Exercise 4.2 Show the definitions are equivalent.

Now let φ : M → N be smooth. The differential of φ in x ∈ M is Dxφ :
Tx(M) → Tφ(x)(N) given by the definitions. E.g., Dx(φ)(γ) := φ ◦ γ (by (1/2)).

Exercise 4.3 Show that given manifolds M,N,K and maps φ : M → N,ψ :
N → K, ν : M → K, the differentials have Dx(ν) ≡ Dx(ψ) ◦ Dx(φ).
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4.2 Types of maps

Now we can define many maps: let φ : M → N be a smooth map between
manifolds.

• φ is an immersion if Dxφ is one-to-one.

• φ is a submersion if Dxφ is onto.

• φ is a local isomorphism or étale if Dxφ is one-to-one and onto.

• φ is an embedding if it’s an immersion and there is a homeomorphism
M ∼= φ(M).

• φ is a proper map if for every compact K, the preimage φ−1(K) is compact.
For example, fibers are compact in M .

• φ is a cover map if for x ∈ N there exists a neighbourhood U ⊆ M , such
that φ|φ−1(U) : φ−1(U) → U is a diffeomorphism, and is a composition
φ−1(U) → U × D → U for a discrete set D.

Example: Let φ : [−1, 1] → R2 be a smooth path that slows to a stop in
φ(0) = (0, 0), but spends no time in (0, 0). That is, all the derivatives are
zeroed φ(n)(0) = 0, but φ(x) 6= 0 for all x in some neighbourhood [−ε, ε]. Such
a φ is one-to-one around 0, but is not an immersion at 0.
Example: An immersion isn’t necessarily one-to-one. An example is a self-
intersecting path φ : R→ R2 with constant speed.
Example: Let L,D be finite dimensional linear spaces. The differential of a map
φ ∈ Hom(L, V ) is φ itself. Thus, a one-to-one φ will be an immersion, an onto
φ will be a submersion, and an isomorphism of linear space will be an étale.

Exercise 4.4 Find a φ : M → N which is a one-to-one immersion, but isn’t
an embedding.

Exercise* 4.5 Show that every proper map which a one-to-one immersion is
an embedding.

Exercise* 4.6 Show that a proper map which is an étale is a cover map, and
that a cover map with finite fibers is a proper map and an étale.

Actually, the above example of a linear map φ : L → D is the
Theorem: Let φ : M → N be an immersion. Then for every x ∈ M there is a
neighbourhood U ⊆ M , and a neighbourhood V ⊆ N of φ(x), and isomorphisms

ρ : Rn → U,ψ : Rm → V , such that the composition Rn ρ
−→ U

φ
−→ V

ψ−1

−−−→ Rm is
one-to-one.
Alternatively, if φ is a submersion then ρ ◦ φ ◦ ψ−1 is one. If φ is an étale the
composition will be an homeomorphism

Exercise 4.7 Prove the theorem using the implicit function theorem.
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Let φ : M → N be a submersion. From previous theorem we get that ev-
ery fiber φ−1(x) is a submanifold in M . In addition, the tangent space in
every point in the fiber will be the kernel of the differential of φ. i.e., ∀y ∈
φ−1(x), Ty(φ−1(x)) = kerDyφ.

When M is a submanifold of Rn, we have the known concept of tangents. Given
an immersion φ : M → Rn we have Tx(M) as a subspace of Tφ(x)(Rn).

Example: Let M = R2, N = R, and φ(x, y) := x2 + y2. The map φ is a
submersion away from the origin. The fibers of φ are circles/a point/ the empty
set – all are submanifolds of M . The tangent space will be as expected in each
case.

4.3 Tangent bundles

In the end of the last lesson we defined a vector bundle to be a smooth family
of vector spaces. For a manifold M we defined a bundle to consists of a vector
space for every fiber of a covering map.
We define the tangent bundle of M to be TM := {(x, v) | x ∈ M, v ∈ Tx(M)}.
As a bundle, it has a projection p : TM → M defined by p(x, v) = x.

