
1 Lesson 5, 20/10/13 - P-adic numbers

1.1 Defining p-adic numbers

P-adic number are different from ”regular” numbers first of all by their absolut
value. While R is constructed as a completion of Q with respect to the usual
absolut value, P=adic numbers are created from Q with respect to another
absolut value. Let us recall what absolut value is.
Given a field F, absolut value is a function | | : F → R+ that applies:

1. The triangle inequality : |x+ y| ≤ |x|+ |y|

2. |x||y| = |xy|

3. |x| = 0⇔ x = 0

Examples for absolut values can be:

• The trivial absolut value, as we know it - | |∞

• The standard absolut value: | |0 =

{
0 0

1 not 0

• The p-adic absolut value | |p

First, we shall explain the p-adic absolut value on prime numbers.
For a prime number p, |p|p = 1

p

For two different prime numbers p, q, |q|p = 1.
For |m|p = |qr11 q

r2
2 · · · q

rk
k p

rp | = 1
prp

For (a,p)=(b,p) = 1 (greatest common divisor) |pn ab |p = p−n

Let’s check the triangle inequality - for (a,p)=(b,p)=(c,p)=(d,p)=1, and assum-
ing n ≤ k, then

|pn ab + pk cd |p = |pn|p|ab + pk−n cd |p = p−n|ad+p
k−ncd
bd |p = p−n|ad + pk−ncd|p =

p−n|ad+p
k−ncd
ad |p = p−n|1 + pk−n ca |p ≤ p

−n, as the g.c.d’s of a,b,c,d and p are 1,
and as k ≥ n.
Actually, what we found is another character of the p-adic absolut value - it
is a non-Archimedean absolut value, meaning |x + y|p ≤ max(|x|p, |y|p) which
means, in turn, that |x|p 6= |y|p ⇒ |x+ y|p = max(|x|p, |y|p)
In Arcimedean absolut values, for some given x,y, there exists some n for which
|x + x + .... + x|(n times) ≥ |y|, and that character does not apply in non-
Archimedean absolut values. As those characters do not cover all options,
we might find some absolut values which are not Archimedean and not non-
Archimedean.

• Ex1∗: Prove the Ostrowsky(?) theorem - For a given absolut value | |α
over Q, one of the following occurs:

– | |α ∼ | |∞
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– | |α ∼ | |p
– | |α ∼ | |0

where ∼ means space topology equivalence.

• Ex2: The following exists generally:
| |α ∼ | |β ⇔ ∃c : | |cα = | |β
(| |cα means | |α to the power of c)

Definition : This completion is denoted by Qp = Q̂| |p
Notice, that just like R, this completion is not algebraicly closed.

We can write p-adic numbers based on a p-adic absolut value, where n 6= 2,
and we’ll get numbers with finite number of digits to the right of the point, and
infinite number of digits to the left of the point, like that:

• Ex3 : Prove that Qp = {...x−n...x0.x1...xk|xi ∈ {0, 1, ..., p − 1}}. (You
should show that the sum xkp

−k + ...+ x1p
−1 + x0 + x−1p+ ...+ x−np

n...
converges into that number according to the | |p absolute value)

Therefore, when you replace p with some other prime number, you’ll get different
results. It should be noted that by choosing p=2, we encounter the ”problem”
of the lack of a single result, meaning, each number can be displayed by more
than one p-adic number. This also happens in mathbbR but do not in other
than 2 p-adic numbers.

1.2 Another Differences between p-adic numbers and real
numbers

Another differences between real and p-adic numbers will be shown in the fol-
lowing exercises:

• Ex4 : Prove: for a sequence {ai} ⊆ Qp , |ai|p → 0⇔ Σai conv.

• ex5 : Prove that in p-adic numbers, balls do not have centers - B(x, r) =
B(y, r)∀y ∈ B(x, r).

• Ex6 : Prove that ∀r∃r′ and ∀r′∃r such that Bo(x, r) = Bc(x, r
′) where Bo

means an open ball (all the points with distance up to r without r) and
Bc mean a closed one (all points up to r and r included).

• Ex7 : Prove that for each two p-adic balls, if they are not distinct, then
one of them contains the other: B(x, r) ∩ B(x′, r′) 6= ∅ ⇒ (B(x, r) ∈
B(x′, r′) or B(x′, r′) ∈ B(x, r))
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Def: Zp = BQp
(0, 1). Meaning - all the numbers with no digits to the right of

the point are in the unit circle.
Notice, that unlike real numbers, ∀x, y ∈ Zp, x+ y ∈ Zp.
In the case of p = 2 we’ll get Bo(0, 1) = Bc(0,

1
2 ). In this case, we’ll have the

unit ball, which is constructed out of two balls - the one where the last digit to
the left of the point is 0. and the other, where that digit is 1. Each of these
balls is made of two other balls, one with the digit previous to the last is 0, and
the other where this digit is 1. In other p’s, there are p balls within each balls.
In that sense, the p-adic integers are homomorphic to the Cantor set.