Example: Let V be a linear space and let M ⊆ V be an open set in it. By the
definition of tangent space for linear spaces, we have TM ∼= M × V . So, the
tangent bundle will consist of copies of V corresponding to every x ∈ M .
Example: The tangent bundle of M = S1 will be TS1 = S1 ×R. In every point
the tangent space is one-dimensional, and changes smoothly as we ”walk” on
the circle. However, on M = S2 the tangent bundle will not be S2 × R2. This
holds since every vector field on S2 vanishes (”you can’t comb a hedgehog”),
therefore we certainly can’t parallelize 2 vector field on it.

4.4 Fun with bundles

A direct sum of 2 bundles over M is just the sum of their vector spaces. We
can take open neighbourhoods V,W (?) and define (M × V ) ⊕ (M × W ) :=
M × (V ⊕ W ). Similarly, we can define tensor products of bundles, multilinear
n-forms, and their absolute value and sign.

Exercise 4.8 Find non-isomorphic bundles E,E’, such that E ⊕ F ∼= E′ ⊕ F
for some bundle F (Hint: use vector bundles over S2).

Example: We define the Mobius strip by M := {(θ, v) ∈ S1 × R2 | v ∈ L θ
2
},

where Lθ ⊂ R2 is the line intersecting the x-axis in angle θ. Equivalently, we
could define M2 := {(θ, v) ∈ S1×R2 | v ∈ L θ

2 + π
2
}. The direct sum M ⊕M2 will

be S1 × R2. To show that, we can map (θ, a) 7→ (θ, av, aw), where a = av + aw

is the decomposition of a.
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Let E1, E2 be bundles over a manifold M . A map φ : E1 → E2 is defined as a
smooth map M → M that induces a homomorphism of linear spaces in every
fiber of the bundle projections.
The kernel and the image of a general map between bundles aren’t ”nice”.

Exercise 4.9 Show that if φx : E1(x) → E2(X) has constant rank for every
x ∈ M , the image and the kernel of φ are bundles.

[??? Missing definition of dual bundle]
Example: The cotangent bundle T ∗M is a bundle on M in which ∀x ∈ M, T ∗

x (M) =
(Tx(M))∗.
Example: If a manifold M has the same dimension dimM := n in every point,

we can define Ωtop
M := Λn(T ∗M), using the space of n-forms.

Using this, we define the densities and orientations bundles on the manifold,
Dens(M) := |Ωtop

M |, Dens(M) := sign(Ωtop
M ).

Given a map φ : M → N and a bundle p : E → M we define the pull-back of E
by φ to be φ∗(E) := {(m, v) ∈ N × E | φ(m) = p(v)}.
Given a submanifold X ⊆ M , and an embedding i : X → M , we define the
normal bundle at a point x ∈ M to be Nx(M) := i∗(TM)/TX. Similarly, the
conormal bundle will be CNx(M) := (Nx(M))∗.
Example: For M = S2 the normal bundle at a point will give the normal vector
to it. It will be isomorphic to the trivial bundle on M .

For a submersion s : M → N we have the relative tangent bundle over M,
defined as TM/N := ker Ds. The differential Ds : TM → s∗(TN) is a map
between bundles. In every x ∈ M the relative tangent bundle will be ker Dxs,
which is the tangent space to the fiber of s(x).

4.5 Cuts

In set theory, a cut of a function f : X → Y is a function g : Y → X s.t.
g◦f ≡ id. For example, for f : R2 → R which is the projection f(x, y) := x a cut
can be g(x) := (x, sinx). This a just be a (continuous) choice of representatives
of fibers.
In our case, cuts of bundles can help us define many basic concepts. For example:

• A cut of the tangent bundle is a vector field.

• A cut of the densities bundle is a differential form.

• A cut of the orientations bundle is an orientation on a manifold.