• Ex8 : Zp ≈ Cantor set where Zp has the topology induced from Qp and
the Cantor set has the topology induced by the real numbers.

Conclusion - Zp is a compact set.

1.3 Inverse limits

Let A1 ← A2 ← A3 ← ... equiped with homomorphisms
Def: Inverse limit of Abelian groups is defined by:

lim←−
i∈i

Ai = {−→a ∈
∏
i∈I

Ai|ai = fij(aj) ∀i ≤ j in I}

Where fij is a homomorphism from Aj to Ai, where j > i, and fik = fij ◦
fjk ∀i ≤ j ≤ k.

• Ex9 : Prove that lim←−Z/pnZ ∼= Zp

• Ex10 : Prove that Qp ' Cantor set - {1} (topologically homomorphisms)

• Ex11a : Prove that Qnp ' Qp

• Ex11b : For an open set U ⊂ Qnp then either U ' Cantor set, or U '
Cantor set-{1} (topologically homomorphism).

1.4 Haar measure and local fields

For every group G - locally compact, there is a unique measure, invariant to
translations up to a scalar multipliction.
Haar Thm: ∀G locally compact
(1) ∀g ∈ G, ∃µ ∈ Cc(G)∗−0 s.t. < µ, gf >=< µ, f > where gf(x) = f(g−1x)
(2) If µ, µ′ are as in (1), then ∃α s.t. µ = αµ′

• Ex12 : Prove Haar theorem for G = Qp

hint: first define µ on basic open sets - balls. Define µ(B(0, 1)) ≡ 1 and get
that µ(B(x, p)) = p, since B(0, p) can be covered distinctivly by p unit balls. In
addition, you need to show that if µ is a Haar measure and µ(B(0, 1)) = 0 then
µ = 0.
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So, let us define
Def: µa(B) = µ(aB) for µ a Haar measure.

By the exercise µa = α(a)µ and α(a) does not depend on the original mea-
sure.

• Ex13 : Show that α(a) = |a|p
hint: Choose B to be the unit ball. and compare measures (we know that this
is enough since µ, µα) are Haar measures and therefore one is a scalar multiplic-
tion of the other).

Def: Local Field Local field is a topological field which is locally compact and
non-descrete.
Examples for such fields may be Qp, R, C and another one is the formal Laurent

series over the p-adics - Lq((t)) = {
∞∑

n=−m
ant

n} where q may be some power of

p.
There is a complex theorem which states that those are all the options for lo-
cally field. We shall not go all over it, but the main points are as follows:
(1) - Define the measure on G using µ ∈ Cc(g)∗

use the Haar thm - you can define absolut value, up to scalar multipliction -
∃α(a), µa = α(a)µ→ |a| ≡ α(a)
(2) - prove that every local field has a norm, which defined as a scalar multi-
pliction of Haar measure (notice - R,C have it a bit differently due to differnt
volumes of unit balls)
(3) - prove that every compact metric space is complete
(4) - every local field includes Q and its completion
(5) - for char(F ) 6= 0 show that there exists a transendental element, name it
t, and show that it is Fq((t)).
(6) - show this field is an algebraic extension of finite dimension.

• BigBonusEx!! - prove this theorem completely and get up to 5 points to
the course’s grade!!

1.5 l-spaces

Our goal here is to reach the notion of distributions over varieties. The closest
object in the p-adic theory for a valiety is an element called l-space.
Def: l-space: A topological space X will be called a l-space if:

1. X is Hausdorff

2. X has a basis of open compact sets

Here, open sets tend to be closed as well, hence, we can talk about open compact
sets.
therefore, the p-adic line, and spaces based on Qp are l-spaces.
Example - every non-Archimedean local field is a l-space.
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• Ex14 : open/closed subset of a l-space, is a l-space itself

Def: locally closed set: U ⊆ X is locally closed, if ∀p ∈ U, ∃V ⊂ X p ∈
V s.t. U ∩ V is a closed set in X.
Example - an open set in the regular topology is locally closed.
Example - every affine variety over Qp is a l-space.

Def: Refinement of a cover
⋃
Ui = X is {Vj : ∀j∃i, Vj ⊆ Ui} and

⋃
Vi = X

Thm: Every cover has a compact disjoint open refinement.
We’ll prove over 2 sets, from there, inductively, applies to the whole cover - let
U1, U2 be open compact sets. The set U1−U2 is open compact set itself. U1−U2

and U2 form a distinct cover.

• Ex15∗(half star) : find a l-space X which is countable at ∞ and an open
subset U ⊂ X that is not countable at ∞.

hint: X is not metrizable.

• Ex16 : let us have 2 more axioms: 1. X is a metrizable l-space, 2. X is
countable at∞. Then for every open/closed subset in X is also metrizable
and countable at ∞

• Ex17∗(half star) : every l-space metrizable and countable at∞ space X,
is isomorphic to 1 of the 3 spaces:

1. Cantor set

2. Cantor set-{1}

3. X is a discrete set and -


|X| <∞
or

|X| = ℵ0
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