• A positive cut of the bundle sym2(TM)∗ (=chooses only positive sym-
metric forms) is a Riemannian metric on the manifold.

Exercise 4.10 Show the every manifold has a Riemannian metric (Hint: This
cut won’t vanish on M. Use partition of unity).
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We won’t always have differential forms on a manifold, and the Mobius strip will
be a counter-example. However, we can always define densities. This is since
density (and metric) are defined using positivity, which is a convex condition.
However, the conditions for defining a differential form is a non-vanishing cut,
and that’s a non-convex condition.

Exercise 4.11 Let M be a manifold with a Riemannian metric. Define a den-
sity over M and describe it explicitly. The density should respect coordinates
change, and be the standard density when M is a linear space with the standard
metric.

Since a density over a space gives us a measure on it, we can thus define integrals
over manifolds. That is our goal for the next lesson.

5 Lesson 8, 9/12/13

5.1 Recap from last week

• Let X,Y be topological spaces, and p : E → X a bundle. Last week
X,Y were varieties. E is a topological space, and the isomorphism is a
homeomorphism of topological spaces. We define a pullback of the bundle
by E := {(x, v) | v ∈ p−1(F (X))}, and skip the topology definitions.

We also demanded that for all x ∈ X there is a neighborhood U ⊆ X,
and a diffeomorphism φ : U → U ×Rn, and a projection pn : U ×Rn → U
such that pn ≡ p ◦ φ.

• A definition of tangent spaces using categories: We’ll use a definition from
category theory, which only defines the required attributes and doesn’t
show existence.

First: A category C consists of:

– A collection8 of objects, denoted Obj(C).

– For every X,Y ∈ Obj(C) – a collection of morphisms, denoted
Mor(X,Y ).

The morphisms in C need to meet some demands, like a composition rule
and existence of an identity map.

A functor F : C → D between two categories consists of:

– A map between the categories’ objects, Obj(C) → Obj(D).

– For every X,Y ∈ Obj(C) – a map between the morphism Mor(C,D) →
Mor(F (C), F (D)).

8A category can be very big, e.g. the category of all sets. To avoid logical paradoxes like
Russell’s paradox, we use the terms ”collection of objects” or ”class of objects”.
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The map between the morphisms must respect the composition rule and
the identity maps of the categories (meaning, F (IdA) = IdF (A), and F (φ)◦
F (ψ) = F (φ ◦ ψ)). There are numerous examples of categories, such
as Set (category of all sets) or Man (category of all manifolds). We’ll
denote Vect the category of all linear spaces, and ptMan the category of
”pointed manifolds” (pairs of manifold and a point in them).

The tangent space is a functor from the category of pointed manifolds to
the category of linear spaces. So, the functor is T : ptMan → Vect. For
which:

1. The tangent space of a linear space is the space itself, T0(V ) = V .

2. If (V, 0),(W, 0) are Euclidean spaces (=normed spaces), and φ : (V, 0) →
(W, 0) a map between them (continuous? isometry?), then lim

x→0

T (φ(x))−φ(x)
‖x‖ =

0 .

3. For every φ ∈ Mor(V,W ) which is an open embedding, the map
T (φ) ∈ Mor(T (V ), T (W )) is an isomorphism (This demand might
follow from the previous ones).

5.2 Analytic manifolds

We now turn to study manifolds over all local fields, and not only over fields of
characteristic 0.
Let (M,O) be a pair of a manifold and a sheaf of functions from M to the
field. For every subset U ⊆ Fn and open V ⊆ U there is the local sheaf
OU (V ) of functions ρ : V → F . We’ll say (M,O) is an analytic manifold if
every ρ ∈ OU (V ) is analytic. That means: for every x ∈ V there is a sequence
{ak}k∈NN (k is a multi-index), and a neighbourhood W ⊆ V of x, for which
∀y ∈ W, ρ(y) =

∑

k∈NN
ak(y − x)k.

Remark: Some authors use the term ”analytic manifold” for other objects. We
use it in the same sense it was used in Serre’s book.
Remark: We use the terms ”manifold” for a smooth object, a ”variety” for a
manifold which may have singularities.

Example: Affine analytic variety are the zero-set of a given collection of analytic
functions {fi}i∈I . In order for it to be a manifold, we need to make sure it’s
smooth. A possible condition is that in any point the differentials Dfi(x) have
full rank.
We’ll mainly use affine algebraic manifolds in the course, which are affine ana-
lytic manifolds defined by polynomials fi ∈ C[X1, ...Xn].

5.3 Comparison of smooth and analytic manifolds

• In a smooth manifold M , every open U ⊆ M ”looks like” Rn. That’s not
the case in analytic manifolds. e.g., there is no smooth map from the unit
ball to the space.
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• We don’t have partition of unity in analytic manifolds. If an analytic
function zeroes in some neighbourhood, it must be the zero function.

• In both analytic and smooth cases we can use the implicit function theo-
rem, which will be an important tool in our proofs. In algebraic geometry
the conditions for the theorem don’t hold.

Over analytic manifolds, we can still define vector bundles and specifically tan-
gent bundles, vector fields and differential forms. However, the absolute value
we defined is real, | ∙ | : F → R. Thus, we cannot define Dens(V ) and Ori(V )
using |V | := {f : V ∗ → R | f(kv) = |k| ∙ f(v)}. In order to define densities (and
later integrals) we’ll use sheaves.

5.4 Sheaves

Let X be a topological space. A sheaf F over X is a map from the set of all open
subsets U ⊆ X to the image F (U). In general, the images can be groups, ring,
vector spaces, etc. In our case, F (U) will be spaces of functions, and elements
ξ ∈ F (U), called section, will be function ξ : U → F . The sheaf axioms will
enable us to glue together coinciding sections ξ : U → F,ψ : V → V , where
U ∩ V 6= ∅. Let’s give a formal definition.
Definition: Let X be a topological space. A sheaf F consists of:

1. An assignment rule from every open U ⊆ X to a vector space F (U).

2. Restriction rules resU
V : F (U) → F (V ), with the following properties:

• basic demands: F (∅) = {0}, resU
U ≡ id.

• composition: for open V ⊆ U ⊆ W, resW
V ≡ resU

V ◦ resW
U .

For every an open cover U =
⋃

i∈I

Ui:

• if ∀i ∈ I, resU
Ui

ξ ≡ 0 for some ξ ∈ F (U), then ξ ≡ 0.

• if ∀i, j ∈ I, resUi

Ui∩Uj
(ξi) ≡ res

Uj

Ui∩Uj
(ξj), then ∃ξ ∈ F (U) s.t. ∀i ∈

I, resU
Ui

(ξ) ≡ ξi.

Remark: For ξ ∈ F (U), We denote ξ|Ui := resU
Ui

(ξ).

We already showed sheaves of functions and distributions over spaces. We stated
the general definition here to define sheaves from bundles.
Given a bundle p : E → X, we’ll define a sheaf F (X). For every open U ∈ X
we’ll define FE(U) := {s : U → p−1(U) | p◦ ≡ id}, where s is a ”suitable”(?)
map.
Example: The trivial bundle E = X × V defines the sheaf FE(U) := {s : U →
V | suitable s(?)}. The resulting sheaf can be called the free sheaf on X.
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Counter-example: The constant sheaf. Let V be a vector space over a field
K. We’d like to define a constant sheaf by F (U) := V for every open U ⊆ X.
To meet the condition F (∅) = {0}, we need to define: F (U) := V only for
non-empty open subsets. This will create a problem with the restriction map.
Given any W ⊆ U , the restriction resU

W will be the identity map on V. The sheaf
demands will hold: having resU

Ui
v = 0 (even for some i) means id(v) = 0 and

v = 0. Also, if id(vi) = id(vj) for vi ∈ F (Ui), vj ∈ F (Uj), we’ll take v = vi = vj

in F(U) for the last axiom. However, for disjoint open U,W ⊆ X we can choose
different u,w ∈ V , and get a contradiction: for u ∈ F (U), w ∈ F (W ) there is
no v ∈ F (X) for which u = id(v) = id(w), as required in the last axiom.
So, the constant map ”F (U) := V for every non-empty open U ⊆ X” doesn’t
produce a sheaf. It does produce a pre-sheaf – an almost-valid sheaf, except for
the last axiom. Every pre-sheaf can be sheafify to a unique sheaf. In our case
that would result in the sheaf of locally constant functions on X. We’ll use that
sheaf a lot when working with l-spaces.

Remark: Since every bundle is locally trivial, we can define bundles as ”locally
trivial sheaves” (?).

5.5 Defining densities on Qp

Let V be a linear space over a local field F . We can now define |V | over R.
Given a one-dimensional bundle p : E → X we’ll define |E| to be the locally
constant bundle over R. That is, |E|(U) is the collection of all functions sx :
x → p−1(x), such that exists a neighbourhood W ⊆ X of x and a trivialization
φ : p−1(W ) → W × V to the constant bundle.

Exercise 5.1 The definition doesn’t depend on the trivialization φ.
(Hint: Choose 2 trivializations φ1, φ2 and show that φ−1

1 ∙φ2 is just a product by
a scalar. Remember that for a non-zero function f to a local field, the absolute
value |f | is locally constant).

We’re interested in the bundle of the upper forms Ωn(X), from which we defined
the densities sheaf Dens(X) := |Ωn(X)|. If a form ω ∈ Ωn

x(U) doesn’t zero, we
will have |ω| ∈ Dx(U). 9

This way we can integrate the non-zero forms. We’ll decompose U into open
subsets, on which the bundle Ωn

x is trivial, and we’ll get a constant sheaf Dx(U),
whose sections are locally constant functions. Thus, every x ∈ X has neighbour-
hood U in which the sections are constant, and U∩X is diffeomorphic to a linear
space (we might need to shrink U farther to make sure we have such diffeomor-
phism). Using this neighbourhoods we can define our integral as we did with
smooth manifolds.

9I skipped a definition of continuous section of F, defined F (U)
⊗

C∞(U)

C(U).
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5.6 Distributional sections of sheaves on l-spaces

Let F be a sheaf over X. For every section s ∈ F (X) we’ll define the support of
s to be the complement to the zero set of s, supp(s) := X\

⋃

s|U≡0

U . The sections

with a compact support will be denoted Fc(X). For an l-space, the basic sheaf
will be the constant one, and the Schwartz functions will be S(U,F ) = Fc(U)
for that sheaf F . The dual space S∗(U,F ) := S(U,F )∗ will be the distributions
on X.

Now we can define generalized functions over analytic manifolds 10. Given an
analytic manifold X over a local field F , we’ll define C−∞(U) := S∗(U,Dx),
when Dx is the bundle of densities. These are the functionals from smooth
measures with compact support.
We can introduce an equivalent definition, using smooth measures. There is
a Borel measure over every topological space. We want the measure to be
also a Radon measure (=finite on compact sets), and to coincide locally with a
Haar measure. These demand defines the set of smooth measures with compact
support. Those are all the measures μ over X, s.t. for every x ∈ X there is a
neighbourhood W ⊆ X for which:

• W is homeomorphic to an open subset in Fn by some homeomorphism φ.

• The push-forward of μ coincides (locally) with a Haar measure h over Fn,
φ∗(μ|W ) ≡ h|F n .

Exercise 5.2 Show an isomorphism of this measures space and S(U,Dx).

Next, for any sheaf F over a vector space X we’ll define C−∞(X,F ) := S∗(X,F ∗ ⊗

C∞
X

Dx).

This definition involves a tensor product over a ring. We don’t want to get into
that, so we’ll cheat and assume F is locally constant. Since we already showed
that Dx is locally compact, there will be a small neighbourhood of every point
in which F is a vector space, and we can look at definition as a regular tensor
product. The elements in this products are all maps f : F (U) → Dx(U) such
that:

• f is linear over C∞
X : ∀φ ∈ C∞

X (U), s ∈ F (U) : f(φ ∙ s) = φ ∙ f(s).

• F comes from a locally constant sheaf: for every x ∈ U there is a neigh-
bourhood W ⊆ X isomorphic to open W ′ ⊆ Fn, and... ?? (we’ll continue
the definition next week).

5.7 Distributions over smooth manifolds

We defined distributions over a Rn as the dual space for C∞
c (Rn). However, for

a smooth manifold M we’ll define directly the generalized functions C−∞(M).

10we won’t define generalized functions of l-spaces in this course.
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We need to check that given a diffeomorphism φ : M → Rn which is not a linear
map, we can still push forward measures and distributions. This way, given any
open U ⊆ M isomorphic to Rn we could define C−∞(U) := C−∞(Rn).
The problem with this kind of definitions is the dependance on φ. To show
independence of the diffeomorphism, given diffeomorphisms φ1, φ2 : U → Rn

we need to show an isomorphism iφ1,φ2 : C−∞
φ1

(U) → C−∞
φ2

(U). In addition,
given diffeomorphisms φ1, φ2, φ3 : U → Rn we need to show a composition
holds iφ1,φ2 ◦ iφ2,φ3 ≡ iφ1,φ3 . We could then define C−∞(U) as the set of cor-
respondences φ 7→ C−∞

φ (U) under the equivalence relation generated by the
isomorphisms iφ1,φ2 .

To switch from generalized functions over open sets in M to generalized func-
tions on the entire manifold we’ll use the sheaf structure.
We denote Θ the set of all open sets U ⊆ M that are diffeomorphic to Rn and
define:

C−∞(M) := {α : Θ → C−∞(U) | ∀U ⊆ V open : resV
U (α(V )) = α(U)}

Similarly, we’ll define generalized functions over a bundle E, which we denote
C−∞(M,E). It can be shown the definition doesn’t depend on the trivial-
ization of E. That gives an explicit isomorphism between C−∞(X,V ) and
C−∞(X,W ). Specifically, we get a definition for smooth distributions on a
manifold, C−∞(M,DM ).

Let’s define a topology on C∞
C (M). We take a locally finite cover M ⊆

⋃

i∈I

Ui,

and define an onto map
⊕

i∈I

C∞
c (Ui) → C∞

c (M). This could give us a topology

on the image from the direct sum. We’ll take a different route:
Let ξ be a vector field over M . It is a differential operator on every function f ∈
C∞

c (M) (sending f 7→ ξ(f)). Every differential operator D(f) is a sum
∑

i

ξi(f) ∙

gi, for some functions gi and vector fields ξi. Thus, if f has compact support,
the image D(f) will also have compact support. The opposite implication is
also correct, and you reader will prove it.

Exercise 5.3 Let f ∈ C∞(Rn). Show that f has compact support iff sup
x

|Df(x)| <

∞ for every differential operator D.

This enables us to define a topology using a system of semi-norms (like we had
in locally convex spaces). Every differential operator D will define the norm
‖d‖D := sup

x
|Df(x)|. That gives us a topology on C∞

C (M).

Exercise* 5.4 Show that this topology is identical to the one defined by the
map

⊕

i∈I

C∞
c (Ui) → C∞

c (M) above.

Exercise* 5.5 Show that C−∞(M,DM ) ∼= C∞
C (M)∗.
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Defining differential operators on a field of a bundle:
TE

(X,x) := {(D1, D2) : C∞(X,E)×C∞(X) → R | D1(f ∙s) = D2(f)∙s+f ∙D2(s)}
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